3

Linear Regression

This chapter is about linear regression, a very simple approach for supervised learning. In particular, linear regression is a useful tool for predicting a quantitative response. Linear regression has been around for a long time and is the topic of innumerable textbooks. Though it may seem somewhat dull compared to some of the more modern statistical learning approaches described in later chapters of this book, linear regression is still a useful and widely used statistical learning method. Moreover, it serves as a good jumping-off point for newer approaches: as we will see in later chapters, many fancy statistical learning approaches can be seen as generalizations or extensions of linear regression. Consequently, the importance of having a good understanding of linear regression before studying more complex learning methods cannot be overstated. In this chapter, we review some of the key ideas underlying the linear regression model, as well as the least squares approach that is most commonly used to fit this model.

Recall the Advertising data from Chapter 2. Figure 2.1 displays sales (in thousands of units) for a particular product as a function of advertising budgets (in thousands of dollars) for TV, radio, and newspaper media. Suppose that in our role as statistical consultants we are asked to suggest, on the basis of this data, a marketing plan for next year that will result in high product sales. What information would be useful in order to provide such a recommendation? Here are a few important questions that we might seek to address:

1. Is there a relationship between advertising budget and sales?

Our first goal should be to determine whether the data provide
evidence of an association between advertising expenditure and sales. If the evidence is weak, then one might argue that no money should be spent on advertising!
2. How strong is the relationship between advertising budget and sales? Assuming that there is a relationship between advertising and sales, we would like to know the strength of this relationship. In other words, given a certain advertising budget, can we predict sales with a high level of accuracy? This would be a strong relationship. Or is a prediction of sales based on advertising expenditure only slightly better than a random guess? This would be a weak relationship.
3. Which media contribute to sales?

Do all three media-TV, radio, and newspaper-contribute to sales, or do just one or two of the media contribute? To answer this question, we must find a way to separate out the individual effects of each medium when we have spent money on all three media.
4. How accurately can we estimate the effect of each medium on sales? For every dollar spent on advertising in a particular medium, by what amount will sales increase? How accurately can we predict this amount of increase?
5. How accurately can we predict future sales?

For any given level of television, radio, or newspaper advertising, what is our prediction for sales, and what is the accuracy of this prediction?
6. Is the relationship linear?

If there is approximately a straight-line relationship between advertising expenditure in the various media and sales, then linear regression is an appropriate tool. If not, then it may still be possible to transform the predictor or the response so that linear regression can be used.
7. Is there synergy among the advertising media?

Perhaps spending $\$ 50,000$ on television advertising and $\$ 50,000$ on radio advertising results in more sales than allocating $\$ 100,000$ to either television or radio individually. In marketing, this is known as a synergy effect, while in statistics it is called an interaction effect.

It turns out that linear regression can be used to answer each of these questions. We will first discuss all of these questions in a general context, and then return to them in this specific context in Section 3.4.

3.1 Simple Linear Regression

Simple linear regression lives up to its name: it is a very straightforward approach for predicting a quantitative response Y on the basis of a single predictor variable X. It assumes that there is approximately a linear relationship between X and Y. Mathematically, we can write this linear relationship as

$$
\begin{equation*}
Y \approx \beta_{0}+\beta_{1} X \tag{3.1}
\end{equation*}
$$

You might read " \approx " as "is approximately modeled as". We will sometimes describe (3.1) by saying that we are regressing Y on X (or Y onto X). For example, X may represent TV advertising and Y may represent sales. Then we can regress sales onto TV by fitting the model

$$
\text { sales } \approx \beta_{0}+\beta_{1} \times \mathrm{TV}
$$

In Equation 3.1, β_{0} and β_{1} are two unknown constants that represent the intercept and slope terms in the linear model. Together, β_{0} and β_{1} are known as the model coefficients or parameters. Once we have used our training data to produce estimates $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$ for the model coefficients, we can predict future sales on the basis of a particular value of TV advertising
simple linear regression

[^0] by computing
\[

$$
\begin{equation*}
\hat{y}=\hat{\beta}_{0}+\hat{\beta}_{1} x \tag{3.2}
\end{equation*}
$$

\]

where \hat{y} indicates a prediction of Y on the basis of $X=x$. Here we use a hat symbol, ^, to denote the estimated value for an unknown parameter or coefficient, or to denote the predicted value of the response.

