
10
Unsupervised Learning

Most of this book concerns supervised learning methods such as
regression and classification. In the supervised learning setting, we typically
have access to a set of p features X1, X2, . . . , Xp, measured on n obser-
vations, and a response Y also measured on those same n observations.
The goal is then to predict Y using X1, X2, . . . , Xp.
This chapter will instead focus on unsupervised learning, a set of sta-

tistical tools intended for the setting in which we have only a set of fea-
tures X1, X2, . . . , Xp measured on n observations. We are not interested
in prediction, because we do not have an associated response variable Y .
Rather, the goal is to discover interesting things about the measurements
on X1, X2, . . . , Xp. Is there an informative way to visualize the data? Can
we discover subgroups among the variables or among the observations?
Unsupervised learning refers to a diverse set of techniques for answering
questions such as these. In this chapter, we will focus on two particu-
lar types of unsupervised learning: principal components analysis, a tool
used for data visualization or data pre-processing before supervised tech-
niques are applied, and clustering, a broad class of methods for discovering
unknown subgroups in data.

10.1 The Challenge of Unsupervised Learning

Supervised learning is a well-understood area. In fact, if you have read
the preceding chapters in this book, then you should by now have a good
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374 10. Unsupervised Learning

grasp of supervised learning. For instance, if you are asked to predict a
binary outcome from a data set, you have a very well developed set of tools
at your disposal (such as logistic regression, linear discriminant analysis,
classification trees, support vector machines, and more) as well as a clear
understanding of how to assess the quality of the results obtained (using
cross-validation, validation on an independent test set, and so forth).
In contrast, unsupervised learning is often much more challenging. The

exercise tends to be more subjective, and there is no simple goal for the
analysis, such as prediction of a response. Unsupervised learning is often
performed as part of an exploratory data analysis. Furthermore, it can be

exploratory
data analysishard to assess the results obtained from unsupervised learning methods,

since there is no universally accepted mechanism for performing cross-
validation or validating results on an independent data set. The reason
for this difference is simple. If we fit a predictive model using a supervised
learning technique, then it is possible to check our work by seeing how
well our model predicts the response Y on observations not used in fitting
the model. However, in unsupervised learning, there is no way to check our
work because we don’t know the true answer—the problem is unsupervised.
Techniques for unsupervised learning are of growing importance in a

number of fields. A cancer researcher might assay gene expression levels in
100 patients with breast cancer. He or she might then look for subgroups
among the breast cancer samples, or among the genes, in order to obtain
a better understanding of the disease. An online shopping site might try
to identify groups of shoppers with similar browsing and purchase histo-
ries, as well as items that are of particular interest to the shoppers within
each group. Then an individual shopper can be preferentially shown the
items in which he or she is particularly likely to be interested, based on
the purchase histories of similar shoppers. A search engine might choose
what search results to display to a particular individual based on the click
histories of other individuals with similar search patterns. These statistical
learning tasks, and many more, can be performed via unsupervised learning
techniques.

10.2 Principal Components Analysis

Principal components are discussed in Section 6.3.1 in the context of
principal components regression. When faced with a large set of corre-
lated variables, principal components allow us to summarize this set with
a smaller number of representative variables that collectively explain most
of the variability in the original set. The principal component directions
are presented in Section 6.3.1 as directions in feature space along which
the original data are highly variable. These directions also define lines and
subspaces that are as close as possible to the data cloud. To perform
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principal components regression, we simply use principal components as
predictors in a regression model in place of the original larger set of vari-
ables.
Principal component analysis (PCA) refers to the process by which prin-

principal
component
analysis

cipal components are computed, and the subsequent use of these compo-
nents in understanding the data. PCA is an unsupervised approach, since
it involves only a set of features X1, X2, . . . , Xp, and no associated response
Y . Apart from producing derived variables for use in supervised learning
problems, PCA also serves as a tool for data visualization (visualization of
the observations or visualization of the variables). We now discuss PCA in
greater detail, focusing on the use of PCA as a tool for unsupervised data
exploration, in keeping with the topic of this chapter.

10.2.1 What Are Principal Components?

Suppose that we wish to visualize n observations with measurements on a
set of p features, X1, X2, . . . , Xp, as part of an exploratory data analysis.
We could do this by examining two-dimensional scatterplots of the data,
each of which contains the n observations’ measurements on two of the
features. However, there are

(p
2

)
= p(p−1)/2 such scatterplots; for example,

with p = 10 there are 45 plots! If p is large, then it will certainly not be
possible to look at all of them; moreover, most likely none of them will
be informative since they each contain just a small fraction of the total
information present in the data set. Clearly, a better method is required to
visualize the n observations when p is large. In particular, we would like to
find a low-dimensional representation of the data that captures as much of
the information as possible. For instance, if we can obtain a two-dimensional
representation of the data that captures most of the information, then we
can plot the observations in this low-dimensional space.
PCA provides a tool to do just this. It finds a low-dimensional represen-

tation of a data set that contains as much as possible of the variation. The
idea is that each of the n observations lives in p-dimensional space, but not
all of these dimensions are equally interesting. PCA seeks a small number
of dimensions that are as interesting as possible, where the concept of in-
teresting is measured by the amount that the observations vary along each
dimension. Each of the dimensions found by PCA is a linear combination
of the p features. We now explain the manner in which these dimensions,
or principal components, are found.
The first principal component of a set of features X1, X2, . . . , Xp is the

normalized linear combination of the features

Z1 = φ11X1 + φ21X2 + . . .+ φp1Xp (10.1)

that has the largest variance. By normalized, we mean that
∑p

j=1 φ
2
j1 = 1.

We refer to the elements φ11, . . . ,φp1 as the loadings of the first principal
loading
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component; together, the loadings make up the principal component load-
ing vector, φ1 = (φ11 φ21 . . . φp1)T . We constrain the loadings so that
their sum of squares is equal to one, since otherwise setting these elements
to be arbitrarily large in absolute value could result in an arbitrarily large
variance.
Given a n × p data set X, how do we compute the first principal com-

ponent? Since we are only interested in variance, we assume that each of
the variables in X has been centered to have mean zero (that is, the col-
umn means of X are zero). We then look for the linear combination of the
sample feature values of the form

zi1 = φ11xi1 + φ21xi2 + . . .+ φp1xip (10.2)

that has largest sample variance, subject to the constraint that
∑p

j=1 φ
2
j1=1.

In other words, the first principal component loading vector solves the op-
timization problem

maximize
φ11,...,φp1

⎧
⎪⎨

⎪⎩
1

n

n∑

i=1

⎛

⎝
p∑

j=1

φj1xij

⎞

⎠
2
⎫
⎪⎬

⎪⎭
subject to

p∑

j=1

φ2
j1 = 1. (10.3)

From (10.2) we can write the objective in (10.3) as 1
n

∑n
i=1 z

2
i1. Since

1
n

∑n
i=1 xij = 0, the average of the z11, . . . , zn1 will be zero as well. Hence

the objective that we are maximizing in (10.3) is just the sample variance of
the n values of zi1. We refer to z11, . . . , zn1 as the scores of the first princi- score
pal component. Problem (10.3) can be solved via an eigen decomposition,
a standard technique in linear algebra, but details are outside of the scope
of this book.
There is a nice geometric interpretation for the first principal component.

The loading vector φ1 with elements φ11,φ21, . . . ,φp1 defines a direction in
feature space along which the data vary the most. If we project the n data
points x1, . . . , xn onto this direction, the projected values are the princi-
pal component scores z11, . . . , zn1 themselves. For instance, Figure 6.14 on
page 230 displays the first principal component loading vector (green solid
line) on an advertising data set. In these data, there are only two features,
and so the observations as well as the first principal component loading
vector can be easily displayed. As can be seen from (6.19), in that data set
φ11 = 0.839 and φ21 = 0.544.
After the first principal component Z1 of the features has been deter-

mined, we can find the second principal component Z2. The second prin-
cipal component is the linear combination of X1, . . . , Xp that has maximal
variance out of all linear combinations that are uncorrelated with Z1. The
second principal component scores z12, z22, . . . , zn2 take the form

zi2 = φ12xi1 + φ22xi2 + . . .+ φp2xip, (10.4)
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PC1 PC2
Murder 0.5358995 −0.4181809
Assault 0.5831836 −0.1879856
UrbanPop 0.2781909 0.8728062
Rape 0.5434321 0.1673186

TABLE 10.1. The principal component loading vectors, φ1 and φ2, for the
USArrests data. These are also displayed in Figure 10.1.

where φ2 is the second principal component loading vector, with elements
φ12,φ22, . . . ,φp2. It turns out that constraining Z2 to be uncorrelated with
Z1 is equivalent to constraining the direction φ2 to be orthogonal (perpen-
dicular) to the direction φ1. In the example in Figure 6.14, the observations
lie in two-dimensional space (since p = 2), and so once we have found φ1,
there is only one possibility for φ2, which is shown as a blue dashed line.
(From Section 6.3.1, we know that φ12 = 0.544 and φ22 = −0.839.) But in
a larger data set with p > 2 variables, there are multiple distinct principal
components, and they are defined in a similar manner. To find φ2, we solve
a problem similar to (10.3) with φ2 replacing φ1, and with the additional
constraint that φ2 is orthogonal to φ1.1

