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Visualizing time series — multivariate, the same y-axis

Figure 13.5: Monthly submissions to three preprint servers covering biomedical research: bioRxiv, the q-bio section
of arXiv, and PeerJ Preprints. Each dot represents the number of submissions in one month to the respective
preprint server. This figure is labeled “bad” because the three time courses visually interfere with each other and
are difficult to read. Data source: Jordan Anaya, http://www.prepubmed.org/

Figure 13.6: Monthly submissions to three preprint servers covering biomedical research. By connecting the dots
in Figure 13.5 with lines, we help the viewer follow each individual time course. Data source: Jordan Anaya,
http://www.prepubmed.org/
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Figure 13.6 represents an acceptable visualization of the preprints dataset. However, the
separate legend creates unnecessary cognitive load. We can reduce this cognitive load by
labeling the lines directly (Figure 13.7). We have also eliminated the individual dots in this
figure, for a result that is much more streamlined and easy to read than the original starting
point, Figure 13.5.

Figure 13.7: Monthly submissions to three preprint servers covering biomedical research. By direct labeling the
lines instead of providing a legend, we have reduced the cognitive load required to read the figure. And the
elimination of the legend removes the need for points of different shapes. Thus, we could streamline the figure
further by eliminating the dots. Data source: Jordan Anaya, http://www.prepubmed.org/

Line graphs are not limited to time series. They are appropriate whenever the data points
have a natural order that is reflected in the variable shown along the x axis, so that
neighboring points can be connected with a line. This situation arises, for example, in dose–
response curves, where we measure how changing some numerical parameter in an
experiment (the dose) affects an outcome of interest (the response). Figure 13.8 shows a
classic experiment of this type, measuring oat yield in response to increasing amounts of
fertilization. The line-graph visualization highlights how the dose–response curve has a similar
shape for the three oat varieties considered but differs in the starting point in the absence of
fertilization (i.e., some varieties have naturally higher yield than others).
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Consider replacing legends with
direct labeling.

Make sure it is easy to compare
objects of interest
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Visualizing time series — more than one y-axisIf we want to identify temporal regions when both variables move in the same or in opposite
directions, we need to switch back and forth between the two graphs and compare the
relative slopes of the two curves.

Figure 13.9: 12-month change in house prices (a) and unemployment rate (b) over time, from Jan. 2001 through
Dec. 2017. Data sources: Freddie Mac House Prices Index, U.S. Bureau of Labor Statistics.

As an alternative to showing two separate line graphs, we can plot the two variables against
each other, drawing a path that leads from the earliest time point to the latest (Figure 13.10).
Such a visualization is called a connected scatter plot, because we are technically making a
scatter plot of the two variables against each other and then are connecting neighboring
points. Physicists and engineers often call this a phase portrait, because in their disciplines it
is commonly used to represent movement in phase space. We have previously encountered
connected scatter plots in Chapter 3, where we plotted the daily temperature normals in
Houston, TX, versus those in San Diego, CA (Figure 3.3).
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Figure 13.11: 12-month change in house prices versus unemployment rate, from Jan. 2001 through Dec. 2017.
This figure is labeled “bad” because without the date markers and color shading of Figure 13.10, we can see
neither the direction nor the speed of change in the data. Data sources: Freddie Mac House Prices Index, U.S.
Bureau of Labor Statistics.

Is it better to use a connected scatter plot or two separate line graphs? Separate line graphs
tend to be easier to read, but once people are used to connected scatter plots they may be
able to extract certain patterns (such as cyclical behavior with some irregularity) that can be
difficult to spot in line graphs. In fact, to me the cyclical relationship between change in house
prices and unemployment rate is hard to spot in Figure 13.9, but the counter-clockwise spiral
in Figure 13.10 clearly shows it. Research reports that readers are more likely to confuse
order and direction in a connected scatter plot than in line graphs and less likely to report
correlation (Haroz, Kosara, and Franconeri 2016). On the flip side, connected scatter plots
seem to result in higher engagement, and thus such plots may be a effective tools to draw
readers into a story (Haroz, Kosara, and Franconeri 2016).