3.1.1 Estimating the Coefficients

In practice, β_{0} and β_{1} are unknown. So before we can use (3.1) to make predictions, we must use data to estimate the coefficients. Let

$$
\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)
$$

represent n observation pairs, each of which consists of a measurement of X and a measurement of Y. In the Advertising example, this data set consists of the TV advertising budget and product sales in $n=200$ different markets. (Recall that the data are displayed in Figure 2.1.) Our goal is to obtain coefficient estimates $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$ such that the linear model (3.1) fits the available data well-that is, so that $y_{i} \approx \hat{\beta}_{0}+\hat{\beta}_{1} x_{i}$ for $i=$ $1, \ldots, n$. In other words, we want to find an intercept $\hat{\beta}_{0}$ and a slope $\hat{\beta}_{1}$ such that the resulting line is as close as possible to the $n=200$ data points. There are a number of ways of measuring closeness. However, by far the most common approach involves minimizing the least squares criterion, and we take that approach in this chapter. Alternative approaches will be considered in Chapter 6.

FIGURE 3.1. For the Advertising data, the least squares fit for the regression of sales onto TV is shown. The fit is found by minimizing the sum of squared errors. Each grey line segment represents an error, and the fit makes a compromise by averaging their squares. In this case a linear fit captures the essence of the relationship, although it is somewhat deficient in the left of the plot.

Let $\hat{y}_{i}=\hat{\beta}_{0}+\hat{\beta}_{1} x_{i}$ be the prediction for Y based on the i th value of X. Then $e_{i}=y_{i}-\hat{y}_{i}$ represents the i th residual-this is the difference between the i th observed response value and the i th response value that is predicted by our linear model. We define the residual sum of squares (RSS) as

$$
\mathrm{RSS}=e_{1}^{2}+e_{2}^{2}+\cdots+e_{n}^{2}
$$

or equivalently as

$$
\begin{equation*}
\operatorname{RSS}=\left(y_{1}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{1}\right)^{2}+\left(y_{2}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{2}\right)^{2}+\ldots+\left(y_{n}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{n}\right)^{2} \tag{3.3}
\end{equation*}
$$

The least squares approach chooses $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$ to minimize the RSS. Using some calculus, one can show that the minimizers are

$$
\begin{align*}
& \hat{\beta}_{1}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} \tag{3.4}\\
& \hat{\beta}_{0}=\bar{y}-\hat{\beta}_{1} \bar{x}
\end{align*}
$$

where $\bar{y} \equiv \frac{1}{n} \sum_{i=1}^{n} y_{i}$ and $\bar{x} \equiv \frac{1}{n} \sum_{i=1}^{n} x_{i}$ are the sample means. In other words, (3.4) defines the least squares coefficient estimates for simple linear regression.

Figure 3.1 displays the simple linear regression fit to the Advertising data, where $\hat{\beta}_{0}=7.03$ and $\hat{\beta}_{1}=0.0475$. In other words, according to

FIGURE 3.2. Contour and three-dimensional plots of the $R S S$ on the Advertising data, using sales as the response and TV as the predictor. The red dots correspond to the least squares estimates $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$, given by (3.4).
this approximation, an additional $\$ 1,000$ spent on TV advertising is associated with selling approximately 47.5 additional units of the product. In Figure 3.2, we have computed RSS for a number of values of β_{0} and β_{1}, using the advertising data with sales as the response and TV as the predictor. In each plot, the red dot represents the pair of least squares estimates ($\hat{\beta}_{0}, \hat{\beta}_{1}$) given by (3.4). These values clearly minimize the RSS.

3.1.2 Assessing the Accuracy of the Coefficient Estimates

Recall from (2.1) that we assume that the true relationship between X and Y takes the form $Y=f(X)+\epsilon$ for some unknown function f, where ϵ is a mean-zero random error term. If f is to be approximated by a linear function, then we can write this relationship as

$$
\begin{equation*}
Y=\beta_{0}+\beta_{1} X+\epsilon \tag{3.5}
\end{equation*}
$$

Here β_{0} is the intercept term-that is, the expected value of Y when $X=0$, and β_{1} is the slope - the average increase in Y associated with a one-unit increase in X. The error term is a catch-all for what we miss with this simple model: the true relationship is probably not linear, there may be other variables that cause variation in Y, and there may be measurement error. We typically assume that the error term is independent of X.