Once we have computed the principal components, we can plot them
against each other in order to produce low-dimensional views of the data.
For instance, we can plot the score vector Z1 against Z2, Z1 against Z3,
Z2 against Z3, and so forth. Geometrically, this amounts to projecting
the original data down onto the subspace spanned by φ1, φ2, and φ3, and
plotting the projected points.
We illustrate the use of PCA on the USArrests data set. For each of the

50 states in the United States, the data set contains the number of arrests
per 100, 000 residents for each of three crimes: Assault, Murder, and Rape.
We also record UrbanPop (the percent of the population in each state living
in urban areas). The principal component score vectors have length n = 50,
and the principal component loading vectors have length p = 4. PCA was
performed after standardizing each variable to have mean zero and standard
deviation one. Figure 10.1 plots the first two principal components of these
data. The figure represents both the principal component scores and the
loading vectors in a single biplot display. The loadings are also given in

biplot
Table 10.1.
In Figure 10.1, we see that the first loading vector places approximately

equal weight on Assault, Murder, and Rape, with much less weight on

1On a technical note, the principal component directions φ1, φ2, φ3, . . . are the
ordered sequence of eigenvectors of the matrix XTX, and the variances of the compo-
nents are the eigenvalues. There are at most min(n− 1, p) principal components.
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FIGURE 10.1. The first two principal components for the USArrests data. The
blue state names represent the scores for the first two principal components. The
orange arrows indicate the first two principal component loading vectors (with
axes on the top and right). For example, the loading for Rape on the first com-
ponent is 0.54, and its loading on the second principal component 0.17 (the word
Rape is centered at the point (0.54, 0.17)). This figure is known as a biplot, be-
cause it displays both the principal component scores and the principal component
loadings.

UrbanPop. Hence this component roughly corresponds to a measure of overall
rates of serious crimes. The second loading vector places most of its weight
on UrbanPop and much less weight on the other three features. Hence, this
component roughly corresponds to the level of urbanization of the state.
Overall, we see that the crime-related variables (Murder, Assault, and Rape)
are located close to each other, and that the UrbanPop variable is far from
the other three. This indicates that the crime-related variables are corre-
lated with each other—states with high murder rates tend to have high
assault and rape rates—and that the UrbanPop variable is less correlated
with the other three.
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We can examine differences between the states via the two principal com-
ponent score vectors shown in Figure 10.1. Our discussion of the loading
vectors suggests that states with large positive scores on the first compo-
nent, such as California, Nevada and Florida, have high crime rates, while
states like North Dakota, with negative scores on the first component, have
low crime rates. California also has a high score on the second component,
indicating a high level of urbanization, while the opposite is true for states
like Mississippi. States close to zero on both components, such as Indiana,
have approximately average levels of both crime and urbanization.

10.2.2 Another Interpretation of Principal Components

The first two principal component loading vectors in a simulated three-
dimensional data set are shown in the left-hand panel of Figure 10.2; these
two loading vectors span a plane along which the observations have the
highest variance.
In the previous section, we describe the principal component loading vec-

tors as the directions in feature space along which the data vary the most,
and the principal component scores as projections along these directions.
However, an alternative interpretation for principal components can also be
useful: principal components provide low-dimensional linear surfaces that
are closest to the observations. We expand upon that interpretation here.
The first principal component loading vector has a very special property:

it is the line in p-dimensional space that is closest to the n observations
(using average squared Euclidean distance as a measure of closeness). This
interpretation can be seen in the left-hand panel of Figure 6.15; the dashed
lines indicate the distance between each observation and the first principal
component loading vector. The appeal of this interpretation is clear: we
seek a single dimension of the data that lies as close as possible to all of
the data points, since such a line will likely provide a good summary of the
data.
The notion of principal components as the dimensions that are clos-

est to the n observations extends beyond just the first principal com-
ponent. For instance, the first two principal components of a data set
span the plane that is closest to the n observations, in terms of average
squared Euclidean distance. An example is shown in the left-hand panel
of Figure 10.2. The first three principal components of a data set span
the three-dimensional hyperplane that is closest to the n observations, and
so forth.
Using this interpretation, together the first M principal component score

vectors and the first M principal component loading vectors provide the
best M -dimensional approximation (in terms of Euclidean distance) to
the ith observation xij . This representation can be written
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FIGURE 10.2. Ninety observations simulated in three dimensions. Left: the
first two principal component directions span the plane that best fits the data. It
minimizes the sum of squared distances from each point to the plane. Right: the
first two principal component score vectors give the coordinates of the projection
of the 90 observations onto the plane. The variance in the plane is maximized.

xij ≈
M∑

m=1

zimφjm (10.5)

(assuming the original data matrix X is column-centered). In other words,
together the M principal component score vectors and M principal com-
ponent loading vectors can give a good approximation to the data when
M is sufficiently large. When M = min(n − 1, p), then the representation
is exact: xij =

∑M
m=1 zimφjm.

10.2.3 More on PCA

Scaling the Variables

We have already mentioned that before PCA is performed, the variables
should be centered to have mean zero. Furthermore, the results obtained
when we perform PCA will also depend on whether the variables have been
individually scaled (each multiplied by a different constant). This is in
contrast to some other supervised and unsupervised learning techniques,
such as linear regression, in which scaling the variables has no effect. (In
linear regression, multiplying a variable by a factor of c will simply lead to
multiplication of the corresponding coefficient estimate by a factor of 1/c,
and thus will have no substantive effect on the model obtained.)
For instance, Figure 10.1 was obtained after scaling each of the variables

to have standard deviation one. This is reproduced in the left-hand plot in
Figure 10.3. Why does it matter that we scaled the variables? In these data,
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FIGURE 10.3. Two principal component biplots for the USArrests data. Left:
the same as Figure 10.1, with the variables scaled to have unit standard deviations.
Right: principal components using unscaled data. Assault has by far the largest
loading on the first principal component because it has the highest variance among
the four variables. In general, scaling the variables to have standard deviation one
is recommended.

the variables are measured in different units; Murder, Rape, and Assault are
reported as the number of occurrences per 100, 000 people, and UrbanPop

is the percentage of the state’s population that lives in an urban area.
These four variables have variance 18.97, 87.73, 6945.16, and 209.5, respec-
tively. Consequently, if we perform PCA on the unscaled variables, then
the first principal component loading vector will have a very large loading
for Assault, since that variable has by far the highest variance. The right-
hand plot in Figure 10.3 displays the first two principal components for the
USArrests data set, without scaling the variables to have standard devia-
tion one. As predicted, the first principal component loading vector places
almost all of its weight on Assault, while the second principal component
loading vector places almost all of its weight on UrpanPop. Comparing this
to the left-hand plot, we see that scaling does indeed have a substantial
effect on the results obtained.
However, this result is simply a consequence of the scales on which the

variables were measured. For instance, if Assault were measured in units
of the number of occurrences per 100 people (rather than number of oc-
currences per 100, 000 people), then this would amount to dividing all of
the elements of that variable by 1, 000. Then the variance of the variable
would be tiny, and so the first principal component loading vector would
have a very small value for that variable. Because it is undesirable for the
principal components obtained to depend on an arbitrary choice of scaling,
we typically scale each variable to have standard deviation one before we
perform PCA.
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In certain settings, however, the variables may be measured in the same
units. In this case, we might not wish to scale the variables to have stan-
dard deviation one before performing PCA. For instance, suppose that the
variables in a given data set correspond to expression levels for p genes.
Then since expression is measured in the same “units” for each gene, we
might choose not to scale the genes to each have standard deviation one.

Uniqueness of the Principal Components

Each principal component loading vector is unique, up to a sign flip. This
means that two different software packages will yield the same principal
component loading vectors, although the signs of those loading vectors
may differ. The signs may differ because each principal component loading
vector specifies a direction in p-dimensional space: flipping the sign has no
effect as the direction does not change. (Consider Figure 6.14—the principal
component loading vector is a line that extends in either direction, and
flipping its sign would have no effect.) Similarly, the score vectors are unique
up to a sign flip, since the variance of Z is the same as the variance of −Z.
It is worth noting that when we use (10.5) to approximate xij we multiply
zim by φjm. Hence, if the sign is flipped on both the loading and score
vectors, the final product of the two quantities is unchanged.

