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Why visualize and explore?
Ï People are good at pattern recognition

– At spotting clusters, trends, outliers, structure, etc. that computers many
miss

Ï Usually two types of users
1. The data scientist who wants to explore/analyze/understand

Ï For the data scientist, visualization and exploration are part of an
iterative process

2. The person who needs a quick summary to make a decision
Ï For the consumer we want to communicate information quickly and

clearly
Ï e.g., for a medical doctor, for a policy-maker, for a company executive

Ï For data scientists...its always a good idea to look at your data
– Helps to understand where the semantics of the data...what the

measurements actually mean
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What is exploratory data analysis?
Ï EDA is broader than just visualization

Ï EDA = {visualization, clustering, dimension reduction,. . . }

Ï For small numbers of variables, EDA = visualization

Ï For large numbers of variables, we need to be cleverer
– Clustering, dimension reduction, embedding algorithms
– These are techniques that essentially reduce high-dimensional data to

something we can look at

Ï Pioneered by John Tukey (statistician at Bell Labs, Princeton) in
the 1960’s

– “let the data speak”
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Plan for today
Fundamentals of Data Visualization
Claus O. Wilke
https://serialmentor.com/dataviz/

bad—A figure that has problems related to perception; it may be unclear, confusing,
overly complicated, or deceiving.
wrong—A figure that has problems related to mathematics; it is objectively incorrect.

Figure 1.1: Examples of ugly, bad, and wrong figures. (a) A bar plot showing three values (A = 3, B = 5, and C = 4).
This is a reasonable visualization with no major flaws. (b) An ugly version of part (a). While the plot is technically
correct, it is not aesthetically pleasing. The colors are too bright and not useful. The background grid is too
prominent. The text is displayed using three different fonts in three different sizes. (c) A bad version of part (a).
Each bar is shown with its own y-axis scale. Because the scales don’t align, this makes the figure misleading. One
can easily get the impression that the three values are closer together than they actually are. (d) A wrong version of
part (a). Without an explicit y axis scale, the numbers represented by the bars cannot be ascertained. The bars
appear to be of lengths 1, 3, and 2, even though the values displayed are meant to be 3, 5, and 4.

I am not explicitly labeling good figures. Any figure that isn’t clearly labeled as flawed should
be assumed to be at least acceptable. It is a figure that is informative, looks appealing, and
could be printed as is. Note that among the good figures, there will still be differences in
quality, and some good figures will be better than others.
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Mapping data onto aesthetics
Types of aesthetics:

Figure 2.1: Commonly used aesthetics in data visualization: position, shape, size, color, line width, line type. Some
of these aesthetics can represent both continuous and discrete data (position, size, line width, color) while others
can only represent discrete data (shape, line type).

All aesthetics fall into one of two groups: Those that can represent continuous data and those
that can not. Continuous data values are values for which arbitrarily fine intermediates exist.
For example, time duration is a continuous value. Between any two durations, say 50 seconds
and 51 seconds, there are arbitrarily many intermediates, such as 50.5 seconds, 50.51
seconds, 50.50001 seconds, and so on. By contrast, number of persons in a room is a
discrete value. A room can hold 5 persons or 6, but not 5.5. For the examples in Figure 2.1,
position, size, color, and line width can represent continuous data, but shape and line type
can only represent discrete data.

Next we’ll consider the types of data we may want to represent in our visualization. You may
think of data as numbers, but numerical values are only two out of several types of data we
may encounter. In addition to continuous and discrete numerical values, data can come in the
form of discrete categories, in the form of dates or times, and as text (Table 2.1). When data is
numerical we also call it quantitative and when it is categorical we call it qualitative. Variables
holding qualitative data are factors, and the different categories are called levels. The levels of
a factor are most commonly without order (as in the example of “dog”, “cat”, “fish” in Table
2.1), but factors can also be ordered, when there is an intrinsic order among the levels of the
factor (as in the example of “good”, “fair”, “poor” in Table 2.1).

Scales map data values onto aesthetics:

Table 2.2: First 12 rows of a dataset listing daily temperature normals for four weather stations. Data source: NOAA.

Month Day Location Station ID Temperature

Jan 1 Chicago USW00014819 25.6

Jan 1 San Diego USW00093107 55.2

Jan 1 Houston USW00012918 53.9

Jan 1 Death Valley USC00042319 51.0

Jan 2 Chicago USW00014819 25.5

Jan 2 San Diego USW00093107 55.3

Jan 2 Houston USW00012918 53.8

Jan 2 Death Valley USC00042319 51.2

Jan 3 Chicago USW00014819 25.3

Jan 3 San Diego USW00093107 55.3

Jan 3 Death Valley USC00042319 51.3

Jan 3 Houston USW00012918 53.8

2.2  Scales map data values onto aesthetics

To map data values onto aesthetics, we need to specify which data values correspond to
which specific aesthetics values. For example, if our graphic has an x axis, then we need to
specify which data values fall onto particular positions along this axis. Similarly, we may need
to specify which data values are represented by particular shapes or colors. This mapping
between data values and aesthetics values is created via scales. A scale defines a unique
mapping between data and aesthetics (Figure 2.2). Importantly, a scale must be one-to-one,
such that for each specific data value there is exactly one aesthetics value and vice versa. If a
scale isn’t one-to-one, then the data visualization becomes ambiguous.
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Mapping data onto aesthetics — example
Table 2.2: First 12 rows of a dataset listing daily temperature normals for four weather stations. Data source: NOAA.

Month Day Location Station ID Temperature

Jan 1 Chicago USW00014819 25.6

Jan 1 San Diego USW00093107 55.2

Jan 1 Houston USW00012918 53.9

Jan 1 Death Valley USC00042319 51.0

Jan 2 Chicago USW00014819 25.5

Jan 2 San Diego USW00093107 55.3

Jan 2 Houston USW00012918 53.8

Jan 2 Death Valley USC00042319 51.2

Jan 3 Chicago USW00014819 25.3

Jan 3 San Diego USW00093107 55.3

Jan 3 Death Valley USC00042319 51.3

Jan 3 Houston USW00012918 53.8

2.2  Scales map data values onto aesthetics

To map data values onto aesthetics, we need to specify which data values correspond to
which specific aesthetics values. For example, if our graphic has an x axis, then we need to
specify which data values fall onto particular positions along this axis. Similarly, we may need
to specify which data values are represented by particular shapes or colors. This mapping
between data values and aesthetics values is created via scales. A scale defines a unique
mapping between data and aesthetics (Figure 2.2). Importantly, a scale must be one-to-one,
such that for each specific data value there is exactly one aesthetics value and vice versa. If a
scale isn’t one-to-one, then the data visualization becomes ambiguous. 7



Mapping data onto aesthetics — example
Table 2.2: First 12 rows of a dataset listing daily temperature normals for four weather stations. Data source: NOAA.

Month Day Location Station ID Temperature

Jan 1 Chicago USW00014819 25.6

Jan 1 San Diego USW00093107 55.2

Jan 1 Houston USW00012918 53.9

Jan 1 Death Valley USC00042319 51.0

Jan 2 Chicago USW00014819 25.5

Jan 2 San Diego USW00093107 55.3

Jan 2 Houston USW00012918 53.8

Jan 2 Death Valley USC00042319 51.2

Jan 3 Chicago USW00014819 25.3

Jan 3 San Diego USW00093107 55.3

Jan 3 Death Valley USC00042319 51.3

Jan 3 Houston USW00012918 53.8

2.2  Scales map data values onto aesthetics

To map data values onto aesthetics, we need to specify which data values correspond to
which specific aesthetics values. For example, if our graphic has an x axis, then we need to
specify which data values fall onto particular positions along this axis. Similarly, we may need
to specify which data values are represented by particular shapes or colors. This mapping
between data values and aesthetics values is created via scales. A scale defines a unique
mapping between data and aesthetics (Figure 2.2). Importantly, a scale must be one-to-one,
such that for each specific data value there is exactly one aesthetics value and vice versa. If a
scale isn’t one-to-one, then the data visualization becomes ambiguous.

Figure 2.2: Scales link data values to aesthetics. Here, the numbers 1 through 4 have been mapped onto a position
scale, a shape scale, and a color scale. For each scale, each number corresponds to a unique position, shape, or
color and vice versa.

Let’s put things into practice. We can take the dataset shown in Table 2.2, map temperature
onto the y axis, day of the year onto the x axis, location onto color, and visualize these
aesthetics with solid lines. The result is a standard line plot showing the temperature normals
at the four locations as they change during the year (Figure 2.3).

Figure 2.3: Daily temperature normals for four selected locations in the U.S. Temperature is mapped to the y axis,
day of the year to the x axis, and location to line color. Data source: NOAA.

Figure 2.3 is a fairly standard visualization for a temperature curve and likely the visualization
most data scientists would intuitively choose first. However, it is up to us which variables we
map onto which scales. For example, instead of mapping temperature onto the y axis and
location onto color, we can do the opposite. Because now the key variable of interest
(temperature) is shown as color, we need to show sufficiently large colored areas for the color
to convey useful information (Stone, Albers Szafir, and Setlur 2014). Therefore, for this
visualization I have chosen squares instead of lines, one for each month and location, and I
have colored them by the average temperature normal for each month (Figure 2.4).
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Mapping data onto aesthetics — example
Table 2.2: First 12 rows of a dataset listing daily temperature normals for four weather stations. Data source: NOAA.

Month Day Location Station ID Temperature

Jan 1 Chicago USW00014819 25.6

Jan 1 San Diego USW00093107 55.2

Jan 1 Houston USW00012918 53.9

Jan 1 Death Valley USC00042319 51.0

Jan 2 Chicago USW00014819 25.5

Jan 2 San Diego USW00093107 55.3

Jan 2 Houston USW00012918 53.8

Jan 2 Death Valley USC00042319 51.2

Jan 3 Chicago USW00014819 25.3

Jan 3 San Diego USW00093107 55.3

Jan 3 Death Valley USC00042319 51.3

Jan 3 Houston USW00012918 53.8

2.2  Scales map data values onto aesthetics

To map data values onto aesthetics, we need to specify which data values correspond to
which specific aesthetics values. For example, if our graphic has an x axis, then we need to
specify which data values fall onto particular positions along this axis. Similarly, we may need
to specify which data values are represented by particular shapes or colors. This mapping
between data values and aesthetics values is created via scales. A scale defines a unique
mapping between data and aesthetics (Figure 2.2). Importantly, a scale must be one-to-one,
such that for each specific data value there is exactly one aesthetics value and vice versa. If a
scale isn’t one-to-one, then the data visualization becomes ambiguous.

