Math 120B: Sample Final Solutions

Closed book, closed notes, no calculators. Each problem is worth 10 points. Time: 80 minutes. Please explain your solutions. Just giving an answer is not enough.

1. Suppose that $I \subset \mathbb{Z}[x]$ is an ideal and there is a prime $p \in \mathbb{Z}$ which is in I. Show that I can be generated by two elements, i.e. there exists $z \in I$ such that $\left.I=\left\{r_{1} p+r_{2} z \mid r_{1}, r_{2} \in \mathbb{Z}[x]\right]\right\}$.
Solution: Let $\phi: \mathbb{Z}[x] \rightarrow \mathbb{Z}_{p}[x]$ be the ring homomorphism that reduces coefficients modulo p and let $J=\phi(I)$. Since ϕ is surjective, J in an ideal in $\mathbb{Z}_{p}[x]$ and thus it is generated by a polynomial $g(x) \in \mathbb{Z}_{p}[x]$. Let $f(x) \in I$ be any polynomial that maps to $g(x)$.
We claim that I is generated by p and $f(x)$. Indeed, since p and $f(x)$ are in I, all their linear combinations are also in I. On the other hand, take $h(x) \in I$. Since $\phi(h(x)) \in J=(g(x))$ we have $\phi(h(x))=g(x) a(x)$. If $b(x)$ is any polynomial that maps to $a(x)$ then $h(x)-f(x) b(x)$ maps to zero. Hence $h(x)-f(x) b(x) \in \operatorname{Ker}(\phi)$ is a multiple of p which makes $h(x)$ a linear combination of p and $f(x)$, as required.
2. Is it true that the intersection of two prime ideals is always a prime ideal? Explain.
Solution: No. If $P_{1} \subset \mathbb{Z}$ is the prime ideal of integers divisible by 3 and P_{2} of integers divisible by 2 , then $Q=P_{1} \cap P_{2}$ is the ideal of all integers divisible by 6 . But Q is not prime since 6 is in Q but neither 3 nor 2 is in Q.
3. Let F be a field and assume that $R=F[x] /(f(x))$ is an integral domain for some polynomial $f(x)$. Show that in fact R is a field.
Solution: If $F[x] /(f(x))$ is an integral domain then $(f(x))$ is a prime ideal. Since it is nonzero and $F[x]$ is a Euclidean Domain, the same ideal is also maximal. But then the quotient R is a field.
4. Let $F \subset E$ be a field extension of finite degree and assume that the degree $[E: F]=p$ is a prime. Show that for any $\alpha \in E$ either $F(\alpha)=F$ or $F(\alpha)=E$.

Solution: We have a chain of embedded fields $F \subset F(\alpha) \subset E$ and hence $p=[E: F]=[E: F(\alpha)][F(\alpha): F]$. Since p is prime, either $[E: F(\alpha)]$ or $[F(\alpha): F]$ is equal to 1 . In the first case $E=F(\alpha)$, in the second $F(\alpha)=F$.
5. Let $f_{1}, f_{2} \in F[x]$ be two polynomials (and F is a field). Let $g=$ $\operatorname{gcd}\left(f_{1}, f_{2}\right)$. Show that the ideal I generated by f_{1}, f_{2} (i.e.

$$
I=\left\{h_{1} f_{1}+h_{2} f_{2} \quad \mid \quad h_{1}, h_{2} \in F[x]\right\}
$$

satisfies $I=(g(x))$.
Solution. Denote temporarily $J=(g(x))$. Since $g(x)$ divides both f_{1} and f_{2}, it will divide any linear combination of f_{1} and f_{2}. Hence J contains I. On the other hand, by extended Euclidean Division Algorithm we can write $g(x)=a(x) f_{1}(x)+b(x) f_{2}(x)$ hence any multiple of $g(x)$ can be re-written as a linear combination of $f_{1}(x), f_{2}(x)$ which means that also I contains J. Therefore $I=J$.
6. Construct a field with 32 elements. Prove that what you have constructed indeed has 32 elements and that it is indeed a field.
Solution If $g(x)$ is any irreducible polynomial in $\mathbb{Z}_{2}[x]$ of degree 2 then $F=\mathbb{Z}_{2}[x] /(g(x))$ is a field and as s vector space over \mathbb{Z}_{2} it has dimension 5 (because it has basis $1, x, x^{2}, x^{3}, x^{4}$. Since the coefficients of basis vectors are taken from \mathbb{Z}_{2}, there will be a total of $2^{5}=32$ elements. It remains to give an explicit example of an irreducible degree 5 polynomial. Note that if a degree 5 polynomial is reducible, it must have some irreducible factor of degree 1 (in which case it will have a root) or an irreducible factor of degree 2 . In \mathbb{Z}_{2} only $x^{2}+x+1$ is irreducible of degree 2. So we are looking for $g(x)$ of degree 5 which is not divisible by $x, x+1, x^{2}+x+1$. There are quite a few possibilities, e.g. $x^{5}+x^{4}+x^{3}+x+1$.

Thus, one possible model for a field with 32 elements in $\mathbb{Z}_{2}[x] /\left(x^{5}+\right.$ $x^{4}+x^{3}+x+1$).