The Proportion of Variance Explained

In Figure 10.2, we performed PCA on a three-dimensional data set (left-
hand panel) and projected the data onto the first two principal component
loading vectors in order to obtain a two-dimensional view of the data (i.e.
the principal component score vectors; right-hand panel). We see that this
two-dimensional representation of the three-dimensional data does success-
fully capture the major pattern in the data: the orange, green, and cyan
observations that are near each other in three-dimensional space remain
nearby in the two-dimensional representation. Similarly, we have seen on
the USArrests data set that we can summarize the 50 observations and 4
variables using just the first two principal component score vectors and the
first two principal component loading vectors.
We can now ask a natural question: how much of the information in

a given data set is lost by projecting the observations onto the first few
principal components? That is, how much of the variance in the data is not
contained in the first few principal components? More generally, we are
interested in knowing the proportion of variance explained (PVE) by each

proportion
of variance
explained

principal component. The total variance present in a data set (assuming
that the variables have been centered to have mean zero) is defined as

p∑

j=1

Var(Xj) =
p∑

j=1

1

n

n∑

i=1

x2
ij , (10.6)
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FIGURE 10.4. Left: a scree plot depicting the proportion of variance explained
by each of the four principal components in the USArrests data. Right: the cu-
mulative proportion of variance explained by the four principal components in the
USArrests data.

and the variance explained by the mth principal component is

1

n

n∑

i=1

z2im =
1

n

n∑

i=1

⎛

⎝
p∑

j=1

φjmxij

⎞

⎠
2

. (10.7)

Therefore, the PVE of the mth principal component is given by

∑n
i=1

(∑p
j=1 φjmxij

)2

∑p
j=1

∑n
i=1 x

2
ij

. (10.8)

The PVE of each principal component is a positive quantity. In order to
compute the cumulative PVE of the first M principal components, we
can simply sum (10.8) over each of the first M PVEs. In total, there are
min(n− 1, p) principal components, and their PVEs sum to one.
In the USArrests data, the first principal component explains 62.0% of

the variance in the data, and the next principal component explains 24.7%
of the variance. Together, the first two principal components explain almost
87% of the variance in the data, and the last two principal components
explain only 13% of the variance. This means that Figure 10.1 provides a
pretty accurate summary of the data using just two dimensions. The PVE
of each principal component, as well as the cumulative PVE, is shown
in Figure 10.4. The left-hand panel is known as a scree plot, and will be

scree plot
discussed next.

Deciding How Many Principal Components to Use

In general, a n × p data matrix X has min(n − 1, p) distinct principal
components. However, we usually are not interested in all of them; rather,
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we would like to use just the first few principal components in order to
visualize or interpret the data. In fact, we would like to use the smallest
number of principal components required to get a good understanding of the
data. How many principal components are needed? Unfortunately, there is
no single (or simple!) answer to this question.
We typically decide on the number of principal components required

to visualize the data by examining a scree plot, such as the one shown
in the left-hand panel of Figure 10.4. We choose the smallest number of
principal components that are required in order to explain a sizable amount
of the variation in the data. This is done by eyeballing the scree plot, and
looking for a point at which the proportion of variance explained by each
subsequent principal component drops off. This is often referred to as an
elbow in the scree plot. For instance, by inspection of Figure 10.4, one
might conclude that a fair amount of variance is explained by the first
two principal components, and that there is an elbow after the second
component. After all, the third principal component explains less than ten
percent of the variance in the data, and the fourth principal component
explains less than half that and so is essentially worthless.
However, this type of visual analysis is inherently ad hoc. Unfortunately,

there is no well-accepted objective way to decide how many principal com-
ponents are enough. In fact, the question of how many principal compo-
nents are enough is inherently ill-defined, and will depend on the specific
area of application and the specific data set. In practice, we tend to look
at the first few principal components in order to find interesting patterns
in the data. If no interesting patterns are found in the first few principal
components, then further principal components are unlikely to be of inter-
est. Conversely, if the first few principal components are interesting, then
we typically continue to look at subsequent principal components until no
further interesting patterns are found. This is admittedly a subjective ap-
proach, and is reflective of the fact that PCA is generally used as a tool for
exploratory data analysis.
On the other hand, if we compute principal components for use in a

supervised analysis, such as the principal components regression presented
in Section 6.3.1, then there is a simple and objective way to determine how
many principal components to use: we can treat the number of principal
component score vectors to be used in the regression as a tuning parameter
to be selected via cross-validation or a related approach. The comparative
simplicity of selecting the number of principal components for a supervised
analysis is one manifestation of the fact that supervised analyses tend to
be more clearly defined and more objectively evaluated than unsupervised
analyses.
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10.2.4 Other Uses for Principal Components

We saw in Section 6.3.1 that we can perform regression using the principal
component score vectors as features. In fact, many statistical techniques,
such as regression, classification, and clustering, can be easily adapted to
use the n ×M matrix whose columns are the first M ≪ p principal com-
ponent score vectors, rather than using the full n × p data matrix. This
can lead to less noisy results, since it is often the case that the signal (as
opposed to the noise) in a data set is concentrated in its first few principal
components.

10.3 Clustering Methods

Clustering refers to a very broad set of techniques for finding subgroups, or
clustering

clusters, in a data set. When we cluster the observations of a data set, we
seek to partition them into distinct groups so that the observations within
each group are quite similar to each other, while observations in different
groups are quite different from each other. Of course, to make this concrete,
we must define what it means for two or more observations to be similar
or different. Indeed, this is often a domain-specific consideration that must
be made based on knowledge of the data being studied.
For instance, suppose that we have a set of n observations, each with p

features. The n observations could correspond to tissue samples for patients
with breast cancer, and the p features could correspond to measurements
collected for each tissue sample; these could be clinical measurements, such
as tumor stage or grade, or they could be gene expression measurements.
We may have a reason to believe that there is some heterogeneity among
the n tissue samples; for instance, perhaps there are a few different un-
known subtypes of breast cancer. Clustering could be used to find these
subgroups. This is an unsupervised problem because we are trying to dis-
cover structure—in this case, distinct clusters—on the basis of a data set.
The goal in supervised problems, on the other hand, is to try to predict
some outcome vector such as survival time or response to drug treatment.
Both clustering and PCA seek to simplify the data via a small number

of summaries, but their mechanisms are different:

• PCA looks to find a low-dimensional representation of the observa-
tions that explain a good fraction of the variance;

• Clustering looks to find homogeneous subgroups among the observa-
tions.

Another application of clustering arises in marketing. We may have ac-
cess to a large number of measurements (e.g. median household income,
occupation, distance from nearest urban area, and so forth) for a large
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number of people. Our goal is to perform market segmentation by identify-
ing subgroups of people who might be more receptive to a particular form
of advertising, or more likely to purchase a particular product. The task of
performing market segmentation amounts to clustering the people in the
data set.
Since clustering is popular in many fields, there exist a great number of

clustering methods. In this section we focus on perhaps the two best-known
clustering approaches: K-means clustering and hierarchical clustering. In

K-means
clustering

hierarchical
clustering

K-means clustering, we seek to partition the observations into a pre-specified
number of clusters. On the other hand, in hierarchical clustering, we do
not know in advance how many clusters we want; in fact, we end up with
a tree-like visual representation of the observations, called a dendrogram,

dendrogram
that allows us to view at once the clusterings obtained for each possible
number of clusters, from 1 to n. There are advantages and disadvantages
to each of these clustering approaches, which we highlight in this chapter.
In general, we can cluster observations on the basis of the features in

order to identify subgroups among the observations, or we can cluster fea-
tures on the basis of the observations in order to discover subgroups among
the features. In what follows, for simplicity we will discuss clustering obser-
vations on the basis of the features, though the converse can be performed
by simply transposing the data matrix.

10.3.1 K-Means Clustering

K-means clustering is a simple and elegant approach for partitioning a
data set into K distinct, non-overlapping clusters. To perform K-means
clustering, we must first specify the desired number of clusters K; then the
K-means algorithm will assign each observation to exactly one of the K
clusters. Figure 10.5 shows the results obtained from performing K-means
clustering on a simulated example consisting of 150 observations in two
dimensions, using three different values of K.
The K-means clustering procedure results from a simple and intuitive

mathematical problem.We begin by defining some notation. LetC1, . . . , CK

denote sets containing the indices of the observations in each cluster. These
sets satisfy two properties:

1. C1 ∪ C2 ∪ . . . ∪ CK = {1, . . . , n}. In other words, each observation
belongs to at least one of the K clusters.

2. Ck ∩ Ck′ = ∅ for all k ̸= k′. In other words, the clusters are non-
overlapping: no observation belongs to more than one cluster.