Figure 2.2: Scales link data values to aesthetics. Here, the numbers 1 through 4 have been mapped onto a position
scale, a shape scale, and a color scale. For each scale, each number corresponds to a unique position, shape, or
color and vice versa.

Let’s put things into practice. We can take the dataset shown in Table 2.2, map temperature
onto the y axis, day of the year onto the x axis, location onto color, and visualize these
aesthetics with solid lines. The result is a standard line plot showing the temperature normals
at the four locations as they change during the year (Figure 2.3).

Figure 2.3: Daily temperature normals for four selected locations in the U.S. Temperature is mapped to the y axis,
day of the year to the x axis, and location to line color. Data source: NOAA.

Figure 2.3 is a fairly standard visualization for a temperature curve and likely the visualization
most data scientists would intuitively choose first. However, it is up to us which variables we
map onto which scales. For example, instead of mapping temperature onto the y axis and
location onto color, we can do the opposite. Because now the key variable of interest
(temperature) is shown as color, we need to show sufficiently large colored areas for the color
to convey useful information (Stone, Albers Szafir, and Setlur 2014). Therefore, for this
visualization I have chosen squares instead of lines, one for each month and location, and I
have colored them by the average temperature normal for each month (Figure 2.4).

Figure 2.4: Monthly normal mean temperatures for four locations in the U.S. Data source: NOAA

I would like to emphasize that Figure 2.4 uses two position scales (month along the x axis and
location along the y axis) but neither is a continuous scale. Month is an ordered factor with 12
levels and location is an unordered factor with four levels. Therefore, the two position scales
are both discrete. For discrete position scales, we generally place the different levels of the
factor at an equal spacing along the axis. If the factor is ordered (as is here the case for
month), then the levels need to placed in the appropriate order. If the factor is unordered (as is
here the case for location), then the order is arbitrary, and we can choose any order we want.
I have ordered the locations from overall coldest (Chicago) to overall hottest (Death Valley) to
generate a pleasant staggering of colors. However, I could have chosen any other order and
the figure would have been equally valid.

Both Figures 2.3 and 2.4 used three scales in total, two position scales and one color scale.
This is a typical number of scales for a basic visualization, but we can use more than three
scales at once. Figure 2.5 uses five scales, two position scales, one color scale, one size
scale, and one shape scale, and all scales represent a different variable from the dataset.
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Mapping data onto aesthetics — example
Table 2.2: First 12 rows of a dataset listing daily temperature normals for four weather stations. Data source: NOAA.

Month Day Location Station ID Temperature

Jan 1 Chicago USW00014819 25.6

Jan 1 San Diego USW00093107 55.2

Jan 1 Houston USW00012918 53.9

Jan 1 Death Valley USC00042319 51.0

Jan 2 Chicago USW00014819 25.5

Jan 2 San Diego USW00093107 55.3

Jan 2 Houston USW00012918 53.8

Jan 2 Death Valley USC00042319 51.2

Jan 3 Chicago USW00014819 25.3

Jan 3 San Diego USW00093107 55.3

Jan 3 Death Valley USC00042319 51.3

Jan 3 Houston USW00012918 53.8

2.2  Scales map data values onto aesthetics

To map data values onto aesthetics, we need to specify which data values correspond to
which specific aesthetics values. For example, if our graphic has an x axis, then we need to
specify which data values fall onto particular positions along this axis. Similarly, we may need
to specify which data values are represented by particular shapes or colors. This mapping
between data values and aesthetics values is created via scales. A scale defines a unique
mapping between data and aesthetics (Figure 2.2). Importantly, a scale must be one-to-one,
such that for each specific data value there is exactly one aesthetics value and vice versa. If a
scale isn’t one-to-one, then the data visualization becomes ambiguous.

Figure 2.2: Scales link data values to aesthetics. Here, the numbers 1 through 4 have been mapped onto a position
scale, a shape scale, and a color scale. For each scale, each number corresponds to a unique position, shape, or
color and vice versa.

Let’s put things into practice. We can take the dataset shown in Table 2.2, map temperature
onto the y axis, day of the year onto the x axis, location onto color, and visualize these
aesthetics with solid lines. The result is a standard line plot showing the temperature normals
at the four locations as they change during the year (Figure 2.3).

Figure 2.3: Daily temperature normals for four selected locations in the U.S. Temperature is mapped to the y axis,
day of the year to the x axis, and location to line color. Data source: NOAA.

Figure 2.3 is a fairly standard visualization for a temperature curve and likely the visualization
most data scientists would intuitively choose first. However, it is up to us which variables we
map onto which scales. For example, instead of mapping temperature onto the y axis and
location onto color, we can do the opposite. Because now the key variable of interest
(temperature) is shown as color, we need to show sufficiently large colored areas for the color
to convey useful information (Stone, Albers Szafir, and Setlur 2014). Therefore, for this
visualization I have chosen squares instead of lines, one for each month and location, and I
have colored them by the average temperature normal for each month (Figure 2.4).

Figure 2.4: Monthly normal mean temperatures for four locations in the U.S. Data source: NOAA

I would like to emphasize that Figure 2.4 uses two position scales (month along the x axis and
location along the y axis) but neither is a continuous scale. Month is an ordered factor with 12
levels and location is an unordered factor with four levels. Therefore, the two position scales
are both discrete. For discrete position scales, we generally place the different levels of the
factor at an equal spacing along the axis. If the factor is ordered (as is here the case for
month), then the levels need to placed in the appropriate order. If the factor is unordered (as is
here the case for location), then the order is arbitrary, and we can choose any order we want.
I have ordered the locations from overall coldest (Chicago) to overall hottest (Death Valley) to
generate a pleasant staggering of colors. However, I could have chosen any other order and
the figure would have been equally valid.

Both Figures 2.3 and 2.4 used three scales in total, two position scales and one color scale.
This is a typical number of scales for a basic visualization, but we can use more than three
scales at once. Figure 2.5 uses five scales, two position scales, one color scale, one size
scale, and one shape scale, and all scales represent a different variable from the dataset.

Both plots use three scales in total: two
position scales and one color scale
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Color as a tool to distinguish

Figure 4.2: Population growth in the U.S. from 2000 to 2010. States in the West and South have seen the largest
increases, whereas states in the Midwest and Northeast have seen much smaller increases or even, in the case of
Michigan, a decrease. Data source: U.S. Census Bureau

4.2  Color to represent data values

Grab color scales at
http://
colorbrewer2.org
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Color as a tool to highlight

Figure 4.8: From 2000 to 2010, the two neighboring southern states Texas and Louisiana have experienced among
the highest and lowest population growth across the U.S. Data source: U.S. Census Bureau

When working with accent colors, it is critical that the baseline colors do not compete for
attention. Notice how drab the baseline colors are in (Figure 4.8). Yet they work well to
support the accent color. It is easy to make the mistake of using baseline colors that are too
colorful, so that they end up competing for the reader’s attention against the accent colors.

Grab color scales at
http://
colorbrewer2.org
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Color to represent data values

Figure 4.4: Median annual income in Texas counties. The highest median incomes are seen in major Texas
metropolitan areas, in particular near Houston and Dallas. No median income estimate is available for Loving
County in West Texas and therefore that county is shown in gray. Data source: 2015 Five-Year American
Community Survey

In some cases, we need to visualize the deviation of data values in one of two directions
relative to a neutral midpoint. One straightforward example is a dataset containing both
positive and negative numbers. We may want to show those with different colors, so that it is
immediately obvious whether a value is positive or negative as well as how far in either
direction it deviates from zero. The appropriate color scale in this situation is a diverging color
scale. We can think of a diverging scale as two sequential scales stiched together at a
common midpoint, which usually is represented by a light color (Figure 4.5). Diverging scales
need to be balanced, so that the progression from light colors in the center to dark colors on
the outside is approximately the same in either direction. Otherwise, the perceived magnitude
of a data value would depend on whether it fell above or below the midpoint value.

Sequential color scale

Figure 4.6: Percentage of people identifying as white in Texas counties. Whites are in the majority in North and
East Texas but not in South or West Texas. Data source: 2010 Decennial U.S. Census

4.3  Color as a tool to highlight

Color can also be an effective tool to highlight specific elements in the data. There may be
specific categories or values in the dataset that carry key information about the story we want
to tell, and we can strengthen the story by emphasizing the relevant figure elements to the
reader. An easy way to achieve this emphasis is to color these figure elements in a color or
set of colors that vividly stand out against the rest of the figure. This effect can be achieved
with accent color scales, which are color scales that contain both a set of subdued colors and
a matching set of stronger, darker, and/or more saturated colors (Figure 4.7).

Divergent color scale

Okabe, M., and K. Ito. 2008. “Color Universal Design (CUD): How to
Make Figures and Presentations That Are Friendly to Colorblind
People.” http://jfly.iam.u-tokyo.ac.jp/color/.
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Visualizing amounts

5  Directory of visualizations

This chapter provides a quick visual overview of the various plots and charts that are
commonly used to visualize data. It is meant both to serve as a table of contents, in case you
are looking for a particular visualization whose name you may not know, and as a source of
inspiration, if you need to find alternatives to the figures you routinely make.

5.1  Amounts

The most common approach to visualizing amounts (i.e., numerical values shown for some
set of categories) is using bars, either vertically or horizontally arranged (Chapter 6). However,
instead of using bars, we can also place dots at the location where the corresponding bar
would end (Chapter 6).

If there are two or more sets of categories for which we want to show amounts, we can group
or stack the bars (Chapter 6). We can also map the categories onto the x and y axis and show
amounts by color, via a heatmap (Chapter 6).