Even though connected scatter plots can show only two variables at a time, we can also use
them to visualize higher-dimensional datasets. The trick is to apply dimension reduction first
(see Chapter 12). We can then draw a connected scatterplot in the dimension-reduced space.3
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Even though connected scatter plots can show only two variables at a time, we can also use
them to visualize higher-dimensional datasets. The trick is to apply dimension reduction first
(see Chapter 12). We can then draw a connected scatterplot in the dimension-reduced space.

Figure 13.10: 12-month change in house prices versus unemployment rate, from Jan. 2001 through Dec. 2017,
shown as a connected scatter plot. Darker shades represent more recent months. The anti-correlation seen in
Figure 13.9 between the change in house prices and the unemployment rate causes the connected scatter plot to
form two counter-clockwise circles. Data sources: Freddie Mac House Price Index, U.S. Bureau of Labor Statistics.
Original figure concept: Len Kiefer

In a connected scatter plot, lines going in the direction from the lower left to the upper right
represent correlated movement between the two variables (as one variable grows, so does
the other), and lines going in the perpendicular direction, from the upper left to the lower right,
represent anti-correlated movement (as one variable grows, the other shrinks). If the two
variables have a somewhat cyclic relationship, we will see circles or spirals in the connected
scatter plot. In Figure 13.10, we see one small circle from 2001 through 2005 and one large
circle for the remainder of the time course.

When drawing a connected scatter plot, it is important that we indicate both the direction and
the temporal scale of the data. Without such hints, the plot can turn into meaningless scribble
(Figure 13.11). I am using here (in Figure 13.10) a gradual darkening of the color to indicate
direction. Alternatively, one could draw arrows along the path.
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Connected scatter plots are great,
but don’t forget to indicate both the
direction and the temporal scale of
the data. .

When you have more than two
y-axes, use dimension reduction
techniques to map Rn onto R2.

3



Visualizing geospatial data

As a simple example, consider the population density (persons per square kilometer) across
the United States. We take the population number for each county in the U.S., divide it by the
county’s surface area, and then draw a map where the color of each county corresponds to
the ratio between population number and area (Figure 15.11). We can see how the the major
cities on the east and the west coast are the most populated areas of the U.S., the great
plains and western states have low population densities, and the state of Alaska is the least
populated of all.

Figure 15.11: Population density in every U.S. county, shown as a choropleth map. Population density is reported
as persons per square kilometer. Data source: 2015 Five-Year American Community Survey

Figure 15.11 uses light colors to represent low population densities and dark colors to
represent high densities, so that high-density metropolitan areas stand out as dark colors on
a background of light colors. We tend to associate darker colors with higher intensities when
the background color of the figure is light. However, we can also pick a color scale where high
values light up on a dark background (Figure 15.12). As longs as the lighter colors fall into the
red-yellow spectrum, so that they appear to be glowing, they can be perceived as
representing higher intensities. As a general principle, when figures are meant to be printed
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values light up on a dark background (Figure 15.12). As longs as the lighter colors fall into the
red-yellow spectrum, so that they appear to be glowing, they can be perceived as
representing higher intensities. As a general principle, when figures are meant to be printed

on white paper then light-colored background areas (as in Figure 15.11) will typically work
better. For online viewing or on a dark background, dark-colored background areas (as in
Figure 15.12) may be preferable.