The model given by (3.5) defines the population regression line, which is the best linear approximation to the true relationship between X and $Y .{ }^{1}$ The least squares regression coefficient estimates (3.4) characterize the least squares line (3.2). The left-hand panel of Figure 3.3 displays these
population regression line
least squares

[^1]

FIGURE 3.3. A simulated data set. Left: The red line represents the true relationship, $f(X)=2+3 X$, which is known as the population regression line. The blue line is the least squares line; it is the least squares estimate for $f(X)$ based on the observed data, shown in black. Right: The population regression line is again shown in red, and the least squares line in dark blue. In light blue, ten least squares lines are shown, each computed on the basis of a separate random set of observations. Each least squares line is different, but on average, the least squares lines are quite close to the population regression line.
two lines in a simple simulated example. We created 100 random X s, and generated 100 corresponding Y s from the model

$$
\begin{equation*}
Y=2+3 X+\epsilon, \tag{3.6}
\end{equation*}
$$

where ϵ was generated from a normal distribution with mean zero. The red line in the left-hand panel of Figure 3.3 displays the true relationship, $f(X)=2+3 X$, while the blue line is the least squares estimate based on the observed data. The true relationship is generally not known for real data, but the least squares line can always be computed using the coefficient estimates given in (3.4). In other words, in real applications, we have access to a set of observations from which we can compute the least squares line; however, the population regression line is unobserved. In the right-hand panel of Figure 3.3 we have generated ten different data sets from the model given by (3.6) and plotted the corresponding ten least squares lines. Notice that different data sets generated from the same true model result in slightly different least squares lines, but the unobserved population regression line does not change.

At first glance, the difference between the population regression line and the least squares line may seem subtle and confusing. We only have one data set, and so what does it mean that two different lines describe the relationship between the predictor and the response? Fundamentally, the
concept of these two lines is a natural extension of the standard statistical approach of using information from a sample to estimate characteristics of a large population. For example, suppose that we are interested in knowing the population mean μ of some random variable Y. Unfortunately, μ is unknown, but we do have access to n observations from Y, which we can write as y_{1}, \ldots, y_{n}, and which we can use to estimate μ. A reasonable estimate is $\hat{\mu}=\bar{y}$, where $\bar{y}=\frac{1}{n} \sum_{i=1}^{n} y_{i}$ is the sample mean. The sample mean and the population mean are different, but in general the sample mean will provide a good estimate of the population mean. In the same way, the unknown coefficients β_{0} and β_{1} in linear regression define the population regression line. We seek to estimate these unknown coefficients using $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$ given in (3.4). These coefficient estimates define the least squares line.

The analogy between linear regression and estimation of the mean of a random variable is an apt one based on the concept of bias. If we use the sample mean $\hat{\mu}$ to estimate μ, this estimate is unbiased, in the sense that on average, we expect $\hat{\mu}$ to equal μ. What exactly does this mean? It means that on the basis of one particular set of observations $y_{1}, \ldots, y_{n}, \hat{\mu}$ might overestimate μ, and on the basis of another set of observations, $\hat{\mu}$ might underestimate μ. But if we could average a huge number of estimates of μ obtained from a huge number of sets of observations, then this average would exactly equal μ. Hence, an unbiased estimator does not systematically over- or under-estimate the true parameter. The property of unbiasedness holds for the least squares coefficient estimates given by (3.4) as well: if we estimate β_{0} and β_{1} on the basis of a particular data set, then our estimates won't be exactly equal to β_{0} and β_{1}. But if we could average the estimates obtained over a huge number of data sets, then the average of these estimates would be spot on! In fact, we can see from the righthand panel of Figure 3.3 that the average of many least squares lines, each estimated from a separate data set, is pretty close to the true population regression line.

We continue the analogy with the estimation of the population mean μ of a random variable Y. A natural question is as follows: how accurate is the sample mean $\hat{\mu}$ as an estimate of μ ? We have established that the average of $\hat{\mu}$'s over many data sets will be very close to μ, but that a single estimate $\hat{\mu}$ may be a substantial underestimate or overestimate of μ. How far off will that single estimate of $\hat{\mu}$ be? In general, we answer this question by computing the standard error of $\hat{\mu}$, written as $\mathrm{SE}(\hat{\mu})$. We have the well-known formula

$$
\begin{equation*}
\operatorname{Var}(\hat{\mu})=\operatorname{SE}(\hat{\mu})^{2}=\frac{\sigma^{2}}{n} \tag{3.7}
\end{equation*}
$$

where σ is the standard deviation of each of the realizations y_{i} of $Y .{ }^{2}$ Roughly speaking, the standard error tells us the average amount that this estimate $\hat{\mu}$ differs from the actual value of μ. Equation 3.7 also tells us how this deviation shrinks with n-the more observations we have, the smaller the standard error of $\hat{\mu}$. In a similar vein, we can wonder how close $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$ are to the true values β_{0} and β_{1}. To compute the standard errors associated with $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$, we use the following formulas:

$$
\begin{equation*}
\operatorname{SE}\left(\hat{\beta}_{0}\right)^{2}=\sigma^{2}\left[\frac{1}{n}+\frac{\bar{x}^{2}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}\right], \quad \operatorname{SE}\left(\hat{\beta}_{1}\right)^{2}=\frac{\sigma^{2}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}, \tag{3.8}
\end{equation*}
$$