5.2  Distributions

Histograms and density plots (Chapter 7) provide the most intuitive visualizations of a
distribution, but both require arbitrary parameter choices and can be misleading. Cumulative
densities and q-q plots (Chapter 8) always represent the data faithfully but can be more
difficult to interpret.
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Visualizing amounts — example 1

6  Visualizing amounts

In many scenarios, we are interested in the magnitude of some set of numbers. For example,
we might want to visualize the total sales volume of different brands of cars, or the total
number of people living in different cities, or the age of olympians performing different sports.
In all these cases, we have a set of categories (e.g., brands of cars, cities, or sports) and a
quantitative value for each category. I refer to these cases as visualizing amounts, because
the main emphasis in these visualizations will be on the magnitude of the quantitative values.
The standard visualization in this scenario is the bar plot, which comes in several variations,
including simple bars as well as grouped and stacked bars. Alternatives to the bar plot are the
dot plot and the heatmap.

6.1  Bar plots

To motivate the concept of a bar plot, consider the total ticket sales for the most popular
movies on a given weekend. Table 6.1 shows the top-five weekend gross ticket sales on the
Christmas weekend of 2017. The movie “Star Wars: The Last Jedi” was by far the most
popular movie on that weekend, outselling the fourth- and fifth-ranked movies “The Greatest
Showman” and “Ferdinand” by almost a factor of 10.

Table 6.1: Highest grossing movies for the weekend of December 22-24, 2017. Data source: Box Office Mojo
(http://www.boxofficemojo.com/). Used with permission

Rank Title Weekend gross

1 Star Wars: The Last Jedi $71,565,498

2 Jumanji: Welcome to the Jungle $36,169,328

3 Pitch Perfect 3 $19,928,525

4 The Greatest Showman $8,805,843

5 Ferdinand $7,316,746
This kind of data is commonly visualized with vertical bars. For each movie, we draw a bar
that starts at zero and extends all the way to the dollar value for that movie’s weekend gross
(Figure 6.1). This visualization is called a bar plot or bar chart.

Figure 6.1: Highest grossing movies for the weekend of December 22-24, 2017, displayed as a bar plot. Data
source: Box Office Mojo (http://www.boxofficemojo.com/). Used with permission

One problem we commonly encounter with vertical bars is that the labels identifying each bar
take up a lot of horizontal space. In fact, I had to make Figure 6.1 fairly wide and space out
the bars so that I could place the movie titles underneath. To save horizontal space, we could
place the bars closer together and rotate the labels (Figure 6.2). However, I am not a big
proponent of rotated labels. I find the resulting plots awkward and difficult to read. And, in my
experience, whenever the labels are too long to place horizontally they also don’t look good
rotated.

Figure 6.3: Highest grossing movies for the weekend of December 22-24, 2017, displayed as a horizontal bar plot.
Data source: Box Office Mojo (http://www.boxofficemojo.com/). Used with permission

Regardless of whether we place bars vertically or horizontally, we need to pay attention to the
order in which the bars are arranged. I often see bar plots where the bars are arranged
arbitrarily or by some criterion that is not meaningful in the context of the figure. Some
plotting programs arrange bars by default in alphabetic order of the labels, and other, similarly
arbitrary arrangements are possible (Figure 6.4). In general, the resulting figures are more
confusing and less intuitive than figures where bars are arranged in order of their size.
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Visualizing amounts — example 2

Pay attention to the bar order. If the bars represent unordered categories,
order them by ascending or descending data values.

6.2  Grouped and stacked bars

All examples from the previous subsection showed how a quantitative amount varied with
respect to one categorical variable. Frequently, however, we are interested in two categorical
variables at the same time. For example, the U.S. Census Bureau provides median income
levels broken down by both age and race. We can visualize this dataset with a grouped bar
plot (Figure 6.7). In a grouped bar plot, we draw a group of bars at each position along the x
axis, determined by one categorical variable, and then we draw bars within each group
according to the other categorical variable.

Figure 6.7: 2016 median U.S. annual household income versus age group and race. Age groups are shown along
the x axis, and for each age group there are four bars, corresponding to the median income of asian, white,
hispanic, and black people, respectively. Data source: United States Census Bureau

Grouped bar plots show a lot of information at once and they can be confusing. In fact, even
though I have not labeled Figure 6.7 as bad or ugly, I find it difficult to read. In particular, it is
difficult to compare median incomes across age groups for a given racial group. So this figure
is only appropriate if we are primarily interested in the differences in income levels among
racial groups, separately for specific age groups. If we care more about the overall pattern of
income levels among racial groups, it may be preferable to show race along the x axis and
show ages as distinct bars within each racial group (Figure 6.8).

Figure 6.8: 2016 median U.S. annual household income versus age group and race. In contrast to Figure 6.7, now
race is shown along the x axis, and for each race we show seven bars according to the seven age groups. Data
source: United States Census Bureau

Both Figures 6.7 and 6.8 encode one categorical variable by position along the x axis and the
other by bar color. And in both cases, the encoding by position is easy to read while the
encoding by bar color requires more mental effort, as we have to mentally match the colors of
the bars against the colors in the legend. We can avoid this added mental effort by showing
four separate regular bar plots rather than one grouped bar plot (Figure 6.9). Which of these
various options we choose is ultimately a matter of taste. I would likely choose Figure 6.9,
because it circumvents the need for different bar colors.
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Visualizing amounts — example 2

Pay attention to the bar order. If the bars represent unordered categories,
order them by ascending or descending data values.

6.2  Grouped and stacked bars

All examples from the previous subsection showed how a quantitative amount varied with
respect to one categorical variable. Frequently, however, we are interested in two categorical
variables at the same time. For example, the U.S. Census Bureau provides median income
levels broken down by both age and race. We can visualize this dataset with a grouped bar
plot (Figure 6.7). In a grouped bar plot, we draw a group of bars at each position along the x
axis, determined by one categorical variable, and then we draw bars within each group
according to the other categorical variable.

Figure 6.7: 2016 median U.S. annual household income versus age group and race. Age groups are shown along
the x axis, and for each age group there are four bars, corresponding to the median income of asian, white,
hispanic, and black people, respectively. Data source: United States Census Bureau

Grouped bar plots show a lot of information at once and they can be confusing. In fact, even
though I have not labeled Figure 6.7 as bad or ugly, I find it difficult to read. In particular, it is
difficult to compare median incomes across age groups for a given racial group. So this figure
is only appropriate if we are primarily interested in the differences in income levels among
racial groups, separately for specific age groups. If we care more about the overall pattern of
income levels among racial groups, it may be preferable to show race along the x axis and
show ages as distinct bars within each racial group (Figure 6.8).

Figure 6.8: 2016 median U.S. annual household income versus age group and race. In contrast to Figure 6.7, now
race is shown along the x axis, and for each race we show seven bars according to the seven age groups. Data
source: United States Census Bureau

Both Figures 6.7 and 6.8 encode one categorical variable by position along the x axis and the
other by bar color. And in both cases, the encoding by position is easy to read while the
encoding by bar color requires more mental effort, as we have to mentally match the colors of
the bars against the colors in the legend. We can avoid this added mental effort by showing
four separate regular bar plots rather than one grouped bar plot (Figure 6.9). Which of these
various options we choose is ultimately a matter of taste. I would likely choose Figure 6.9,
because it circumvents the need for different bar colors.

Figure 6.9: 2016 median U.S. annual household income versus age group and race. Instead of displaying this data
as a grouped bar plot, as in Figures 6.7 and 6.8, we now show the data as four separate regular bar plots. This
choice has the advantage that we don’t need to encode either categorical variable by bar color. Data source:
United States Census Bureau

Instead of drawing groups of bars side-by-side, it is sometimes preferable to stack bars on
top of each other. Stacking is useful when the sum of the amounts represented by the
individual stacked bars is in itself a meaningful amount. So, while it would not make sense to
stack the median income values of Figure 6.7 (the sum of two median income values is not a
meaningful value), it might make sense to stack the weekend gross values of Figure 6.1 (the
sum of the weekend gross values of two movies is the total gross for the two movies
combined). Stacking is also appropriate when the individual bars represent counts. For
example, in a dataset of people, we can either count men and women separately or we can
count them together. If we stack a bar representing a count of women on top of a bar
representing a count of men, then the combined bar height represents the total count of
people regardless of gender.
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Visualizing amounts — example 3

Figure 6.11: Life expectancies of countries in the Americas, for the year 2007. Data source: Gapminder projectFigure 6.12: Life expectancies of countries in the Americas, for the year 2007, shown as bars. This dataset is not
suitable for being visualized with bars. The bars are too long and they draw attention away from the key feature of
the data, the differences in life expectancy among the different countries. Data source: Gapminder project

Regardless of whether we use bars or dots, however, we need to pay attention to the ordering
of the data values. In Figures 6.11 and 6.12, the countries are ordered in descending order of
life expectancy. If we instead ordered them alphabetically, we’d end up with a disordered
cloud of points that is confusing and fails to convey a clear message (Figure 6.13).

This dataset is not suitable for being visualized with bars. The bars
are too long and they draw attention away from the key feature of the
data, the differences in life expectancy among the different countries.
Data source: Gapminder project
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Visualizing distributions

If there are two or more sets of categories for which we want to show amounts, we can group
or stack the bars (Chapter 6). We can also map the categories onto the x and y axis and show
amounts by color, via a heatmap (Chapter 6).

5.2  Distributions

Histograms and density plots (Chapter 7) provide the most intuitive visualizations of a
distribution, but both require arbitrary parameter choices and can be misleading. Cumulative
densities and q-q plots (Chapter 8) always represent the data faithfully but can be more
difficult to interpret.

Boxplots, violins, strip charts, and sina plots are useful when we want to visualize many
distributions at once and/or if we are primarily interested in overall shifts among the
distributions (Chapter 9.1). Stacked histograms and overlapping densities allow a more in-
depth comparison of a smaller number of distributions, though stacked histograms can be
difficult to interpret and are best avoided (Chapter 7.2). Ridgeline plots can be a useful
alternative to violin plots and are often useful when visualizing very large numbers of
distributions or changes in distributions over time (Chapter 9.2).