Figure 15.12: Population density in every U.S. county, shown as a choropleth map. This map is identical to Figure
15.11 except that now the color scale uses light colors for high population densities and dark colors for low
population densities. Data source: 2015 Five-Year American Community Survey

Choropleths work best when the coloring represents a density (i.e., some quantity divided by
surface area, as in Figures 15.11 and 15.12). We perceive larger areas as corresponding to
larger amounts than smaller areas (see also the chapter on proportional ink, Chapter 17), and
shading by density corrects for this effect. However, in practice, we often see choropleths
colored according to some quantity that is not a density. For example, in Figure 4.4 I showed
a choropleth of median annual income in Texas counties. Such choropleth maps can be
appropriate when they are prepared with caution. There are two conditions under which we
can color-map quantities that are not densities: First, if all the individual areas we color have
approximately the same size and shape, then we don’t have to worry about some areas
drawing disproportionate attention solely due to their size. Second, if the individual areas we
color are relatively small compared to the overall size of the map and if the quantity that color
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a choropleth of median annual income in Texas counties. Such choropleth maps can be
appropriate when they are prepared with caution. There are two conditions under which we
can color-map quantities that are not densities: First, if all the individual areas we color have
approximately the same size and shape, then we don’t have to worry about some areas
drawing disproportionate attention solely due to their size. Second, if the individual areas we
color are relatively small compared to the overall size of the map and if the quantity that color

represents changes on a scale larger than the individual colored areas, then again we don’t
have to worry about some areas drawing disproportionate attention solely due to their size.
Both of these conditions are approximately met in Figure 4.4.

It is also important to consider the effect of continuous versus discrete color scales in
choropleth mapping. While continuous color scales tend to look visually appealing (e.g.,
Figures 15.11 and 15.12), they can be difficult to read. We are not very good at recognizing a
specific color value and matching it against a continuous scale. Therefore, it is often
appropriate to bin the data values into discrete groups that are represented with distinct
colors. On the order of four to six bins is a good choice. The binning sacrifices some
information, but on the flip side the binned colors can be uniquely recognized. As an example,
Figure 15.13 expands the map of median income in Texas counties (Figure 4.4) to all counties
in the U.S., and it uses a color scale consisting of five distinct income bins.

Figure 15.13: Median income in every U.S. county, shown as a choropleth map. The median income values have
been binned into five distinct groups, because binned color scales are generally easier to read than continuous
color scales. Data source: 2015 Five-Year American Community Survey
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Even though counties are not quite as equal-sized and even-shaped across the entire U.S. as
they are just within Texas, I think Figure 15.13 still works as a choropleth map. No individidual
county overly dominates the map. However, things look different when we draw a comparable
map at the state level (Figure 15.14). Then Alaska dominates the choropleth and, because of
its size, suggests that median incomes above $70,000 are common. Yet Alaska is very
sparsely populated (see Figures 15.11 and 15.12), and thus the income levels in Alaska apply
only to a small portion of the U.S. population. The vast majority of U.S. counties, which are
nearly all more populous than counties in Alaska, have a median income of below $60,000.

Figure 15.14: Median income in every U.S. state, shown as a choropleth map. This map is visually dominated by
the state of Alaska, which has a high median income but very low population density. At the same time, the
densely populated high-income states on the East Coast do not appear very prominent on this map. In aggregate,
this map provides a poor visualization of the income distribution in the U.S., and therefore I have labeled it as
“bad.” Data source: 2015 Five-Year American Community Survey

15.4  Cartograms
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Visualizing geospatial data without maps

Figure 15.16: Median income in every U.S. state, shown as a cartogram heatmap. Each state is represented by an
equally sized square, and the squares are arranged according to the approximate position of each state relative to
the other states. This representation gives the same visual weight to each state. Data source: 2015 Five-Year
American Community Survey

Finally, we can draw more complex cartograms by placing individual plots at the location of
each state. For example, if we want to visualize the evolution of the unemployment rate over
time for each state, it can help to draw an individual graph for each state and then arrange the
graphs based on the approximate relative position of the states to each other (Figure 15.17).
For somebody who is familiar with the geography of the United States, this arrangement may
make it easier to find the graphs for specific states than arranging them, for example, in
alphabetical order. Furthermore, one would expect neighboring states to display similar
patterns, and Figure 15.17 shows that this is indeed the case.
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Visualizing geospatial data without maps