For instance, if the ith observation is in the kth cluster, then i ∈ Ck. The
idea behindK-means clustering is that a good clustering is one for which the
within-cluster variation is as small as possible. The within-cluster variation
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K=2 K=3 K=4

FIGURE 10.5. A simulated data set with 150 observations in two-dimensional
space. Panels show the results of applying K-means clustering with different val-
ues of K, the number of clusters. The color of each observation indicates the clus-
ter to which it was assigned using the K-means clustering algorithm. Note that
there is no ordering of the clusters, so the cluster coloring is arbitrary. These
cluster labels were not used in clustering; instead, they are the outputs of the
clustering procedure.

for cluster Ck is a measure W (Ck) of the amount by which the observations
within a cluster differ from each other. Hence we want to solve the problem

minimize
C1,...,CK

{
K∑

k=1

W (Ck)

}
. (10.9)

In words, this formula says that we want to partition the observations into
K clusters such that the total within-cluster variation, summed over all K
clusters, is as small as possible.
Solving (10.9) seems like a reasonable idea, but in order to make it

actionable we need to define the within-cluster variation. There are many
possible ways to define this concept, but by far the most common choice
involves squared Euclidean distance. That is, we define

W (Ck) =
1

|Ck|
∑

i,i′∈Ck

p∑

j=1

(xij − xi′j)
2, (10.10)

where |Ck| denotes the number of observations in the kth cluster. In other
words, the within-cluster variation for the kth cluster is the sum of all of
the pairwise squared Euclidean distances between the observations in the
kth cluster, divided by the total number of observations in the kth cluster.
Combining (10.9) and (10.10) gives the optimization problem that defines
K-means clustering,

minimize
C1,...,CK

⎧
⎨

⎩

K∑

k=1

1

|Ck|
∑

i,i′∈Ck

p∑

j=1

(xij − xi′j)
2

⎫
⎬

⎭ . (10.11)
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Now, we would like to find an algorithm to solve (10.11)—that is, a
method to partition the observations intoK clusters such that the objective
of (10.11) is minimized. This is in fact a very difficult problem to solve
precisely, since there are almostKn ways to partition n observations into K
clusters. This is a huge number unless K and n are tiny! Fortunately, a very
simple algorithm can be shown to provide a local optimum—a pretty good
solution—to the K-means optimization problem (10.11). This approach is
laid out in Algorithm 10.1.

Algorithm 10.1 K-Means Clustering

1. Randomly assign a number, from 1 to K, to each of the observations.
These serve as initial cluster assignments for the observations.

2. Iterate until the cluster assignments stop changing:

(a) For each of the K clusters, compute the cluster centroid. The
kth cluster centroid is the vector of the p feature means for the
observations in the kth cluster.

(b) Assign each observation to the cluster whose centroid is closest
(where closest is defined using Euclidean distance).

Algorithm 10.1 is guaranteed to decrease the value of the objective
(10.11) at each step. To understand why, the following identity is illu-
minating:

1

|Ck|
∑

i,i′∈Ck

p∑

j=1

(xij − xi′j)
2 = 2

∑

i∈Ck

p∑

j=1

(xij − x̄kj)
2, (10.12)

where x̄kj = 1
|Ck|

∑
i∈Ck

xij is the mean for feature j in cluster Ck.

In Step 2(a) the cluster means for each feature are the constants that
minimize the sum-of-squared deviations, and in Step 2(b), reallocating the
observations can only improve (10.12). This means that as the algorithm
is run, the clustering obtained will continually improve until the result no
longer changes; the objective of (10.11) will never increase. When the result
no longer changes, a local optimum has been reached. Figure 10.6 shows
the progression of the algorithm on the toy example from Figure 10.5.
K-means clustering derives its name from the fact that in Step 2(a), the
cluster centroids are computed as the mean of the observations assigned to
each cluster.
Because the K-means algorithm finds a local rather than a global opti-

mum, the results obtained will depend on the initial (random) cluster as-
signment of each observation in Step 1 of Algorithm 10.1. For this reason,
it is important to run the algorithm multiple times from different random
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Data Step 1 Iteration 1, Step 2a

Iteration 1, Step 2b Iteration 2, Step 2a Final Results

FIGURE 10.6. The progress of the K-means algorithm on the example of Fig-
ure 10.5 with K=3. Top left: the observations are shown. Top center: in Step 1
of the algorithm, each observation is randomly assigned to a cluster. Top right:
in Step 2(a), the cluster centroids are computed. These are shown as large col-
ored disks. Initially the centroids are almost completely overlapping because the
initial cluster assignments were chosen at random. Bottom left: in Step 2(b),
each observation is assigned to the nearest centroid. Bottom center: Step 2(a) is
once again performed, leading to new cluster centroids. Bottom right: the results
obtained after ten iterations.

initial configurations. Then one selects the best solution, i.e. that for which
the objective (10.11) is smallest. Figure 10.7 shows the local optima ob-
tained by running K-means clustering six times using six different initial
cluster assignments, using the toy data from Figure 10.5. In this case, the
best clustering is the one with an objective value of 235.8.
As we have seen, to perform K-means clustering, we must decide how

many clusters we expect in the data. The problem of selecting K is far from
simple. This issue, along with other practical considerations that arise in
performing K-means clustering, is addressed in Section 10.3.3.
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320.9 235.8 235.8

235.8 235.8 310.9

FIGURE 10.7. K-means clustering performed six times on the data from Fig-
ure 10.5 with K = 3, each time with a different random assignment of the ob-
servations in Step 1 of the K-means algorithm. Above each plot is the value of
the objective (10.11). Three different local optima were obtained, one of which
resulted in a smaller value of the objective and provides better separation between
the clusters. Those labeled in red all achieved the same best solution, with an
objective value of 235.8.

10.3.2 Hierarchical Clustering

One potential disadvantage of K-means clustering is that it requires us to
pre-specify the number of clusters K. Hierarchical clustering is an alter-
native approach which does not require that we commit to a particular
choice of K. Hierarchical clustering has an added advantage over K-means
clustering in that it results in an attractive tree-based representation of the
observations, called a dendrogram.
In this section, we describe bottom-up or agglomerative clustering.

bottom-up

agglomerative
This is the most common type of hierarchical clustering, and refers to
the fact that a dendrogram (generally depicted as an upside-down tree; see
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FIGURE 10.8. Forty-five observations generated in two-dimensional space. In
reality there are three distinct classes, shown in separate colors. However, we will
treat these class labels as unknown and will seek to cluster the observations in
order to discover the classes from the data.

Figure 10.9) is built starting from the leaves and combining clusters up to
the trunk. We will begin with a discussion of how to interpret a dendrogram
and then discuss how hierarchical clustering is actually performed—that is,
how the dendrogram is built.

Interpreting a Dendrogram

We begin with the simulated data set shown in Figure 10.8, consisting of
45 observations in two-dimensional space. The data were generated from a
three-class model; the true class labels for each observation are shown in
distinct colors. However, suppose that the data were observed without the
class labels, and that we wanted to perform hierarchical clustering of the
data. Hierarchical clustering (with complete linkage, to be discussed later)
yields the result shown in the left-hand panel of Figure 10.9. How can we
interpret this dendrogram?
In the left-hand panel of Figure 10.9, each leaf of the dendrogram rep-

resents one of the 45 observations in Figure 10.8. However, as we move
up the tree, some leaves begin to fuse into branches. These correspond to
observations that are similar to each other. As we move higher up the tree,
branches themselves fuse, either with leaves or other branches. The earlier
(lower in the tree) fusions occur, the more similar the groups of observa-
tions are to each other. On the other hand, observations that fuse later
(near the top of the tree) can be quite different. In fact, this statement
can be made precise: for any two observations, we can look for the point in
the tree where branches containing those two observations are first fused.
The height of this fusion, as measured on the vertical axis, indicates how



392 10. Unsupervised Learning

0
2

4
6

8
10

0
2

4
6

8
10

0
2

4
6

8
10

FIGURE 10.9. Left: dendrogram obtained from hierarchically clustering the data
from Figure 10.8 with complete linkage and Euclidean distance. Center: the den-
drogram from the left-hand panel, cut at a height of nine (indicated by the dashed
line). This cut results in two distinct clusters, shown in different colors. Right:
the dendrogram from the left-hand panel, now cut at a height of five. This cut
results in three distinct clusters, shown in different colors. Note that the colors
were not used in clustering, but are simply used for display purposes in this figure.

different the two observations are. Thus, observations that fuse at the very
bottom of the tree are quite similar to each other, whereas observations
that fuse close to the top of the tree will tend to be quite different.
This highlights a very important point in interpreting dendrograms that

is often misunderstood. Consider the left-hand panel of Figure 10.10, which
shows a simple dendrogram obtained from hierarchically clustering nine
observations. One can see that observations 5 and 7 are quite similar to
each other, since they fuse at the lowest point on the dendrogram. Obser-
vations 1 and 6 are also quite similar to each other. However, it is tempting
but incorrect to conclude from the figure that observations 9 and 2 are
quite similar to each other on the basis that they are located near each
other on the dendrogram. In fact, based on the information contained in
the dendrogram, observation 9 is no more similar to observation 2 than it
is to observations 8, 5, and 7. (This can be seen from the right-hand panel
of Figure 10.10, in which the raw data are displayed.) To put it mathe-
matically, there are 2n−1 possible reorderings of the dendrogram, where n
is the number of leaves. This is because at each of the n− 1 points where
fusions occur, the positions of the two fused branches could be swapped
without affecting the meaning of the dendrogram. Therefore, we cannot
draw conclusions about the similarity of two observations based on their
proximity along the horizontal axis. Rather, we draw conclusions about
the similarity of two observations based on the location on the vertical axis
where branches containing those two observations first are fused.
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FIGURE 10.10. An illustration of how to properly interpret a dendrogram with
nine observations in two-dimensional space. Left: a dendrogram generated using
Euclidean distance and complete linkage. Observations 5 and 7 are quite similar
to each other, as are observations 1 and 6. However, observation 9 is no more
similar to observation 2 than it is to observations 8, 5, and 7, even though obser-
vations 9 and 2 are close together in terms of horizontal distance. This is because
observations 2, 8, 5, and 7 all fuse with observation 9 at the same height, approx-
imately 1.8. Right: the raw data used to generate the dendrogram can be used to
confirm that indeed, observation 9 is no more similar to observation 2 than it is
to observations 8, 5, and 7.