5.3  Proportions

Proportions can be visualized as pie charts, side-by-side bars, or stacked bars (Chapter 10),
and as in the case for amounts, bars can be arranged either vertically or horizontally. Pie
charts emphasize that the individual parts add up to a whole and highlight simple fractions.
However, the individual pieces are more easily compared in side-by-side bars. Stacked bars
look awkward for a single set of proportions, but can be useful when comparing multiple sets
of proportions (see below).
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Visualizing distributions — examples

7  Visualizing distributions: Histograms and
density plots

We frequently encounter the situation where we would like to understand how a particular
variable is distributed in a dataset. To give a concrete example, we will consider the
passengers of the Titanic, a data set we encountered already in Chapter 6. There were
approximately 1300 passengers on the Titanic (not counting crew), and we have reported
ages for 756 of them. We might want to know how many passengers of what ages there were
on the Titanic, i.e., how many children, young adults, middle-aged people, seniors, and so on.
We call the relative proportions of different ages among the passengers the age distribution of
the passengers.

7.1  Visualizing a single distribution

We can obtain a sense of the age distribution among the passengers by grouping all
passengers into bins with comparable ages and then counting the number of passengers in
each bin. This procedure results in a table such as Table 7.1.

Table 7.1: Numbers of passenger with known age on the Titanic.

Age range Count

0–5 36

6–10 19

11–15 18

16–20 99

21–25 139

26–30 121

Age range Count

31–35 76

36–40 74

41–45 54

46–50 50

51–55 26

56–60 22

Age range Count

61–65 16

66–70 3

71–75 3

Figure 7.2: Histograms depend on the chosen bin width. Here, the same age distribution of Titanic passengers is
shown with four different bin widths: (a) one year; (b) three years; (c) five years; (d) fifteen years.

When making a histogram, always explore multiple bin widths.

Histograms have been a popular visualization option since at least the 18th century, in part
because they are easily generated by hand. More recently, as extensive computing power has
become available in everyday devices such as laptops and cell phones, we see them
increasingly being replaced by density plots. In a density plot, we attempt to visualize the
underlying probability distribution of the data by drawing an appropriate continuous curve
(Figure 7.3). This curve needs to be estimated from the data, and the most commonly used
method for this estimation procedure is called kernel density estimation. In kernel density
estimation, we draw a continuous curve (the kernel) with a small width (controlled by a
parameter called bandwidth) at the location of each data point, and then we add up all these
curves to obtain the final density estimate. The most widely used kernel is a Gaussian kernel
(i.e., a Gaussian bell curve), but there are many other choices.

When making a histogram, always explore multiple bin widths 16
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7  Visualizing distributions: Histograms and
density plots

We frequently encounter the situation where we would like to understand how a particular
variable is distributed in a dataset. To give a concrete example, we will consider the
passengers of the Titanic, a data set we encountered already in Chapter 6. There were
approximately 1300 passengers on the Titanic (not counting crew), and we have reported
ages for 756 of them. We might want to know how many passengers of what ages there were
on the Titanic, i.e., how many children, young adults, middle-aged people, seniors, and so on.
We call the relative proportions of different ages among the passengers the age distribution of
the passengers.

7.1  Visualizing a single distribution

We can obtain a sense of the age distribution among the passengers by grouping all
passengers into bins with comparable ages and then counting the number of passengers in
each bin. This procedure results in a table such as Table 7.1.

Table 7.1: Numbers of passenger with known age on the Titanic.

Age range Count

0–5 36

6–10 19

11–15 18

16–20 99

21–25 139

26–30 121

Age range Count

31–35 76

36–40 74

41–45 54

46–50 50

51–55 26

56–60 22

Age range Count

61–65 16

66–70 3

71–75 3

Figure 7.4: Kernel density estimates depend on the chosen kernel and bandwidth. Here, the same age distribution
of Titanic passengers is shown for four different combinations of these parameters: (a) Gaussian kernel, bandwidth
= 0.5; (b) Gaussian kernel, bandwidth = 2; (c) Gaussian kernel, bandwidth = 5; (d) Rectangular kernel, bandwidth =
2.

Density curves are usually scaled such that the area under the curve equals one. This
convention can make the y axis scale confusing, because it depends on the units of the x
axis. For example, in the case of the age distribution, the data range on the x axis goes from 0
to approximately 75. Therefore, we expect the mean height of the density curve to be 1/75 =
0.013. Indeed, when looking at the age density curves (e.g., Figure 7.4), we see that the y
values range from 0 to approximately 0.04, with an average of somewhere close to 0.01.

Kernel density estimates have one pitfall that we need to be aware of: They have a tendency
to produce the appearance of data where none exists, in particular in the tails. As a
consequence, careless use of density estimates can easily lead to figures that make
nonsensical statements. For example, if we don’t pay attention, we might generate a
visualization of an age distribution that includes negative ages (Figure 7.5).

Verify that density doesn’t predict the existence of nonsensical data 16



Visualizing multiple distributions

7.2  Visualizing multiple distributions at the same
time

In many scenarios we have multiple distributions we would like to visualize simultaneously.
For example, let’s say we’d like to see how the ages of Titanic passengers are distributed
between men and women. Were men and women passengers generally of the same age, or
was there an age difference between the genders? One commonly employed visualization
strategy in this case is a stacked histogram, where we draw the histogram bars for women on
top of the bars for men, in a different color (Figure 7.6).

Figure 7.6: Histogram of the ages of Titanic passengers stratified by gender. This figure has been labeled as “bad”
because stacked histograms are easily confused with overlapping histograms (see also Figure 7.7). In addition, the
heights of the bars representing female passengers cannot easily be compared to each other.

In my opinion, this type of visualization should be avoided. There are two key problems here:
First, from just looking at the figure, it is never entirely clear where exactly the bars begin. Do
they start where the color changes or are they meant to start at zero? In other words, are
there about 25 females of age 18–20 or are there almost 80? (The former is the case.)

Figure 7.9: Age distributions of male and female Titanic passengers, shown as proportion of the passenger total.
The colored areas show the density estimates of the ages of male and female passengers, respectively, and the
gray areas show the overall passenger age distribution.

Finally, when we want to visualize exactly two distributions, we can also make two separate
histograms, rotate them by 90 degrees, and have the bars in one histogram point into the
opposite direction of the other. This trick is commonly employed when visualizing age
distributions, and the resulting plot is usually called an age pyramid (Figure 7.10).

Figure 7.10: The age distributions of male and female Titanic passengers visualized as an age pyramid.

Importantly, this trick does not work when there are more than two distributions we want to
visualize at the same time. For multiple distributions, histograms tend to become highly
confusing, whereas density plots work well as long as the distributions are somewhat distinct
and contiguous. For example, to visualize the distribution of butterfat percentage among
cows from four different cattle breeds, density plots are fine (Figure 7.11).

Figure 7.11: Density estimates of the butterfat percentage in the milk of four cattle breeds. Data Source: Canadian
Record of Performance for Purebred Dairy Cattle

To visualize several distributions at once, kernel density plots will generally
work better than histograms.

To visualize several
distributions at once, kernel
density plots will generally
work better than
histograms.
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Visualizing many distributions

point and two error bars, we are losing a lot of information about the data. Second, it is not
immediately obvious what the points represent, even though most readers would likely guess
that they represent either the mean or the median. Third, it is definitely not obvious what the
error bars represent. Do they represent the standard deviation of the data, the standard error
of the mean, a 95% confidence interval, or something else altogether? There is no commonly
accepted standard. By reading the figure caption of Figure 9.1, we can see that they
represent here twice the standard deviation of the daily mean temperatures, meant to indicate
the range that contains approximately 95% of the data. However, error bars are more
commonly employed to visualize the standard error (or twice the standard error for a 95%
confidence interval), and it is easy for readers to confuse the standard error with the standard
deviation. The standard error quantifies how accurate our estimate of the mean is, whereas
the standard deviation estimates how much spread there is in the data around the mean. It is
possible for a dataset to have both a very small standard error of the mean and a very large
standard deviation. Fourth, symmetric error bars are misleading if there is any skew in the
data, which is the case here and almost always for real-world datasets.

Figure 9.1: Mean daily temperatures in Lincoln, Nebraska in 2016. Points represent the average daily mean
temperatures for each month, averaged over all days of the month, and error bars represent twice the standard
deviation of the daily mean temperatures within each month. This figure has been labeled as “bad” because
because error bars are conventionally used to visualize the uncertainty of an estimate, not the variability in a
population. Data source: Weather Underground
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deviation. The standard error quantifies how accurate our estimate of the mean is, whereas
the standard deviation estimates how much spread there is in the data around the mean. It is
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data, which is the case here and almost always for real-world datasets.

Figure 9.1: Mean daily temperatures in Lincoln, Nebraska in 2016. Points represent the average daily mean
temperatures for each month, averaged over all days of the month, and error bars represent twice the standard
deviation of the daily mean temperatures within each month. This figure has been labeled as “bad” because
because error bars are conventionally used to visualize the uncertainty of an estimate, not the variability in a
population. Data source: Weather Underground

Figure 9.3: Mean daily temperatures in Lincoln, Nebraska, visualized as boxplots.

Boxplots were invented by the statistician John Tukey in the early 1970s, and they quickly
gained popularity because they were highly informative while being easy to draw by hand.
Most data visualizations were drawn by hand at that time. However, with modern computing
and visualization capabilities, we are not limited to what is easily drawn by hand. Therefore,
more recently, we see boxplots being replaced by violin plots, which are equivalent to the
density estimates discussed in Chapter 7 but rotated by 90 degrees and then mirrored (Figure
9.4). Violins can be used whenever one would otherwise use a boxplot, and they provide a
much more nuanced picture of the data. In particular, violin plots will accurately represent
bimodal data whereas a boxplot will not.
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because error bars are conventionally used to visualize the uncertainty of an estimate, not the variability in a
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Figure 9.3: Mean daily temperatures in Lincoln, Nebraska, visualized as boxplots.

Boxplots were invented by the statistician John Tukey in the early 1970s, and they quickly
gained popularity because they were highly informative while being easy to draw by hand.
Most data visualizations were drawn by hand at that time. However, with modern computing
and visualization capabilities, we are not limited to what is easily drawn by hand. Therefore,
more recently, we see boxplots being replaced by violin plots, which are equivalent to the
density estimates discussed in Chapter 7 but rotated by 90 degrees and then mirrored (Figure
9.4). Violins can be used whenever one would otherwise use a boxplot, and they provide a
much more nuanced picture of the data. In particular, violin plots will accurately represent
bimodal data whereas a boxplot will not.

Figure 9.5: Mean daily temperatures in Lincoln, Nebraska, visualized as violin plots.