Figure 15.17: Unemployment rate leading up to and following the 2008 financial crisis, by state. Each panel shows
the unemployment rate for one state, including the District of Columbia (DC), from January 2007 through May
2013. Vertical grid lines mark January of 2008, 2010, and 2012. States that are geographically close tend to show
similar trends in the unemployment rate. Data source: U.S. Bureau of Labor Statistics
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Visualizing the uncertainty of point estimates

Figure 16.9: Mean chocolate flavor ratings for manufacturers from four different countries, relative to the mean
rating of U.S. chocolate bars. Each panel uses a different approach to visualizing the same uncertainty information.
(a) Graded error bars with cap. (b) Graded error bars without cap. (c) Single-interval error bars with cap. (d) Single-
interval error bars without cap. (e) Confidence strips. (f) Confidence distributions.

As an alternative to error bars we could draw confidence strips that gradually fade into
nothing (Figure 16.9e). Confidence strips better convey how probable different values are, but
they are difficult to read. We would have to visually integrate the different shadings of color to
determine where a specific confidence level ends. From Figure 16.9e we might conclude that
the mean rating for Peruvian chocolate bars is significantly lower than that of U.S. chocolate
bars, and yet this is not the case. Similar problems arise when we show explicit confidence
distributions (Figure 16.9f). It is difficult to visually integrate the area under the curve and to
determine where exactly a given confidence level is reached. This issue can be somewhat
alleviated, however, by drawing quantile dotplots as in Figure 16.3.
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The principle of proportional ink
The principle of proportional ink: The sizes of shaded areas in a
visualization need to be proportional to the data values they
represent.

We first consider the most common scenario, visualization of amounts along a linear scale.
Figure 17.1 shows the median income in the five counties that make up the state of Hawaii. It
is a typical figure one might encounter in a newspaper article. A quick glance at the figure
suggests that the county of Hawaii is incredibly poor while the county of Honolulu is much
richer than the other counties. However, Figure 17.1 is quite misleading, because all bars
begin at $50,000 median income. Thus, while the endpoint of each bar correctly represents
the actual median income in each county, the bar height represents the extent to which
median incomes exceed $50,000, an arbitrary number. And human perception is such that the
bar height is the key quantity we perceive when looking at this figure, not the location of the
bar endpoint relative to the y axis.

Figure 17.1: Median income in the five counties of the state of Hawaii. This figure is incorrect, because the y axis
scale starts at $50,000 instead of $0. As a result, the bar heights are not proportional to the values shown, and the
income differential between the county of Hawaii and the other four counties appears much bigger than it actually
is. Data source: 2015 Five-Year American Community Survey.

An appropriate visualization of these data makes for a less exciting story (Figure 17.2). While
there are differences in median income between the counties, they are nowhere near as big as
Figure 17.1 suggested. Overall, the median incomes in the different counties are somewhat
comparable.

Bars on a linear scale must always start at 0.
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there are differences in median income between the counties, they are nowhere near as big as
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Figure 17.2: Median income in the five counties of the state of Hawaii. Here, the y axis scale starts at $0 and
therefore the relative magnitudes of the median incomes in the five counties are accurately shown. Data source:
2015 Five-Year American Community Survey.

Bars on a linear scale must always start at 0.

Similar visualization problems frequently arise in the visualization of time series, such as those
of stock prices. Figure 17.3 suggests a massive collapse in the stock price of Facebook
occurred around Nov. 1, 2016. In reality, the price decline was moderate relative to the total
price of the stock (Figure 17.4). The y-axis range in Figure 17.3 would be questionable even
without the shading undearneath the curve. But with the shading, the figure becomes
particularly problematic. The shading emphasizes the distance from the location of the x axis
to the specific y values shown, and thus it creates the visual impression that the height of the
shaded area at a given day represents the stock price of that day. Instead, it only represents
the difference in stock price from the baseline, which is $110 in Figure 17.3.