Now that we understand how to interpret the left-hand panel of Fig-
ure 10.9, we can move on to the issue of identifying clusters on the basis
of a dendrogram. In order to do this, we make a horizontal cut across the
dendrogram, as shown in the center and right-hand panels of Figure 10.9.
The distinct sets of observations beneath the cut can be interpreted as clus-
ters. In the center panel of Figure 10.9, cutting the dendrogram at a height
of nine results in two clusters, shown in distinct colors. In the right-hand
panel, cutting the dendrogram at a height of five results in three clusters.
Further cuts can be made as one descends the dendrogram in order to ob-
tain any number of clusters, between 1 (corresponding to no cut) and n
(corresponding to a cut at height 0, so that each observation is in its own
cluster). In other words, the height of the cut to the dendrogram serves
the same role as the K in K-means clustering: it controls the number of
clusters obtained.
Figure 10.9 therefore highlights a very attractive aspect of hierarchical

clustering: one single dendrogram can be used to obtain any number of
clusters. In practice, people often look at the dendrogram and select by eye
a sensible number of clusters, based on the heights of the fusion and the
number of clusters desired. In the case of Figure 10.9, one might choose to
select either two or three clusters. However, often the choice of where to
cut the dendrogram is not so clear.
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The term hierarchical refers to the fact that clusters obtained by cutting
the dendrogram at a given height are necessarily nested within the clusters
obtained by cutting the dendrogram at any greater height. However, on
an arbitrary data set, this assumption of hierarchical structure might be
unrealistic. For instance, suppose that our observations correspond to a
group of people with a 50–50 split of males and females, evenly split among
Americans, Japanese, and French. We can imagine a scenario in which the
best division into two groups might split these people by gender, and the
best division into three groups might split them by nationality. In this case,
the true clusters are not nested, in the sense that the best division into three
groups does not result from taking the best division into two groups and
splitting up one of those groups. Consequently, this situation could not be
well-represented by hierarchical clustering. Due to situations such as this
one, hierarchical clustering can sometimes yield worse (i.e. less accurate)
results than K-means clustering for a given number of clusters.

The Hierarchical Clustering Algorithm

The hierarchical clustering dendrogram is obtained via an extremely simple
algorithm. We begin by defining some sort of dissimilarity measure between
each pair of observations. Most often, Euclidean distance is used; we will
discuss the choice of dissimilarity measure later in this chapter. The algo-
rithm proceeds iteratively. Starting out at the bottom of the dendrogram,
each of the n observations is treated as its own cluster. The two clusters
that are most similar to each other are then fused so that there now are
n−1 clusters. Next the two clusters that are most similar to each other are
fused again, so that there now are n − 2 clusters. The algorithm proceeds
in this fashion until all of the observations belong to one single cluster, and
the dendrogram is complete. Figure 10.11 depicts the first few steps of the
algorithm, for the data from Figure 10.9. To summarize, the hierarchical
clustering algorithm is given in Algorithm 10.2.

This algorithm seems simple enough, but one issue has not been ad-
dressed. Consider the bottom right panel in Figure 10.11. How did we
determine that the cluster {5, 7} should be fused with the cluster {8}?
We have a concept of the dissimilarity between pairs of observations, but
how do we define the dissimilarity between two clusters if one or both of
the clusters contains multiple observations? The concept of dissimilarity
between a pair of observations needs to be extended to a pair of groups
of observations. This extension is achieved by developing the notion of
linkage, which defines the dissimilarity between two groups of observa-

linkage
tions. The four most common types of linkage—complete, average, single,
and centroid—are briefly described in Table 10.2. Average, complete, and
single linkage are most popular among statisticians. Average and complete
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Algorithm 10.2 Hierarchical Clustering

1. Begin with n observations and a measure (such as Euclidean dis-
tance) of all the

(n
2

)
= n(n− 1)/2 pairwise dissimilarities. Treat each

observation as its own cluster.

2. For i = n, n− 1, . . . , 2:

(a) Examine all pairwise inter-cluster dissimilarities among the i
clusters and identify the pair of clusters that are least dissimilar
(that is, most similar). Fuse these two clusters. The dissimilarity
between these two clusters indicates the height in the dendro-
gram at which the fusion should be placed.

(b) Compute the new pairwise inter-cluster dissimilarities among
the i− 1 remaining clusters.

Linkage Description

Complete

Maximal intercluster dissimilarity. Compute all pairwise dis-
similarities between the observations in cluster A and the
observations in cluster B, and record the largest of these
dissimilarities.

Single

Minimal intercluster dissimilarity. Compute all pairwise dis-
similarities between the observations in cluster A and the
observations in cluster B, and record the smallest of these
dissimilarities. Single linkage can result in extended, trailing
clusters in which single observations are fused one-at-a-time.

Average

Mean intercluster dissimilarity. Compute all pairwise dis-
similarities between the observations in cluster A and the
observations in cluster B, and record the average of these
dissimilarities.

Centroid
Dissimilarity between the centroid for cluster A (a mean
vector of length p) and the centroid for cluster B. Centroid
linkage can result in undesirable inversions.

TABLE 10.2. A summary of the four most commonly-used types of linkage in
hierarchical clustering.

linkage are generally preferred over single linkage, as they tend to yield
more balanced dendrograms. Centroid linkage is often used in genomics,
but suffers from a major drawback in that an inversion can occur, whereby

inversion
two clusters are fused at a height below either of the individual clusters in
the dendrogram. This can lead to difficulties in visualization as well as in in-
terpretation of the dendrogram. The dissimilarities computed in Step 2(b)
of the hierarchical clustering algorithm will depend on the type of linkage
used, as well as on the choice of dissimilarity measure. Hence, the resulting
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FIGURE 10.11. An illustration of the first few steps of the hierarchical
clustering algorithm, using the data from Figure 10.10, with complete linkage
and Euclidean distance. Top Left: initially, there are nine distinct clusters,
{1}, {2}, . . . , {9}. Top Right: the two clusters that are closest together, {5} and
{7}, are fused into a single cluster. Bottom Left: the two clusters that are closest
together, {6} and {1}, are fused into a single cluster. Bottom Right: the two clus-
ters that are closest together using complete linkage, {8} and the cluster {5, 7},
are fused into a single cluster.

dendrogram typically depends quite strongly on the type of linkage used,
as is shown in Figure 10.12.

Choice of Dissimilarity Measure

Thus far, the examples in this chapter have used Euclidean distance as the
dissimilarity measure. But sometimes other dissimilarity measures might
be preferred. For example, correlation-based distance considers two obser-
vations to be similar if their features are highly correlated, even though the
observed values may be far apart in terms of Euclidean distance. This is
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Average Linkage Complete Linkage Single Linkage

FIGURE 10.12. Average, complete, and single linkage applied to an example
data set. Average and complete linkage tend to yield more balanced clusters.

an unusual use of correlation, which is normally computed between vari-
ables; here it is computed between the observation profiles for each pair
of observations. Figure 10.13 illustrates the difference between Euclidean
and correlation-based distance. Correlation-based distance focuses on the
shapes of observation profiles rather than their magnitudes.
The choice of dissimilarity measure is very important, as it has a strong

effect on the resulting dendrogram. In general, careful attention should be
paid to the type of data being clustered and the scientific question at hand.
These considerations should determine what type of dissimilarity measure
is used for hierarchical clustering.
For instance, consider an online retailer interested in clustering shoppers

based on their past shopping histories. The goal is to identify subgroups
of similar shoppers, so that shoppers within each subgroup can be shown
items and advertisements that are particularly likely to interest them. Sup-
pose the data takes the form of a matrix where the rows are the shoppers
and the columns are the items available for purchase; the elements of the
data matrix indicate the number of times a given shopper has purchased a
given item (i.e. a 0 if the shopper has never purchased this item, a 1 if the
shopper has purchased it once, etc.) What type of dissimilarity measure
should be used to cluster the shoppers? If Euclidean distance is used, then
shoppers who have bought very few items overall (i.e. infrequent users of
the online shopping site) will be clustered together. This may not be desir-
able. On the other hand, if correlation-based distance is used, then shoppers
with similar preferences (e.g. shoppers who have bought items A and B but
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FIGURE 10.13. Three observations with measurements on 20 variables are
shown. Observations 1 and 3 have similar values for each variable and so there
is a small Euclidean distance between them. But they are very weakly correlated,
so they have a large correlation-based distance. On the other hand, observations
1 and 2 have quite different values for each variable, and so there is a large
Euclidean distance between them. But they are highly correlated, so there is a
small correlation-based distance between them.