Because violin plots are derived from density estimates, they have similar shortcomings
(Chapter 7). In particular, they can generate the appearance that there is data where none
exists, or that the data set is very dense when actually it is quite sparse. We can try to
circumvent these issues by simply plotting all the individual data points directly, as dots
(Figure 9.6). Such a figure is called a strip chart. Strip charts are fine in principle, as long as
we make sure that we don’t plot too many points on top of each other. A simple solution to
overplotting is to spread out the points somewhat along the x axis, by adding some random
noise in the x dimension (Figure 9.7). This technique is also called jittering.
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Figure 9.3: Mean daily temperatures in Lincoln, Nebraska, visualized as boxplots.

Boxplots were invented by the statistician John Tukey in the early 1970s, and they quickly
gained popularity because they were highly informative while being easy to draw by hand.
Most data visualizations were drawn by hand at that time. However, with modern computing
and visualization capabilities, we are not limited to what is easily drawn by hand. Therefore,
more recently, we see boxplots being replaced by violin plots, which are equivalent to the
density estimates discussed in Chapter 7 but rotated by 90 degrees and then mirrored (Figure
9.4). Violins can be used whenever one would otherwise use a boxplot, and they provide a
much more nuanced picture of the data. In particular, violin plots will accurately represent
bimodal data whereas a boxplot will not.

Whenever the dataset is too sparse to justify the violin visualization, plotting
the raw data as individual points will be possible.

Finally, we can combine the best of both worlds by spreading out the dots in proportion to the
point density at a given y coordinate. This method, called a sina plot (Sidiropoulos et al.
2018), can be thought of as a hybrid between a violin plot and jittered points, and it shows
each individual point while also visualizing the distributions. I have here drawn the sina plots
on top of the violins to highlight the relationship between these two approaches (Figure 9.8).

Figure 9.8: Mean daily temperatures in Lincoln, Nebraska, visualized as a sina plot (combination of individual
points and violins). The points have been jittered along the x axis in proportion to the point density at the
respective temperature. The name sina plot is meant to honor Sina Hadi Sohi, a student at the University of
Copenhagen, Denmark, who wrote the first version of the code that researchers at the university used to make
such plots (Frederik O. Bagger, personal communication).

9.2  Visualizing distributions along the horizontal
axis
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9.2  Visualizing distributions along the horizontal
axis

In Chapter 7, we visualized distributions along the horizontal axis using histograms and
density plots. Here, we will expand on this idea by staggering the distribution plots in the
vertical direction. The resulting visualization is called a ridgeline plot, because these plots
look like mountain ridgelines. Ridgeline plots tend to work particularly well if want to show
trends in distributions over time.

The standard ridgeline plot uses density estimates (Figure 9.9). It is quite closely related to the
violin plot, but frequently evokes a more intuitive understanding of the data. For example, the
two clusters of temperatures around 35 degrees and 50 degrees Fahrenheit in November are
much more obvious in Figure 9.9 than in Figure 9.5.

Figure 9.9: Temperatures in Lincoln, Nebraska, in 2016, visualized as a ridgeline plot. For each month, we show the
distribution of daily mean temperatures measured in Fahrenheit. Original figure concept: Wehrwein (2017).

Because the x axis shows the response variable and the y axis shows the grouping variable,
there is no separate axis for the density estimates in a ridgeline plot. Density estimates are
shown alongside the grouping variable. This is no different from the violin plot, where
densities are also shown alongside the grouping variable, without a separate, explicit scale. In
both cases, the purpose of the plot is not to show specific density values but instead to allow
for easy comparison of density shapes and relative heights across groups.
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Visualizing proportions

Figure 10.1: Party composition of the 8th German Bundestag, 1976–1980, visualized as a pie chart. This
visualization shows clearly that the ruling coalition of SPD and FDP had a small majority over the opposition
CDU/CSU.

A pie chart breaks a circle into slices such that the area of each slice is proportional to the
fraction of the total it represents. The same procedure can be performed on a rectangle, and
the result is a stacked bar chart (Figure 10.2). Depending on whether we slice the bar
vertically or horizontally, we obtain vertically stacked bars (Figure 10.2a) or horizontally
stacked bars (Figure 10.2b).
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Figure 10.1: Party composition of the 8th German Bundestag, 1976–1980, visualized as a pie chart. This
visualization shows clearly that the ruling coalition of SPD and FDP had a small majority over the opposition
CDU/CSU.

A pie chart breaks a circle into slices such that the area of each slice is proportional to the
fraction of the total it represents. The same procedure can be performed on a rectangle, and
the result is a stacked bar chart (Figure 10.2). Depending on whether we slice the bar
vertically or horizontally, we obtain vertically stacked bars (Figure 10.2a) or horizontally
stacked bars (Figure 10.2b).

Figure 10.2: Party composition of the 8th German Bundestag, 1976–1980, visualized as stacked bars. (a) Bars
stacked vertically. (b) Bars stacked horizontally. It is not immediately obvious that SPD and FDP jointly had more
seats than CDU/CSU.

We can also take the bars from Figure 10.2a and place them side-by-side rather than stacking
them on top of each other. This visualization makes it easier to perform a direct comparison of
the three groups, though it obscures other aspects of the data (Figure 10.3). Most importantly,
in a side-by-side bar plot the relationship of each bar to the total is not visually obvious.

19



Visualizing proportions
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Figure 10.2: Party composition of the 8th German Bundestag, 1976–1980, visualized as stacked bars. (a) Bars
stacked vertically. (b) Bars stacked horizontally. It is not immediately obvious that SPD and FDP jointly had more
seats than CDU/CSU.

We can also take the bars from Figure 10.2a and place them side-by-side rather than stacking
them on top of each other. This visualization makes it easier to perform a direct comparison of
the three groups, though it obscures other aspects of the data (Figure 10.3). Most importantly,
in a side-by-side bar plot the relationship of each bar to the total is not visually obvious.

Figure 10.3: Party composition of the 8th German Bundestag, 1976–1980, visualized as side-by-side bars. As in
Figure 10.2, it is not immediately obvious that SPD and FDP jointly had more seats than CDU/CSU.

Many authors categorically reject pie charts and argue in favor of side-by-side or stacked
bars. Others defend the use of pie charts in some applications. My own opinion is that none
of these visualizations is consistently superior over any other. Depending on the features of
the dataset and the specific story you want to tell, you may want to favor one or the other
approach. In the case of the 8th German Bundestag, I think that a pie chart is the best option.
It shows clearly that the ruling coalition of SPD and FDP jointly had a small majority over the
CDU/CSU (Figure 10.1). This fact is not visually obvious in any of the other plots (Figures 10.2
and 10.3).

In general, pie charts work well when the goal is to emphasize simple fractions, such as one-
half, one-third, or one-quarter. They also work well when we have very small datasets. A
single pie chart, as in Figure 10.1, looks just fine, but a single column of stacked bars, as in
Figure 10.2a, looks awkward. Stacked bars, on the other hand, can work for side-by-side
comparisons of multiple conditions or in a time series, and side-by-side bars are preferred
when we want to directly compare the individual fractions to each other. A summary of the
various pros and cons of pie charts, stacked bars, and side-by-side bars is provided in Table
10.1.
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Figure 10.1: Party composition of the 8th German Bundestag, 1976–1980, visualized as a pie chart. This
visualization shows clearly that the ruling coalition of SPD and FDP had a small majority over the opposition
CDU/CSU.
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Figure 10.2: Party composition of the 8th German Bundestag, 1976–1980, visualized as stacked bars. (a) Bars
stacked vertically. (b) Bars stacked horizontally. It is not immediately obvious that SPD and FDP jointly had more
seats than CDU/CSU.

We can also take the bars from Figure 10.2a and place them side-by-side rather than stacking
them on top of each other. This visualization makes it easier to perform a direct comparison of
the three groups, though it obscures other aspects of the data (Figure 10.3). Most importantly,
in a side-by-side bar plot the relationship of each bar to the total is not visually obvious.

Figure 10.3: Party composition of the 8th German Bundestag, 1976–1980, visualized as side-by-side bars. As in
Figure 10.2, it is not immediately obvious that SPD and FDP jointly had more seats than CDU/CSU.

Many authors categorically reject pie charts and argue in favor of side-by-side or stacked
bars. Others defend the use of pie charts in some applications. My own opinion is that none
of these visualizations is consistently superior over any other. Depending on the features of
the dataset and the specific story you want to tell, you may want to favor one or the other
approach. In the case of the 8th German Bundestag, I think that a pie chart is the best option.
It shows clearly that the ruling coalition of SPD and FDP jointly had a small majority over the
CDU/CSU (Figure 10.1). This fact is not visually obvious in any of the other plots (Figures 10.2
and 10.3).

In general, pie charts work well when the goal is to emphasize simple fractions, such as one-
half, one-third, or one-quarter. They also work well when we have very small datasets. A
single pie chart, as in Figure 10.1, looks just fine, but a single column of stacked bars, as in
Figure 10.2a, looks awkward. Stacked bars, on the other hand, can work for side-by-side
comparisons of multiple conditions or in a time series, and side-by-side bars are preferred
when we want to directly compare the individual fractions to each other. A summary of the
various pros and cons of pie charts, stacked bars, and side-by-side bars is provided in Table
10.1.

Table 10.1: Pros and cons of common approaches to visualizing proportions: pie charts, stacked bars, and side-by-side bars.

Pie chart Stacked bars Side-by-side bars

Clearly visualizes the data as
proportions of a whole

✔ ✔ ✖

Allows easy visual comparison of
the relative proportions

✖ ✖ ✔

Visually emphasizes simple
fractions, such as 1/2, 1/3, 1/4

✔ ✖ ✖

Looks visually appealing even for
very small datasets

✔ ✖ ✔

Works well when the whole is
broken into many pieces

✖ ✖ ✔

Works well for the visualization of
many sets of proportions or time
series of proportions

✖ ✔ ✖

10.2  A case for side-by-side bars

I will now demonstrate a case where pie charts fail. This example is modeled after a critique
of pie charts originally posted on Wikipedia (Wikipedia 2007). Consider the hypothetical
scenario of five companies, A, B, C, D, and E, who all have roughly comparable market share
of approximately 20%. Our hypothetical dataset lists the market share of each company for
three consecutive years. When we visualize this dataset with pie charts, it is difficult to see
what exactly is going on (Figure 10.4). It appears that the market share of company A is
growing and the one of company E is shrinking, but beyond this one observation we can’t tell
what’s going on. In particular, it is unclear how exactly the market shares of the different
companies compare within each year.