Bars on a linear scale must always start at 0.
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Common pitfalls of color use

Figure 19.1: Population growth from 2000 to 2010 versus population size in 2000, for all 50 U.S. states and the
Discrict of Columbia. Every state is marked in a different color. Because there are so many states, it is very difficult
to match the colors in the legend to the dots in the scatter plot. Data source: U.S. Census Bureau

As a rule of thumb, qualitative color scales work best when there are three to five different
categories that need to be colored. Once we reach eight to ten different categories or more,
the task of matching colors to categories becomes too burdensome to be useful, even if the
colors remain sufficiently different to be distinguishable in principle. For the dataset of Figure
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As a rule of thumb, qualitative color scales work best when there are three to five different
categories that need to be colored. Once we reach eight to ten different categories or more,
the task of matching colors to categories becomes too burdensome to be useful, even if the
colors remain sufficiently different to be distinguishable in principle. For the dataset of Figure

19.1, it is probably best to use color only to indicate the geographic region of each state and
to identify individual states by direct labeling, i.e., by placing appropriate text labels adjacent
to the data points (Figure 19.2). Even though we cannot label every individual state without
making the figure too crowded, direct labeling is the right choice for this figure. In general, for
figures such as this one, we don’t need to label every single data point. It is sufficient to label
a representative subset, for example a set of states we specifically want to call out in the text
that will accompany the figure. We always have the option to also provide the underlying data
as a table if we want to make sure the reader has access to it in its entirety.

Figure 19.2: Population growth from 2000 to 2010 versus population size in 2000. In contrast to Figure 19.1, I have
now colored states by region and have directly labeled a subset of states. The majority of states have been left
unlabeled to keep the figure from overcrowding. Data source: U.S. Census Bureau

Use direct labeling instead of colors when you need to distinguish between
more than about eight categorical items.
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Figures without legends

The general strategy we can employ is called direct labeling, whereby we place appropriate
text labels or other visual elements that serve as guideposts to the rest of the figure. We have
previously encountered direct labeling in Chapter 19 (Figure 19.2), as an alternative to
drawing a legend with over 50 distinct colors. To apply the direct labeling concept to the
stock-price figure, we place the name of each company right next to the end of its respective
data line (Figure 20.8).

Figure 20.8: Stock price over time for four major tech companies. The stock price for each company has been
normalized to equal 100 in June 2012. Data source: Yahoo Finance

Whenever possible, design your figures so they don’t need a legend.

We can also apply the direct labeling concept to the iris data from the beginning of this
chapter, specifically Figure 20.3. Because it is a scatter plot of many points that separate into
three different groups, we need to direct label the groups rather than the individual points.
One solution is to draw ellipses that enclose the majority of the points and then label the
ellipses (Figure 20.9).
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three different groups, we need to direct label the groups rather than the individual points.
One solution is to draw ellipses that enclose the majority of the points and then label the
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Figure 20.9: Sepal width versus sepal length for three different iris species. I have removed the background grid
from this figure because otherwise the figure was becoming too busy.

For density plots, we can similarly direct-label the curves rather than providing a color-coded
legend (Figure 20.10). In both Figures 20.9 and 20.10, I have colored the text labels in the
same colors as the data. Colored labels can greatly enhance the direct labeling effect, but
they can also turn out very poorly. If the text labels are printed in a color that is too light, then
the labels become difficult to read. And, because text consists of very thin lines, colored text
often appears to be lighter than an adjacent filled area of the same color. I generally
circumvent these issues by using two different shades of each color, a light one for filled areas
and a dark one for lines, outlines, and text. If you carefully inspect Figure 20.9 or 20.10, you
will see how each data point or shaded area is filled with a light color and has an outline
drawn in a darker color of the same hue. And the text labels are drawn in the same darker
colors.
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Figure 20.10: Density estimates of the sepal lengths of three different iris species. Each density estimate is directly
labeled with the respective species name.