never items C or D) will be clustered together, even if some shoppers with
these preferences are higher-volume shoppers than others. Therefore, for
this application, correlation-based distance may be a better choice.
In addition to carefully selecting the dissimilarity measure used, one must

also consider whether or not the variables should be scaled to have stan-
dard deviation one before the dissimilarity between the observations is
computed. To illustrate this point, we continue with the online shopping
example just described. Some items may be purchased more frequently than
others; for instance, a shopper might buy ten pairs of socks a year, but a
computer very rarely. High-frequency purchases like socks therefore tend
to have a much larger effect on the inter-shopper dissimilarities, and hence
on the clustering ultimately obtained, than rare purchases like computers.
This may not be desirable. If the variables are scaled to have standard de-
viation one before the inter-observation dissimilarities are computed, then
each variable will in effect be given equal importance in the hierarchical
clustering performed. We might also want to scale the variables to have
standard deviation one if they are measured on different scales; otherwise,
the choice of units (e.g. centimeters versus kilometers) for a particular vari-
able will greatly affect the dissimilarity measure obtained. It should come
as no surprise that whether or not it is a good decision to scale the variables
before computing the dissimilarity measure depends on the application at
hand. An example is shown in Figure 10.14. We note that the issue of
whether or not to scale the variables before performing clustering applies
to K-means clustering as well.
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FIGURE 10.14. An eclectic online retailer sells two items: socks and computers.
Left: the number of pairs of socks, and computers, purchased by eight online shop-
pers is displayed. Each shopper is shown in a different color. If inter-observation
dissimilarities are computed using Euclidean distance on the raw variables, then
the number of socks purchased by an individual will drive the dissimilarities ob-
tained, and the number of computers purchased will have little effect. This might be
undesirable, since (1) computers are more expensive than socks and so the online
retailer may be more interested in encouraging shoppers to buy computers than
socks, and (2) a large difference in the number of socks purchased by two shoppers
may be less informative about the shoppers’ overall shopping preferences than a
small difference in the number of computers purchased. Center: the same data
is shown, after scaling each variable by its standard deviation. Now the number
of computers purchased will have a much greater effect on the inter-observation
dissimilarities obtained. Right: the same data are displayed, but now the y-axis
represents the number of dollars spent by each online shopper on socks and on
computers. Since computers are much more expensive than socks, now computer
purchase history will drive the inter-observation dissimilarities obtained.

10.3.3 Practical Issues in Clustering

Clustering can be a very useful tool for data analysis in the unsupervised
setting. However, there are a number of issues that arise in performing
clustering. We describe some of these issues here.

Small Decisions with Big Consequences

In order to perform clustering, some decisions must be made.

• Should the observations or features first be standardized in some way?
For instance, maybe the variables should be centered to have mean
zero and scaled to have standard deviation one.
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• In the case of hierarchical clustering,

–What dissimilarity measure should be used?

–What type of linkage should be used?

–Where should we cut the dendrogram in order to obtain clusters?

• In the case of K-means clustering, how many clusters should we look
for in the data?

Each of these decisions can have a strong impact on the results obtained.
In practice, we try several different choices, and look for the one with
the most useful or interpretable solution. With these methods, there is no
single right answer—any solution that exposes some interesting aspects of
the data should be considered.

Validating the Clusters Obtained

Any time clustering is performed on a data set we will find clusters. But we
really want to know whether the clusters that have been found represent
true subgroups in the data, or whether they are simply a result of clustering
the noise. For instance, if we were to obtain an independent set of observa-
tions, then would those observations also display the same set of clusters?
This is a hard question to answer. There exist a number of techniques for
assigning a p-value to a cluster in order to assess whether there is more
evidence for the cluster than one would expect due to chance. However,
there has been no consensus on a single best approach. More details can
be found in Hastie et al. (2009).

Other Considerations in Clustering

Both K-means and hierarchical clustering will assign each observation to
a cluster. However, sometimes this might not be appropriate. For instance,
suppose that most of the observations truly belong to a small number of
(unknown) subgroups, and a small subset of the observations are quite
different from each other and from all other observations. Then since K-
means and hierarchical clustering force every observation into a cluster, the
clusters found may be heavily distorted due to the presence of outliers that
do not belong to any cluster. Mixture models are an attractive approach
for accommodating the presence of such outliers. These amount to a soft
version of K-means clustering, and are described in Hastie et al. (2009).
In addition, clustering methods generally are not very robust to pertur-

bations to the data. For instance, suppose that we cluster n observations,
and then cluster the observations again after removing a subset of the n
observations at random. One would hope that the two sets of clusters ob-
tained would be quite similar, but often this is not the case!
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A Tempered Approach to Interpreting the Results of Clustering

We have described some of the issues associated with clustering. However,
clustering can be a very useful and valid statistical tool if used properly. We
mentioned that small decisions in how clustering is performed, such as how
the data are standardized and what type of linkage is used, can have a large
effect on the results. Therefore, we recommend performing clustering with
different choices of these parameters, and looking at the full set of results
in order to see what patterns consistently emerge. Since clustering can be
non-robust, we recommend clustering subsets of the data in order to get a
sense of the robustness of the clusters obtained. Most importantly, we must
be careful about how the results of a clustering analysis are reported. These
results should not be taken as the absolute truth about a data set. Rather,
they should constitute a starting point for the development of a scientific
hypothesis and further study, preferably on an independent data set.

10.4 Lab 1: Principal Components Analysis

In this lab, we perform PCA on the USArrests data set, which is part of
the base R package. The rows of the data set contain the 50 states, in
alphabetical order.

> states =row.names(USArrests )

> states

The columns of the data set contain the four variables.

> names(USArrests )

[1] "Murder " "Assault " "UrbanPop " "Rape"

We first briefly examine the data. We notice that the variables have vastly
different means.

> apply(USArrests , 2, mean)

Murder Assault UrbanPop Rape

7.79 170.76 65.54 21.23

Note that the apply() function allows us to apply a function—in this case,
the mean() function—to each row or column of the data set. The second
input here denotes whether we wish to compute the mean of the rows, 1,
or the columns, 2. We see that there are on average three times as many
rapes as murders, and more than eight times as many assaults as rapes.
We can also examine the variances of the four variables using the apply()

function.

> apply(USArrests , 2, var)

Murder Assault UrbanPop Rape

19.0 6945.2 209.5 87.7
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Not surprisingly, the variables also have vastly different variances: the
UrbanPop variable measures the percentage of the population in each state
living in an urban area, which is not a comparable number to the num-
ber of rapes in each state per 100,000 individuals. If we failed to scale the
variables before performing PCA, then most of the principal components
that we observed would be driven by the Assault variable, since it has by
far the largest mean and variance. Thus, it is important to standardize the
variables to have mean zero and standard deviation one before performing
PCA.
We now perform principal components analysis using the prcomp() func-

prcomp()
tion, which is one of several functions in R that perform PCA.

> pr.out =prcomp (USArrests , scale =TRUE)

By default, the prcomp() function centers the variables to have mean zero.
By using the option scale=TRUE, we scale the variables to have standard
deviation one. The output from prcomp() contains a number of useful quan-
tities.

> names(pr.out )

[1] "sdev" "rotation " "center " "scale" "x"

The center and scale components correspond to the means and standard
deviations of the variables that were used for scaling prior to implementing
PCA.

> pr.out$center

Murder Assault UrbanPop Rape

7.79 170.76 65.54 21.23

> pr.out$scale

Murder Assault UrbanPop Rape

4.36 83.34 14.47 9.37

The rotation matrix provides the principal component loadings; each col-
umn of pr.out$rotation contains the corresponding principal component
loading vector.2

> pr.out$rotation

PC1 PC2 PC3 PC4

Murder -0.536 0.418 -0.341 0.649

Assault -0.583 0.188 -0.268 -0.743

UrbanPop -0.278 -0.873 -0.378 0.134

Rape -0.543 -0.167 0.818 0.089

We see that there are four distinct principal components. This is to be
expected because there are in general min(n − 1, p) informative principal
components in a data set with n observations and p variables.

2This function names it the rotation matrix, because when we matrix-multiply the
X matrix by pr.out$rotation, it gives us the coordinates of the data in the rotated
coordinate system. These coordinates are the principal component scores.
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Using the prcomp() function, we do not need to explicitly multiply the
data by the principal component loading vectors in order to obtain the
principal component score vectors. Rather the 50 × 4 matrix x has as its
columns the principal component score vectors. That is, the kth column is
the kth principal component score vector.