19



When side-by-side bars win

Figure 10.4: Market share of five hypothetical companies, A–E, for the years 2015–2017, visualized as pie charts.
This visualization has two major problems: 1. A comparison of relative market share within years is nearly
impossible. 2. Changes in market share across years are difficult to see.

The picture becomes a little clearer when we switch to stacked bars (Figure 10.5). Now the
trends of a growing market share for company A and a shrinking market share for company E
are clearly visible. However, the relative market shares of the five companies within each year
are still hard to compare. And it is difficult to compare the market shares of companies B, C,
and D across years, because the bars are shifted relative to each other across years. This is a
general problem of stacked-bar plots, and the main reason why I normally do not recommend
this type of visualization.
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Figure 10.5: Market share of five hypothetical companies for the years 2015–2017, visualized as stacked bars. This
visualization has two major problems: 1. A comparison of relative market shares within years is difficult. 2.
Changes in market share across years are difficult to see for the middle companies B, C, and D, because the
location of the bars changes across years.

For this hypothetical data set, side-by-side bars are the best choice (Figure 10.6). This
visualization highlights that both companies A and B have increased their market share from
2015 to 2017 while both companies D and E have reduced theirs. It also shows that market
shares increase sequentially from company A to E in 2015 and similarly decrease in 2017.

Figure 10.6: Market share of five hypothetical companies for the years 2015–2017, visualized as side-by-side bars.

10.3  A case for stacked bars and stacked
densities

In Section 10.2, I wrote that I don’t normally recommend sequences of stacked bars, because
the location of the internal bars shifts along the sequence. However, the problem of shifting
internal bars disappears if there are only two bars in each stack, and in those cases the
resulting visualization can be quite clear. As an example, consider the proportion of women in
a country’s national parliament. We will specifically look at the African country Rwanda, which

20



When side-by-side bars win

Figure 10.4: Market share of five hypothetical companies, A–E, for the years 2015–2017, visualized as pie charts.
This visualization has two major problems: 1. A comparison of relative market share within years is nearly
impossible. 2. Changes in market share across years are difficult to see.

The picture becomes a little clearer when we switch to stacked bars (Figure 10.5). Now the
trends of a growing market share for company A and a shrinking market share for company E
are clearly visible. However, the relative market shares of the five companies within each year
are still hard to compare. And it is difficult to compare the market shares of companies B, C,
and D across years, because the bars are shifted relative to each other across years. This is a
general problem of stacked-bar plots, and the main reason why I normally do not recommend
this type of visualization.

Figure 10.4: Market share of five hypothetical companies, A–E, for the years 2015–2017, visualized as pie charts.
This visualization has two major problems: 1. A comparison of relative market share within years is nearly
impossible. 2. Changes in market share across years are difficult to see.

The picture becomes a little clearer when we switch to stacked bars (Figure 10.5). Now the
trends of a growing market share for company A and a shrinking market share for company E
are clearly visible. However, the relative market shares of the five companies within each year
are still hard to compare. And it is difficult to compare the market shares of companies B, C,
and D across years, because the bars are shifted relative to each other across years. This is a
general problem of stacked-bar plots, and the main reason why I normally do not recommend
this type of visualization.

Figure 10.5: Market share of five hypothetical companies for the years 2015–2017, visualized as stacked bars. This
visualization has two major problems: 1. A comparison of relative market shares within years is difficult. 2.
Changes in market share across years are difficult to see for the middle companies B, C, and D, because the
location of the bars changes across years.

For this hypothetical data set, side-by-side bars are the best choice (Figure 10.6). This
visualization highlights that both companies A and B have increased their market share from
2015 to 2017 while both companies D and E have reduced theirs. It also shows that market
shares increase sequentially from company A to E in 2015 and similarly decrease in 2017.

Figure 10.6: Market share of five hypothetical companies for the years 2015–2017, visualized as side-by-side bars.

10.3  A case for stacked bars and stacked
densities

In Section 10.2, I wrote that I don’t normally recommend sequences of stacked bars, because
the location of the internal bars shifts along the sequence. However, the problem of shifting
internal bars disappears if there are only two bars in each stack, and in those cases the
resulting visualization can be quite clear. As an example, consider the proportion of women in
a country’s national parliament. We will specifically look at the African country Rwanda, which

Humans are not good at
computing integrals in their heads,
so comparing lengths is much
easier than comparing areas.
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Visualizing x-y relationships
higher body mass to have longer heads. The bird with the longest head falls close to the
maximum body mass observed, and the bird with the shortest head falls close to the
minimum body mass observed.

Figure 12.1: Head length (measured from the tip of the bill to the back of the head, in mm) versus body mass (in
gram), for 123 blue jays. Each dot corresponds to one bird. There is a moderate tendency for heavier birds to have
longer heads. Data source: Keith Tarvin, Oberlin College

The blue jay dataset contains both male and female birds, and we may want to know whether
the overall relationship between head length and body mass holds up separately for each sex.
To address this question, we can color the points in the scatter plot by the sex of the bird
(Figure 12.2). This figure reveals that the overall trend in head length and body mass is at least
in part driven by the sex of the birds. At the same body mass, females tend to have shorter
heads than males. At the same time, females tend to be lighter than males on average.
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Visualizing x-y relationships
higher body mass to have longer heads. The bird with the longest head falls close to the
maximum body mass observed, and the bird with the shortest head falls close to the
minimum body mass observed.

Figure 12.1: Head length (measured from the tip of the bill to the back of the head, in mm) versus body mass (in
gram), for 123 blue jays. Each dot corresponds to one bird. There is a moderate tendency for heavier birds to have
longer heads. Data source: Keith Tarvin, Oberlin College

The blue jay dataset contains both male and female birds, and we may want to know whether
the overall relationship between head length and body mass holds up separately for each sex.
To address this question, we can color the points in the scatter plot by the sex of the bird
(Figure 12.2). This figure reveals that the overall trend in head length and body mass is at least
in part driven by the sex of the birds. At the same body mass, females tend to have shorter
heads than males. At the same time, females tend to be lighter than males on average.

Figure 12.2: Head length versus body mass for 123 blue jays. The birds’ sex is indicated by color. At the same
body mass, male birds tend to have longer heads (and specifically, longer bills) than female birds. Data source:
Keith Tarvin, Oberlin College

Because the head length is defined as the distance from the tip of the bill to the back of the
head, a larger head length could imply a longer bill, a larger skull, or both. We can disentangle
bill length and skull size by looking at another variable in the dataset, the skull size, which is
similar to the head length but excludes the bill. As we are already using the x position for
body mass, the y position for head length, and the dot color for bird sex, we need another
aesthetic to which we can map skull size. One option is to use the size of the dots, resulting
in a visualization called a bubble chart (Figure 12.3).

21



Visualizing x-y relationships
higher body mass to have longer heads. The bird with the longest head falls close to the
maximum body mass observed, and the bird with the shortest head falls close to the
minimum body mass observed.

Figure 12.1: Head length (measured from the tip of the bill to the back of the head, in mm) versus body mass (in
gram), for 123 blue jays. Each dot corresponds to one bird. There is a moderate tendency for heavier birds to have
longer heads. Data source: Keith Tarvin, Oberlin College

The blue jay dataset contains both male and female birds, and we may want to know whether
the overall relationship between head length and body mass holds up separately for each sex.
To address this question, we can color the points in the scatter plot by the sex of the bird
(Figure 12.2). This figure reveals that the overall trend in head length and body mass is at least
in part driven by the sex of the birds. At the same body mass, females tend to have shorter
heads than males. At the same time, females tend to be lighter than males on average.

Figure 12.2: Head length versus body mass for 123 blue jays. The birds’ sex is indicated by color. At the same
body mass, male birds tend to have longer heads (and specifically, longer bills) than female birds. Data source:
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Because the head length is defined as the distance from the tip of the bill to the back of the
head, a larger head length could imply a longer bill, a larger skull, or both. We can disentangle
bill length and skull size by looking at another variable in the dataset, the skull size, which is
similar to the head length but excludes the bill. As we are already using the x position for
body mass, the y position for head length, and the dot color for bird sex, we need another
aesthetic to which we can map skull size. One option is to use the size of the dots, resulting
in a visualization called a bubble chart (Figure 12.3).

Figure 12.3: Head length versus body mass for 123 blue jays. The birds’ sex is indicated by color, and the birds’
skull size by symbol size. Head-length measurements include the length of the bill while skull-size measurements
do not. Head length and skull size tend to be correlated, but there are some birds with unusually long or short bills
given their skull size. Data source: Keith Tarvin, Oberlin College

Bubble charts have the disadvantage that they show the same types of variables, quantitative
variables, with two different types of scales, position and size. This makes it difficult to
visually ascertain the strengths of associations between the various variables. Moreover,
differences between data values encoded as bubble size are harder to perceive than
differences between data values encoded as position. Because even the largest bubbles need
to be somewhat small compared to the total figure size, the size differences between even the
largest and the smallest bubbles are necessarily small. Consequently, smaller differences in
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Scatter matrix plot

data values will correspond to very small size differences that can be virtually impossible to
see. In Figure 12.3, I used a size mapping that visually amplified the difference between the
smallest skulls (around 28mm) and the largest skulls (around 34mm), and yet it is difficult to
determine what the relationship is between skull size and either body mass or head length.

As an alternative to a bubble chart, it may be preferable to show an all-against-all matrix of
scatter plots, where each individual plot shows two data dimensions (Figure 12.4). This figure
shows clearly that the relationship between skull size and body mass is comparable for
female and male birds except that the female birds tend to be somewhat smaller. However,
the same is not true for the relationship between head length and body mass. There is a clear
separation by sex. Male birds tend to have longer bills than female birds, all else equal.