We can also use density plots such as the one in Figure 20.10 as a legend replacement, by
placing the density plots into the margins of a scatter plot (Figure 20.11). This allows us to
direct-label the marginal density plots rather than the central scatter plot and hence results in
a figure that is somewhat less cluttered than Figure 20.9 with directly-labeled ellipses.
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We can also use density plots such as the one in Figure 20.10 as a legend replacement, by
placing the density plots into the margins of a scatter plot (Figure 20.11). This allows us to
direct-label the marginal density plots rather than the central scatter plot and hence results in
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Figure 20.11: Sepal width versus sepal length for three different iris species, with marginal density estimates of
each variable for each species.

And finally, whenever we encode a single variable in multiple aesthetics, we don’t normally
want multiple separate legends for the different aesthetics. Instead, there should be only a
single legend-like visual element that conveys all mappings at once. In the case where we
map the same variable onto a position along a major axis and onto color, this implies that the
reference color bar should run along and be integrated into the same axis. Figure 20.12
shows a case where we map temperature to both a position along the x axis and onto color,
and where we therefore have integrated the color legend into the x axis.
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Multi-panel figures

have, on average, a higher average ranking. However, this trend has weakend towards the end of the 20th century,
and a negative relationship can be seen for movies released in the early 2000s. Data Source: Internet Movie
Database (IMDB, http://imdb.com/)

For such large plots to be easily understandable, it is important that each panel uses the
same axis ranges and scalings. The human mind expects this to be the case. When it is not,
there is a good chance that a reader will mis-interpret what the figure shows. For example,
consider Figure 21.3, which presents how the proportion of Bachelor’s degrees in different
degree areas has changed over time. The figure shows the nine degree areas that have
represented, on average, more than 4% of all degrees between 1971 to 2015. The y axis of
panel is scaled such that the curve for each degree field covers the entire y-axis range. As a
consequence, a cursory examination of Figure 21.3 suggests that the nine degree areas are
all equally popular and have all experienced variation in popularity of a similar magnitude.
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Multi-panel figures

Figure 21.3: Trends in Bachelor’s degrees conferred by U.S. institutions of higher learning. Shown are all degree
areas that represent, on average, more than 4% of all degrees. This figure is labeled as “bad” because all panels
use different y-axis ranges. This choice obscures the relative sizes of the different degree areas and it over-
exagerates the changes that have happened in some of the degree areas. Data Source: National Center for
Education Statistics

Placing all panels onto the same y axis reveals, however, that this interpretation is highly
misleading (Figure 21.4). Some degree areas are much more popular than others, and
similarly some areas have grown or shrunk much more than others. For example, education
has declined a lot, whereas visual and performing arts have remained approximately constant
or maybe seen a small increase.

Figure 21.4: Trends in Bachelor’s degrees conferred by U.S. institutions of higher learning. Shown are all degree
areas that represent, on average, more than 4% of all degrees. Data Source: National Center for Education
Statistics
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Titles and captions
Ï Always label your axes!
Ï Captions of figures and tables should be self-explanatory.
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Your axis labels are too small

24  Your axis labels are too small

If you take away only one single lesson from this book, make it this one: Pay attention to your
axis labels, axis tick labels, and other assorted plot annotations. Chances are they are too
small. In my experience, nearly all plot libraries and graphing softwares have poor defaults. If
you use the default values, you’re almost certainly making a poor choice.

For example, consider Figure 24.1. I see figures like this all the time. The axis labels, axis tick
labels, and legend labels are all incredibly small. We can barely see them, and we may have
to zoom into the page to read the annotations in the legend.