> dim(pr.out$x )

[1] 50 4

We can plot the first two principal components as follows:

> biplot (pr.out , scale =0)

The scale=0 argument to biplot() ensures that the arrows are scaled to
biplot()

represent the loadings; other values for scale give slightly different biplots
with different interpretations.
Notice that this figure is a mirror image of Figure 10.1. Recall that

the principal components are only unique up to a sign change, so we can
reproduce Figure 10.1 by making a few small changes:

> pr.out$rotation=-pr.out$rotation

> pr.out$x=-pr.out$x

> biplot (pr.out , scale =0)

The prcomp() function also outputs the standard deviation of each prin-
cipal component. For instance, on the USArrests data set, we can access
these standard deviations as follows:

> pr.out$sdev

[1] 1.575 0.995 0.597 0.416

The variance explained by each principal component is obtained by squar-
ing these:

> pr.var =pr.out$sdev ^2

> pr.var

[1] 2.480 0.990 0.357 0.173

To compute the proportion of variance explained by each principal compo-
nent, we simply divide the variance explained by each principal component
by the total variance explained by all four principal components:

> pve=pr.var/sum(pr.var )

> pve

[1] 0.6201 0.2474 0.0891 0.0434

We see that the first principal component explains 62.0% of the variance
in the data, the next principal component explains 24.7% of the variance,
and so forth. We can plot the PVE explained by each component, as well
as the cumulative PVE, as follows:

> plot(pve , xlab=" Principal Component ", ylab=" Proportion of

Variance Explained ", ylim=c(0,1) ,type=’b’)

> plot(cumsum (pve ), xlab=" Principal Component ", ylab ="

Cumulative Proportion of Variance Explained ", ylim=c(0,1) ,

type=’b’)
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The result is shown in Figure 10.4. Note that the function cumsum() com-
cumsum()

putes the cumulative sum of the elements of a numeric vector. For instance:

> a=c(1,2,8,-3)

> cumsum (a)

[1] 1 3 11 8

10.5 Lab 2: Clustering

10.5.1 K-Means Clustering

The function kmeans() performs K-means clustering in R. We begin with
kmeans()

a simple simulated example in which there truly are two clusters in the
data: the first 25 observations have a mean shift relative to the next 25
observations.

> set.seed (2)

> x=matrix (rnorm (50*2) , ncol =2)

> x[1:25 ,1]=x[1:25 ,1]+3

> x[1:25 ,2]=x[1:25 ,2] -4

We now perform K-means clustering with K = 2.

> km.out =kmeans (x,2, nstart =20)

The cluster assignments of the 50 observations are contained in
km.out$cluster.

> km.out$cluster

[1] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1

[30] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

The K-means clustering perfectly separated the observations into two clus-
ters even though we did not supply any group information to kmeans(). We
can plot the data, with each observation colored according to its cluster
assignment.

> plot(x, col =(km.out$cluster +1) , main="K-Means Clustering

Results with K=2", xlab ="", ylab="", pch =20, cex =2)

Here the observations can be easily plotted because they are two-dimensional.
If there were more than two variables then we could instead perform PCA
and plot the first two principal components score vectors.
In this example, we knew that there really were two clusters because

we generated the data. However, for real data, in general we do not know
the true number of clusters. We could instead have performed K-means
clustering on this example with K = 3.

> set.seed (4)

> km.out =kmeans (x,3, nstart =20)

> km.out

K-means clustering with 3 clusters of sizes 10, 23, 17
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Cluster means:

[,1] [,2]

1 2.3001545 -2.69622023

2 -0.3820397 -0.08740753

3 3.7789567 -4.56200798

Clustering vector :

[1] 3 1 3 1 3 3 3 1 3 1 3 1 3 1 3 1 3 3 3 3 3 1 3 3 3 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2

Within cluster sum of squares by cluster :

[1] 19.56137 52.67700 25.74089

(between_SS / total_SS = 79.3 %)

Available components :

[1] "cluster " "centers " "totss" "withinss "

"tot .withinss " "betweenss " "size"

> plot(x, col =(km.out$cluster +1) , main="K-Means Clustering

Results with K=3", xlab ="", ylab="", pch =20, cex =2)

When K = 3, K-means clustering splits up the two clusters.
To run the kmeans() function in R with multiple initial cluster assign-

ments, we use the nstart argument. If a value of nstart greater than one
is used, then K-means clustering will be performed using multiple random
assignments in Step 1 of Algorithm 10.1, and the kmeans() function will
report only the best results. Here we compare using nstart=1 to nstart=20.

> set.seed (3)

> km.out =kmeans (x,3, nstart =1)

> km.out$tot .withinss

[1] 104.3319

> km.out =kmeans (x,3, nstart =20)

> km.out$tot .withinss

[1] 97.9793

Note that km.out$tot.withinss is the total within-cluster sum of squares,
which we seek to minimize by performing K-means clustering (Equation
10.11). The individual within-cluster sum-of-squares are contained in the
vector km.out$withinss.
We strongly recommend always running K-means clustering with a large

value of nstart, such as 20 or 50, since otherwise an undesirable local
optimum may be obtained.
When performing K-means clustering, in addition to using multiple ini-

tial cluster assignments, it is also important to set a random seed using the
set.seed() function. This way, the initial cluster assignments in Step 1 can
be replicated, and the K-means output will be fully reproducible.
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10.5.2 Hierarchical Clustering

The hclust() function implements hierarchical clustering in R. In the fol-
hclust()

lowing example we use the data from Section 10.5.1 to plot the hierarchical
clustering dendrogram using complete, single, and average linkage cluster-
ing, with Euclidean distance as the dissimilarity measure. We begin by
clustering observations using complete linkage. The dist() function is used

dist()
to compute the 50× 50 inter-observation Euclidean distance matrix.

> hc.complete =hclust (dist(x), method =" complete ")

We could just as easily perform hierarchical clustering with average or
single linkage instead:

> hc.average =hclust (dist(x), method =" average ")

> hc.single =hclust (dist(x), method =" single ")

We can now plot the dendrograms obtained using the usual plot() function.
The numbers at the bottom of the plot identify each observation.

> par(mfrow =c(1,3))

> plot(hc.complete ,main =" Complete Linkage ", xlab="", sub ="",

cex =.9)

> plot(hc.average , main =" Average Linkage ", xlab="", sub ="",

cex =.9)

> plot(hc.single , main=" Single Linkage ", xlab="", sub ="",

cex =.9)

To determine the cluster labels for each observation associated with a
given cut of the dendrogram, we can use the cutree() function:

cutree()
> cutree (hc.complete , 2)

[1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2

[30] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

> cutree (hc.average , 2)

[1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2

[30] 2 2 2 1 2 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2

> cutree (hc.single , 2)

[1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1

[30] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

For this data, complete and average linkage generally separate the observa-
tions into their correct groups. However, single linkage identifies one point
as belonging to its own cluster. A more sensible answer is obtained when
four clusters are selected, although there are still two singletons.

> cutree (hc.single , 4)

[1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 3 3 3 3

[30] 3 3 3 3 3 3 3 3 3 3 3 3 4 3 3 3 3 3 3 3 3

To scale the variables before performing hierarchical clustering of the
observations, we use the scale() function:

scale()
> xsc=scale (x)

> plot(hclust (dist(xsc), method =" complete "), main =" Hierarchical

Clustering with Scaled Features ")
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Correlation-based distance can be computed using the as.dist() func-
as.dist()

tion, which converts an arbitrary square symmetric matrix into a form that
the hclust() function recognizes as a distance matrix. However, this only
makes sense for data with at least three features since the absolute corre-
lation between any two observations with measurements on two features is
always 1. Hence, we will cluster a three-dimensional data set.

> x=matrix (rnorm (30*3) , ncol =3)

> dd=as.dist(1- cor(t(x)))

> plot(hclust (dd, method =" complete "), main=" Complete Linkage

with Correlation -Based Distance ", xlab="", sub ="")

10.6 Lab 3: NCI60 Data Example

Unsupervised techniques are often used in the analysis of genomic data.
In particular, PCA and hierarchical clustering are popular tools. We illus-
trate these techniques on the NCI60 cancer cell line microarray data, which
consists of 6,830 gene expression measurements on 64 cancer cell lines.

> library (ISLR)

> nci.labs=NCI60$labs

> nci.data=NCI60$data

Each cell line is labeled with a cancer type. We do not make use of the
cancer types in performing PCA and clustering, as these are unsupervised
techniques. But after performing PCA and clustering, we will check to
see the extent to which these cancer types agree with the results of these
unsupervised techniques.
The data has 64 rows and 6,830 columns.

> dim(nci.data)

[1] 64 6830

We begin by examining the cancer types for the cell lines.

> nci.labs [1:4]

[1] "CNS " "CNS" "CNS" "RENAL"

> table(nci .labs)

nci .labs

BREAST CNS COLON K562A -repro K562B -repro

7 5 7 1 1

LEUKEMIA MCF7A -repro MCF7D -repro MELANOMA NSCLC

6 1 1 8 9

OVARIAN PROSTATE RENAL UNKNOWN

6 2 9 1
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10.6.1 PCA on the NCI60 Data

We first perform PCA on the data after scaling the variables (genes) to
have standard deviation one, although one could reasonably argue that it
is better not to scale the genes.