Figure 12.4: All-against-all scatter plot matrix of head length, body mass, and skull size, for 123 blue jays. This
figure shows the exact same data as Figure 12.2. However, because we are better at judging position than symbol
size, correlations between skull size and the other two variables are easier to perceive in the pairwise scatter plots
than in Figure 12.2. Data source: Keith Tarvin, Oberlin College

12.2  Correlograms
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Correlograms

When we have more than three to four quantiative variables, all-against-all scatter plot
matrices quickly become unwieldy. In this case, it is more useful to quantify the amount of
association between pairs of variables and visualize this quantity rather than the raw data.
One common way to do this is to calculate correlation coefficients. The correlation coefficient
r is a number between -1 and 1 that measures to what extent two variables covary. A value of
r = 0 means there is no association whatsoever, and a value of either 1 or -1 indicates a
perfect association. The sign of the correlation coefficient indicates whether the variables are
correlated (larger values in one variable coincide with larger values in the other) or
anticorrelated (larger values in one variable coincide with smaller values in the other). To
provide visual examples of what different correlation strengths look like, in Figure 12.5 I show
randomly generated sets of points that differ widely in the degree to which the x and y values
are correlated.

Figure 12.5: Examples of correlations of different magnitude and direction, with associated correlation coefficient r.
In both rows, from left to right correlations go from weak to strong. In the top row the correlations are positive
(larger values for one quantity are associated with larger values for the other) and in the bottom row they are
negative (larger values for one quantity are associated with smaller values for the other). In all six panels, the sets
of x and y values are identical, but the pairings between individual x and y values have been reshuffled to generate
the specified correlation coefficients.

The correlation coefficient is defined as

( − )( − )
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Figure 12.6: Correlations in mineral content for 214 samples of glass fragments obtained during forensic work. The
dataset contains seven variables measuring the amounts of magnesium (Mg), calcium (Ca), iron (Fe), potassium
(K), sodium (Na), aluminum (Al), and barium (Ba) found in each glass fragment. The colored tiles represents the
correlations between pairs of these variables. Data source: B. German

One weakness of the correlogram of Figure 12.6 is that low correlations, i.e. correlations with
absolute value near zero, are not as visually suppressed as they should be. For example,
magnesium (Mg) and potassium (K) are not at all correlated but Figure 12.6 doesn’t
immediately show this. To overcome this limitation, we can display the correlations as colored
circles and scale the circle size with the absolute value of the correlation coefficient (Figure
12.6). In this way, low correlations are suppressed and high correlations stand out better.
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Dimension reduction

quantities will relate first and foremost to the overall size of each person. All else being equal,
a larger person will be taller, weigh more, have longer arms and legs, and larger waist, hip,
and chest circumferences. The next important dimension is going to be the person’s sex.
Male and female measurements are substantially different for persons of comparable size. For
example, a woman will tend to have higher hip circumference than a man, all else being
equal.

There are many techniques for dimension reduction. I will discuss only one technique here,
the most widely used one, called principal components analysis (PCA). PCA introduces a new
set of variables (called principal components, PCs) by linear combination of the original
variables in the data, standardized to zero mean and unit variance (see Figure 12.8 for a toy
example in two dimensions). The PCs are chosen such that they are uncorrelated, and they
are ordered such that the first component captures the largest possible amount of variation in
the data, and subsequent components capture increasingly less. Usually, key features in the
data can be seen from only the first two or three PCs.

Figure 12.8: Example principal components (PC) analysis in two dimensions. (a) The original data. As example
data, I am using the head-length and skull-size measurements from the blue jays dataset. Female and male birds
are distinguished by color, but this distinction has no effect on the PC analysis. (b) As the first step in PCA, we
scale the original data values to zero mean and unit variance. We then we define new variables (the principal
components, PCs) along the directions of maximum variation in the data. (c) Finally, we project the data into the
new coordinates. Mathematically, this projection is equivalent to a rotation of the data points around the origin. In
the 2D example shown here, the data points are rotated clockwise by 45 degrees.

When we perform PCA, we are generally interested in two pieces of information: (i) the
composition of the PCs and (ii) the location of the individual data points in the principal
components space. Let’s look at these two pieces in a PC analysis of the forensic glass
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Dimension reduction
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absolute value near zero, are not as visually suppressed as they should be. For example,
magnesium (Mg) and potassium (K) are not at all correlated but Figure 12.6 doesn’t
immediately show this. To overcome this limitation, we can display the correlations as colored
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Next, we project the original data into the principal components space (Figure 12.10). We see
a clear clustering of distinct types of glass fragments in this plot. Fragments from both
headlamps and windows fall into clearly delineated regions in the PC plot, with few outliers.
Fragments from tableware and from containers are a little more spread out, but nevertheless
clearly distinct from both headlamp and window fragments. By comparing Figure 12.10 with
Figure 12.9, we can conclude that window samples tend to have higher than average
magnesium content and lower than average barium, aluminum, and sodium content, whereas
the opposite is true for headlamp samples.

Figure 12.10: Composition of individual glass fragments visualized in the principal components space defined in
Figure 12.9. We see that the different types of glass samples cluster at characteristic values of PC 1 and 2. In
particular, headlamps are characterized by a negative PC 1 value whereas windows tend to have a positive PC 1
value. Tableware and containers have PC 1 values close to zero and tend to have positive PC 2 values. However,
there are a few exceptions where container fragments have both a negative PC 1 value and a negative PC 2 value.
These are fragments whose composition drastically differs from all other fragments analyzed.

12.4  Paired data
A special case of multivariate quantitative data is paired data: Data where there are two or
more measurements of the same quantity under slightly different conditions. Examples
include two comparable measurements on each subject (e.g., the length of the right and the
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Paired data
Scatterplots and slopegraphs are two main choices for plotting paired
data.

Figure 12.11: Carbon dioxide (CO ) emissions per person in 1970 and 2010, for 166 countries. Each dot represents
one country. The diagonal line represents identical CO  emissions in 1970 and 2010. The points are systematically
shifted upwards relative to the diagonal line: In the majority of countries, emissions were higher in 2010 than in
1970. Data source: Carbon Dioxide Information Analysis Center

Scatter plots such as Figure 12.11 work well when we have a large number of data points
and/or are interested in a systematic deviation of the entire data set from the null expectation.
By contrast, if we have only a small number of observations and are primarily interested in the
identity of each individual case, a slopegraph may be a better choice. In a slopegraph, we
draw individual measurements as dots arranged into two columns and indicate pairings by
connecting the paired dots with a line. The slope of each line highlights the magnitude and
direction of change. Figure 12.12 uses this approach to show the ten countries with the
largest difference in CO  emissions per person from 2000 to 2010.
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The last plot shows that slopegraph can accomodate short time
series.
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Paired data
Scatterplots and slopegraphs are two main choices for plotting paired
data.

Figure 12.11: Carbon dioxide (CO ) emissions per person in 1970 and 2010, for 166 countries. Each dot represents
one country. The diagonal line represents identical CO  emissions in 1970 and 2010. The points are systematically
shifted upwards relative to the diagonal line: In the majority of countries, emissions were higher in 2010 than in
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Figure 12.12: Carbon dioxide (CO ) emissions per person in 2000 and 2010, for the ten countries with the largest
difference between these two years. Data source: Carbon Dioxide Information Analysis Center

Slopegraphs have one important advantage over scatter plots: They can be used to compare
more than two measurements at a time. For example, we can modify Figure 12.12 to show
CO  emissions at three time points, here the years 2000, 2005, and 2010 (Figure 12.13). This
choice highlights both countries with a large change in emissions over the entire decade as
well as countries such as Qatar or Trinidad and Tobago for which there is a large difference in
the trend seen for the first five-year interval and the second one.
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The last plot shows that slopegraph can accomodate short time
series.
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Figure 12.13: CO  emissions per person in 2000, 2005, and 2010, for the ten countries with the largest difference
between the years 2000 and 2010. Data source: Carbon Dioxide Information Analysis Center
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Visualizing time series — univariate

Figure 13.1: Monthly submissions to the preprint server bioRxiv, from its inception in November 2014 until April
2018. Each dot represents the number of submissions in one month. There has been a steady increase in
submission volume throughout the entire 4.5-year period. Data source: Jordan Anaya, http://www.prepubmed.org/

There is an important difference however between Figure 13.1 and the scatter plots discussed
in Chapter 12. In Figure 13.1, the dots are spaced evenly along the x axis, and there is a
defined order among them. Each dot has exactly one left and one right neighbor (except the
leftmost and rightmost points which have only one neighbor each). We can visually emphasize
this order by connecting neighboring points with lines (Figure 13.2). Such a plot is called a line
graph.
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Figure 13.1: Monthly submissions to the preprint server bioRxiv, from its inception in November 2014 until April
2018. Each dot represents the number of submissions in one month. There has been a steady increase in
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There is an important difference however between Figure 13.1 and the scatter plots discussed
in Chapter 12. In Figure 13.1, the dots are spaced evenly along the x axis, and there is a
defined order among them. Each dot has exactly one left and one right neighbor (except the
leftmost and rightmost points which have only one neighbor each). We can visually emphasize
this order by connecting neighboring points with lines (Figure 13.2). Such a plot is called a line
graph.

Figure 13.2: Monthly submissions to the preprint server bioRxiv, shown as dots connected by lines. The lines do
not represent data but are only meant as a guide to the eye. By connecting the individual dots with lines, we
emphasize that there is an order between the dots, each dot has exactly one neighbor that comes before and one
that comes after. Data source: Jordan Anaya, http://www.prepubmed.org/

Some people object to drawing lines between points because the lines do not represent
observed data. In particular, if there are only a few observations spaced far apart, had
observations been made at intermediate times they would probably not have fallen exactly
onto the lines shown. Thus, in a sense, the lines correspond to made-up data. Yet they may
help with perception when the points are spaced far apart or are unevenly spaced. We can
somewhat resolve this dilemma by pointing it out in the figure caption, for example by writing
“lines are meant as a guide to the eye” (see caption of Figure 13.2).