Figure 24.1: Percent body fat versus height in professional male Australian athletes. (Each point represents one
athlete.) This figure suffers from the common affliction that the text elements are way too small and are barely
legible. Data source: Telford and Cunningham (1991)

A somewhat better version of this figure is shown as Figure 24.2. I think the fonts are still too
small, and that’s why I have labeled the figure as ugly. However, we are moving in the right
direction. This figure might be passable under some circumstances. My main criticism here is
not so much that the labels aren’t legible as that the figure is not balanced; the text elements
are too small compared to the rest of the figure.

Figure 24.2: Percent body fat versus height in male athletes. This figure is an improvement over Figure 24.1, but
the text elements remain too small and the figure is not balanced. Data source: Telford and Cunningham (1991)

The next figure uses the default settings I’m applying throughout this book. I think it is well
balanced, the text is clearly visible, and it fits with the overall size of the figure.

Figure 24.3: Percent body fat versus height in male athletes. All figure elements are appropriately scaled. Data
source: Telford and Cunningham (1991)

Importantly, we can overdo it and make the labels too big (Figure 24.4). Sometimes we need
big labels, for example if the figure is meant to be reduced in size, but the various elements of
the figure (in particular, label text and plot symbols) need to fit together. In Figure 24.4, the
points used to visualize the data are too small relative to the text. Once we fix this issue, the
figure becomes acceptable again (Figure 24.5).
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Don’t go 3D

Figure 26.6: Power versus displacement for 32 cars, with fuel efficiency represented by dot size. Data source:
Motor Trend, 1974.

You may wonder whether the problem with 3D scatter plots is that the actual data
representation, the dots, do not themselves convey any 3D information. What happens, for
example, if we use 3D bars instead? Figure 26.7 shows a typical dataset that one might
visualize with 3D bars, the mortality rates in 1940 Virginia stratified by age group and by
gender and housing location. We can see that indeed the 3D bars help us interpret the plot. It
is unlikely that one might mistake a bar in the foreground for one in the background or vise
versa. Nevertheless, the problems discussed in the context of Figure 26.2 exist here as well. It
is difficult to judge exactly how tall the individual bars are, and it is also difficult to make direct
comparisons. For example, was the mortality rate of urban females in the 65–69 age group
higher or lower than that of urban males in the 60–64 age group?

Figure 26.7: Mortality rates in Virginia in 1940, visualized as a 3D bar plot. Mortality rates are shown for four groups
of people (urban and rural females and males) and five age categories (50–54, 55–59, 60–64, 65–69, 70–74), and
they are reported in units of deaths per 1000 persons. This figure is labeled as “bad” because the 3D perspective
makes the plot difficult to read. Data source: Molyneaux, Gilliam, and Florant (1947)

In general, it is better to use Trellis plots (Chapter 21) instead of 3D visualizations. The Virginia
mortality dataset requires only four panels when shown as Trellis plot (Figure 26.8). I consider
this figure clear and easy to interpret. It is immediately obvious that mortality rates were

higher among men than among women, and also that urban males seem to have had higher
mortality rates than rural males whereas no such trend is apparent for urban and rural
females.

Figure 26.8: Mortality rates in Virginia in 1940, visualized as a Trellis plot. Mortality rates are shown for four groups
of people (urban and rural females and males) and five age categories (50–54, 55–59, 60–64, 65–69, 70–74), and
they are reported in units of deaths per 1000 persons. Data source: Molyneaux, Gilliam, and Florant (1947)

26.3  Appropriate use of 3D visualizations

Visualizations using 3D position scales can sometimes be appropriate, however. First, the
issues described in the preceding section are of lesser concern if the visualization is
interactive and can be rotated by the viewer, or alternatively, if it is shown in a VR or
augmented reality environment where it can be inspected from multiple angles. Second, even
if the visualization isn’t interactive, showing it slowly rotating, rather than as a static image
from one perspective, will allow the viewer to discern where in 3D space different graphical
elements reside. The human brain is very good at reconstructing a 3D scene from a series of
images taken from different angles, and the slow rotation of the graphic provides exactly
these images.
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