> pr.out =prcomp (nci.data , scale=TRUE)

We now plot the first few principal component score vectors, in order to
visualize the data. The observations (cell lines) corresponding to a given
cancer type will be plotted in the same color, so that we can see to what
extent the observations within a cancer type are similar to each other. We
first create a simple function that assigns a distinct color to each element
of a numeric vector. The function will be used to assign a color to each of
the 64 cell lines, based on the cancer type to which it corresponds.

Cols=function (vec ){

+ cols=rainbow (length (unique (vec )))

+ return (cols[as.numeric (as.factor (vec))])

+ }

Note that the rainbow() function takes as its argument a positive integer,
rainbow()

and returns a vector containing that number of distinct colors. We now can
plot the principal component score vectors.

> par(mfrow =c(1,2))

> plot(pr.out$x [,1:2], col =Cols(nci .labs), pch =19,

xlab ="Z1",ylab="Z2")

> plot(pr.out$x[,c(1,3) ], col =Cols(nci.labs), pch =19,

xlab ="Z1",ylab="Z3")

The resulting plots are shown in Figure 10.15. On the whole, cell lines
corresponding to a single cancer type do tend to have similar values on the
first few principal component score vectors. This indicates that cell lines
from the same cancer type tend to have pretty similar gene expression
levels.
We can obtain a summary of the proportion of variance explained (PVE)

of the first few principal components using the summary() method for a
prcomp object (we have truncated the printout):

> summary (pr.out)

Importance of components :

PC1 PC2 PC3 PC4 PC5

Standard deviation 27.853 21.4814 19.8205 17.0326 15.9718

Proportion of Variance 0.114 0.0676 0.0575 0.0425 0.0374

Cumulative Proportion 0.114 0.1812 0.2387 0.2812 0.3185

Using the plot() function, we can also plot the variance explained by the
first few principal components.

> plot(pr.out)

Note that the height of each bar in the bar plot is given by squaring the
corresponding element of pr.out$sdev. However, it is more informative to
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FIGURE 10.15. Projections of the NCI60 cancer cell lines onto the first three
principal components (in other words, the scores for the first three principal com-
ponents). On the whole, observations belonging to a single cancer type tend to
lie near each other in this low-dimensional space. It would not have been possible
to visualize the data without using a dimension reduction method such as PCA,
since based on the full data set there are
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6,830
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possible scatterplots, none of

which would have been particularly informative.

plot the PVE of each principal component (i.e. a scree plot) and the cu-
mulative PVE of each principal component. This can be done with just a
little work.

> pve =100* pr.out$sdev ^2/ sum(pr.out$sdev ^2)

> par(mfrow =c(1,2))

> plot(pve , type ="o", ylab="PVE ", xlab=" Principal Component ",

col =" blue")

> plot(cumsum (pve ), type="o", ylab =" Cumulative PVE", xlab="

Principal Component ", col =" brown3 ")

(Note that the elements of pve can also be computed directly from the sum-
mary, summary(pr.out)$importance[2,], and the elements of cumsum(pve)

are given by summary(pr.out)$importance[3,].) The resulting plots are shown
in Figure 10.16. We see that together, the first seven principal components
explain around 40% of the variance in the data. This is not a huge amount
of the variance. However, looking at the scree plot, we see that while each
of the first seven principal components explain a substantial amount of
variance, there is a marked decrease in the variance explained by further
principal components. That is, there is an elbow in the plot after approx-
imately the seventh principal component. This suggests that there may
be little benefit to examining more than seven or so principal components
(though even examining seven principal components may be difficult).
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FIGURE 10.16. The PVE of the principal components of the NCI60 cancer cell
line microarray data set. Left: the PVE of each principal component is shown.
Right: the cumulative PVE of the principal components is shown. Together, all
principal components explain 100% of the variance.

10.6.2 Clustering the Observations of the NCI60 Data

We now proceed to hierarchically cluster the cell lines in the NCI60 data,
with the goal of finding out whether or not the observations cluster into
distinct types of cancer. To begin, we standardize the variables to have
mean zero and standard deviation one. As mentioned earlier, this step is
optional and should be performed only if we want each gene to be on the
same scale.

> sd.data=scale(nci.data)

We now perform hierarchical clustering of the observations using complete,
single, and average linkage. Euclidean distance is used as the dissimilarity
measure.

> par(mfrow =c(1,3))

> data.dist=dist(sd.data)

> plot(hclust (data.dist), labels =nci.labs , main=" Complete

Linkage ", xlab ="", sub ="", ylab ="")

> plot(hclust (data.dist , method =" average "), labels =nci.labs ,

main=" Average Linkage ", xlab ="", sub ="", ylab ="")

> plot(hclust (data.dist , method =" single "), labels =nci.labs ,

main=" Single Linkage ", xlab="", sub ="", ylab ="")

The results are shown in Figure 10.17. We see that the choice of linkage
certainly does affect the results obtained. Typically, single linkage will tend
to yield trailing clusters: very large clusters onto which individual observa-
tions attach one-by-one. On the other hand, complete and average linkage
tend to yield more balanced, attractive clusters. For this reason, complete
and average linkage are generally preferred to single linkage. Clearly cell
lines within a single cancer type do tend to cluster together, although the
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FIGURE 10.17. The NCI60 cancer cell line microarray data, clustered with av-
erage, complete, and single linkage, and using Euclidean distance as the dissim-
ilarity measure. Complete and average linkage tend to yield evenly sized clusters
whereas single linkage tends to yield extended clusters to which single leaves are
fused one by one.
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clustering is not perfect. We will use complete linkage hierarchical cluster-
ing for the analysis that follows.
We can cut the dendrogram at the height that will yield a particular

number of clusters, say four:

> hc.out =hclust (dist(sd.data))

> hc.clusters =cutree (hc.out ,4)

> table(hc.clusters ,nci .labs)

There are some clear patterns. All the leukemia cell lines fall in cluster 3,
while the breast cancer cell lines are spread out over three different clusters.
We can plot the cut on the dendrogram that produces these four clusters:

> par(mfrow =c(1,1))

> plot(hc.out , labels =nci.labs)

> abline (h=139, col =" red ")

The abline() function draws a straight line on top of any existing plot
in R. The argument h=139 plots a horizontal line at height 139 on the den-
drogram; this is the height that results in four distinct clusters. It is easy
to verify that the resulting clusters are the same as the ones we obtained
using cutree(hc.out,4).
Printing the output of hclust gives a useful brief summary of the object:

> hc.out

Call:

hclust (d = dist(dat))

Cluster method : complete

Distance : euclidean

Number of objects : 64

We claimed earlier in Section 10.3.2 that K-means clustering and hier-
archical clustering with the dendrogram cut to obtain the same number
of clusters can yield very different results. How do these NCI60 hierarchical
clustering results compare to what we get if we performK-means clustering
with K = 4?

> set.seed (2)

> km.out =kmeans (sd.data , 4, nstart =20)

> km.clusters =km. out$cluster

> table(km.clusters ,hc.clusters )

hc.clusters

km. clusters 1 2 3 4

1 11 0 0 9

2 0 0 8 0

3 9 0 0 0

4 20 7 0 0

We see that the four clusters obtained using hierarchical clustering and K-
means clustering are somewhat different. Cluster 2 inK-means clustering is
identical to cluster 3 in hierarchical clustering. However, the other clusters
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differ: for instance, cluster 4 in K-means clustering contains a portion of
the observations assigned to cluster 1 by hierarchical clustering, as well as
all of the observations assigned to cluster 2 by hierarchical clustering.
Rather than performing hierarchical clustering on the entire data matrix,

we can simply perform hierarchical clustering on the first few principal
component score vectors, as follows:

> hc.out =hclust (dist(pr.out$x [ ,1:5]) )

> plot(hc.out , labels =nci.labs , main=" Hier. Clust . on First

Five Score Vectors ")

> table(cutree (hc.out ,4) , nci .labs)

Not surprisingly, these results are different from the ones that we obtained
when we performed hierarchical clustering on the full data set. Sometimes
performing clustering on the first few principal component score vectors
can give better results than performing clustering on the full data. In this
situation, we might view the principal component step as one of denois-
ing the data. We could also perform K-means clustering on the first few
principal component score vectors rather than the full data set.

10.7 Exercises

Conceptual

1. This problem involves the K-means clustering algorithm.
(a) Prove (10.12).

(b) On the basis of this identity, argue that the K-means clustering
algorithm (Algorithm 10.1) decreases the objective (10.11) at
each iteration.

2. Suppose that we have four observations, for which we compute a
dissimilarity matrix, given by

⎡

⎢⎢⎣

0.3 0.4 0.7
0.3 0.5 0.8
0.4 0.5 0.45
0.7 0.8 0.45

⎤

⎥⎥⎦.

For instance, the dissimilarity between the first and second obser-
vations is 0.3, and the dissimilarity between the second and fourth
observations is 0.8.

(a) On the basis of this dissimilarity matrix, sketch the dendrogram
that results from hierarchically clustering these four observa-
tions using complete linkage. Be sure to indicate on the plot the
height at which each fusion occurs, as well as the observations
corresponding to each leaf in the dendrogram.