Using lines to represent time series is generally accepted practice, however, and frequently
the dots are omitted altogether (Figure 13.3). Without dots, the figure places more emphasis
on the overall trend in the data and less on individual observations. A figure without dots is
also visually less busy. In general, the denser the time series, the less important it is to show
individual obserations with dots. For the preprint dataset shown here, I think omitting the dots
is fine.
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observed data. In particular, if there are only a few observations spaced far apart, had
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onto the lines shown. Thus, in a sense, the lines correspond to made-up data. Yet they may
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Using lines to represent time series is generally accepted practice, however, and frequently
the dots are omitted altogether (Figure 13.3). Without dots, the figure places more emphasis
on the overall trend in the data and less on individual observations. A figure without dots is
also visually less busy. In general, the denser the time series, the less important it is to show
individual obserations with dots. For the preprint dataset shown here, I think omitting the dots
is fine.Figure 13.3: Monthly submissions to the preprint server bioRxiv, shown as a line graph without dots. Omitting the

dots emphasizes the overall temporal trend while de-emphasizing individual observations at specific time points. It
is particularly useful when the time points are spaced very densely. Data source: Jordan Anaya,
http://www.prepubmed.org/

We can also fill the area under the curve with a solid color (Figure 13.4). This choice further
emphasizes the overarching trend in the data, because it visually separates the area above
the curve from the area below. However, this visualization is only valid if the y axis starts at
zero, so that the height of the shaded area at each time point represents the data value at that
time point.
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We can also fill the area under the curve with a solid color (Figure 13.4). This choice further
emphasizes the overarching trend in the data, because it visually separates the area above
the curve from the area below. However, this visualization is only valid if the y axis starts at
zero, so that the height of the shaded area at each time point represents the data value at that
time point.

For dense time series, connect the
dots and omit them.
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Visualizing time series — multivariate, the same y-axis

Figure 13.5: Monthly submissions to three preprint servers covering biomedical research: bioRxiv, the q-bio section
of arXiv, and PeerJ Preprints. Each dot represents the number of submissions in one month to the respective
preprint server. This figure is labeled “bad” because the three time courses visually interfere with each other and
are difficult to read. Data source: Jordan Anaya, http://www.prepubmed.org/

Figure 13.6: Monthly submissions to three preprint servers covering biomedical research. By connecting the dots
in Figure 13.5 with lines, we help the viewer follow each individual time course. Data source: Jordan Anaya,
http://www.prepubmed.org/
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Visualizing time series — multivariate, the same y-axis
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Figure 13.6: Monthly submissions to three preprint servers covering biomedical research. By connecting the dots
in Figure 13.5 with lines, we help the viewer follow each individual time course. Data source: Jordan Anaya,
http://www.prepubmed.org/

Figure 13.6 represents an acceptable visualization of the preprints dataset. However, the
separate legend creates unnecessary cognitive load. We can reduce this cognitive load by
labeling the lines directly (Figure 13.7). We have also eliminated the individual dots in this
figure, for a result that is much more streamlined and easy to read than the original starting
point, Figure 13.5.

Figure 13.7: Monthly submissions to three preprint servers covering biomedical research. By direct labeling the
lines instead of providing a legend, we have reduced the cognitive load required to read the figure. And the
elimination of the legend removes the need for points of different shapes. Thus, we could streamline the figure
further by eliminating the dots. Data source: Jordan Anaya, http://www.prepubmed.org/

Line graphs are not limited to time series. They are appropriate whenever the data points
have a natural order that is reflected in the variable shown along the x axis, so that
neighboring points can be connected with a line. This situation arises, for example, in dose–
response curves, where we measure how changing some numerical parameter in an
experiment (the dose) affects an outcome of interest (the response). Figure 13.8 shows a
classic experiment of this type, measuring oat yield in response to increasing amounts of
fertilization. The line-graph visualization highlights how the dose–response curve has a similar
shape for the three oat varieties considered but differs in the starting point in the absence of
fertilization (i.e., some varieties have naturally higher yield than others).
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Line graphs are not limited to time series. They are appropriate whenever the data points
have a natural order that is reflected in the variable shown along the x axis, so that
neighboring points can be connected with a line. This situation arises, for example, in dose–
response curves, where we measure how changing some numerical parameter in an
experiment (the dose) affects an outcome of interest (the response). Figure 13.8 shows a
classic experiment of this type, measuring oat yield in response to increasing amounts of
fertilization. The line-graph visualization highlights how the dose–response curve has a similar
shape for the three oat varieties considered but differs in the starting point in the absence of
fertilization (i.e., some varieties have naturally higher yield than others).

Consider replacing legends with
direct labeling.

Make sure it is easy to compare
objects of interest
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Visualizing time series — more than one y-axisIf we want to identify temporal regions when both variables move in the same or in opposite
directions, we need to switch back and forth between the two graphs and compare the
relative slopes of the two curves.

Figure 13.9: 12-month change in house prices (a) and unemployment rate (b) over time, from Jan. 2001 through
Dec. 2017. Data sources: Freddie Mac House Prices Index, U.S. Bureau of Labor Statistics.

As an alternative to showing two separate line graphs, we can plot the two variables against
each other, drawing a path that leads from the earliest time point to the latest (Figure 13.10).
Such a visualization is called a connected scatter plot, because we are technically making a
scatter plot of the two variables against each other and then are connecting neighboring
points. Physicists and engineers often call this a phase portrait, because in their disciplines it
is commonly used to represent movement in phase space. We have previously encountered
connected scatter plots in Chapter 3, where we plotted the daily temperature normals in
Houston, TX, versus those in San Diego, CA (Figure 3.3).
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Visualizing time series — more than one y-axisIf we want to identify temporal regions when both variables move in the same or in opposite
directions, we need to switch back and forth between the two graphs and compare the
relative slopes of the two curves.
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As an alternative to showing two separate line graphs, we can plot the two variables against
each other, drawing a path that leads from the earliest time point to the latest (Figure 13.10).
Such a visualization is called a connected scatter plot, because we are technically making a
scatter plot of the two variables against each other and then are connecting neighboring
points. Physicists and engineers often call this a phase portrait, because in their disciplines it
is commonly used to represent movement in phase space. We have previously encountered
connected scatter plots in Chapter 3, where we plotted the daily temperature normals in
Houston, TX, versus those in San Diego, CA (Figure 3.3).

Figure 13.11: 12-month change in house prices versus unemployment rate, from Jan. 2001 through Dec. 2017.
This figure is labeled “bad” because without the date markers and color shading of Figure 13.10, we can see
neither the direction nor the speed of change in the data. Data sources: Freddie Mac House Prices Index, U.S.
Bureau of Labor Statistics.

Is it better to use a connected scatter plot or two separate line graphs? Separate line graphs
tend to be easier to read, but once people are used to connected scatter plots they may be
able to extract certain patterns (such as cyclical behavior with some irregularity) that can be
difficult to spot in line graphs. In fact, to me the cyclical relationship between change in house
prices and unemployment rate is hard to spot in Figure 13.9, but the counter-clockwise spiral
in Figure 13.10 clearly shows it. Research reports that readers are more likely to confuse
order and direction in a connected scatter plot than in line graphs and less likely to report
correlation (Haroz, Kosara, and Franconeri 2016). On the flip side, connected scatter plots
seem to result in higher engagement, and thus such plots may be a effective tools to draw
readers into a story (Haroz, Kosara, and Franconeri 2016).

Even though connected scatter plots can show only two variables at a time, we can also use
them to visualize higher-dimensional datasets. The trick is to apply dimension reduction first
(see Chapter 12). We can then draw a connected scatterplot in the dimension-reduced space.28
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Is it better to use a connected scatter plot or two separate line graphs? Separate line graphs
tend to be easier to read, but once people are used to connected scatter plots they may be
able to extract certain patterns (such as cyclical behavior with some irregularity) that can be
difficult to spot in line graphs. In fact, to me the cyclical relationship between change in house
prices and unemployment rate is hard to spot in Figure 13.9, but the counter-clockwise spiral
in Figure 13.10 clearly shows it. Research reports that readers are more likely to confuse
order and direction in a connected scatter plot than in line graphs and less likely to report
correlation (Haroz, Kosara, and Franconeri 2016). On the flip side, connected scatter plots
seem to result in higher engagement, and thus such plots may be a effective tools to draw
readers into a story (Haroz, Kosara, and Franconeri 2016).

Even though connected scatter plots can show only two variables at a time, we can also use
them to visualize higher-dimensional datasets. The trick is to apply dimension reduction first
(see Chapter 12). We can then draw a connected scatterplot in the dimension-reduced space.

Figure 13.10: 12-month change in house prices versus unemployment rate, from Jan. 2001 through Dec. 2017,
shown as a connected scatter plot. Darker shades represent more recent months. The anti-correlation seen in
Figure 13.9 between the change in house prices and the unemployment rate causes the connected scatter plot to
form two counter-clockwise circles. Data sources: Freddie Mac House Price Index, U.S. Bureau of Labor Statistics.
Original figure concept: Len Kiefer

In a connected scatter plot, lines going in the direction from the lower left to the upper right
represent correlated movement between the two variables (as one variable grows, so does
the other), and lines going in the perpendicular direction, from the upper left to the lower right,
represent anti-correlated movement (as one variable grows, the other shrinks). If the two
variables have a somewhat cyclic relationship, we will see circles or spirals in the connected
scatter plot. In Figure 13.10, we see one small circle from 2001 through 2005 and one large
circle for the remainder of the time course.

When drawing a connected scatter plot, it is important that we indicate both the direction and
the temporal scale of the data. Without such hints, the plot can turn into meaningless scribble
(Figure 13.11). I am using here (in Figure 13.10) a gradual darkening of the color to indicate
direction. Alternatively, one could draw arrows along the path.
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In a connected scatter plot, lines going in the direction from the lower left to the upper right
represent correlated movement between the two variables (as one variable grows, so does
the other), and lines going in the perpendicular direction, from the upper left to the lower right,
represent anti-correlated movement (as one variable grows, the other shrinks). If the two
variables have a somewhat cyclic relationship, we will see circles or spirals in the connected
scatter plot. In Figure 13.10, we see one small circle from 2001 through 2005 and one large
circle for the remainder of the time course.

When drawing a connected scatter plot, it is important that we indicate both the direction and
the temporal scale of the data. Without such hints, the plot can turn into meaningless scribble
(Figure 13.11). I am using here (in Figure 13.10) a gradual darkening of the color to indicate
direction. Alternatively, one could draw arrows along the path.

Connected scatter plots are great,
but don’t forget to indicate both the
direction and the temporal scale of
the data. .

When you have more than two
y-axes, use dimension reduction
techniques to map Rn onto R2.
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