where $\sigma^{2}=\operatorname{Var}(\epsilon)$. For these formulas to be strictly valid, we need to assume that the errors ϵ_{i} for each observation are uncorrelated with common variance σ^{2}. This is clearly not true in Figure 3.1, but the formula still turns out to be a good approximation. Notice in the formula that $\operatorname{SE}\left(\hat{\beta}_{1}\right)$ is smaller when the x_{i} are more spread out; intuitively we have more leverage to estimate a slope when this is the case. We also see that $\mathrm{SE}\left(\hat{\beta}_{0}\right)$ would be the same as $\operatorname{SE}(\hat{\mu})$ if \bar{x} were zero (in which case $\hat{\beta}_{0}$ would be equal to \bar{y}). In general, σ^{2} is not known, but can be estimated from the data. The estimate of σ is known as the residual standard error, and is given by the formula RSE $=\sqrt{\operatorname{RSS} /(n-2)}$. Strictly speaking, when σ^{2} is estimated from the data we should write $\widehat{\mathrm{SE}}\left(\hat{\beta}_{1}\right)$ to indicate that an estimate has been made, but for simplicity of notation we will drop this extra "hat".
Standard errors can be used to compute confidence intervals. A 95\% confidence interval is defined as a range of values such that with 95%
residual standard error
confidence interval probability, the range will contain the true unknown value of the parameter. The range is defined in terms of lower and upper limits computed from the sample of data. For linear regression, the 95% confidence interval for β_{1} approximately takes the form

$$
\begin{equation*}
\hat{\beta}_{1} \pm 2 \cdot \operatorname{SE}\left(\hat{\beta}_{1}\right) \tag{3.9}
\end{equation*}
$$

That is, there is approximately a 95% chance that the interval

$$
\begin{equation*}
\left[\hat{\beta}_{1}-2 \cdot \mathrm{SE}\left(\hat{\beta}_{1}\right), \hat{\beta}_{1}+2 \cdot \mathrm{SE}\left(\hat{\beta}_{1}\right)\right] \tag{3.10}
\end{equation*}
$$

will contain the true value of $\beta_{1}{ }^{3}$ Similarly, a confidence interval for β_{0} approximately takes the form

$$
\begin{equation*}
\hat{\beta}_{0} \pm 2 \cdot \mathrm{SE}\left(\hat{\beta}_{0}\right) \tag{3.11}
\end{equation*}
$$

[^2]In the case of the advertising data, the 95% confidence interval for β_{0} is $[6.130,7.935]$ and the 95% confidence interval for β_{1} is $[0.042,0.053]$. Therefore, we can conclude that in the absence of any advertising, sales will, on average, fall somewhere between 6,130 and 7,940 units. Furthermore, for each $\$ 1,000$ increase in television advertising, there will be an average increase in sales of between 42 and 53 units.

Standard errors can also be used to perform hypothesis tests on the
coefficients. The most common hypothesis test involves testing the null hypothesis of

$$
\begin{equation*}
H_{0} \text { : There is no relationship between } X \text { and } Y \tag{3.12}
\end{equation*}
$$

versus the alternative hypothesis
hypothesis test
null hypothesis
alternative hypothesis

$$
\begin{equation*}
H_{a}: \text { There is some relationship between } X \text { and } Y \text {. } \tag{3.13}
\end{equation*}
$$

Mathematically, this corresponds to testing

$$
H_{0}: \beta_{1}=0
$$

versus

$$
H_{a}: \beta_{1} \neq 0
$$

since if $\beta_{1}=0$ then the model (3.5) reduces to $Y=\beta_{0}+\epsilon$, and X is not associated with Y. To test the null hypothesis, we need to determine whether $\hat{\beta}_{1}$, our estimate for β_{1}, is sufficiently far from zero that we can be confident that β_{1} is non-zero. How far is far enough? This of course depends on the accuracy of $\hat{\beta}_{1}$-that is, it depends on $\operatorname{SE}\left(\hat{\beta}_{1}\right)$. If $\operatorname{SE}\left(\hat{\beta}_{1}\right)$ is small, then even relatively small values of $\hat{\beta}_{1}$ may provide strong evidence that $\beta_{1} \neq 0$, and hence that there is a relationship between X and Y. In contrast, if $\operatorname{SE}\left(\hat{\beta}_{1}\right)$ is large, then $\hat{\beta}_{1}$ must be large in absolute value in order for us to reject the null hypothesis. In practice, we compute a t-statistic, given by

$$
\begin{equation*}
t=\frac{\hat{\beta}_{1}-0}{\mathrm{SE}\left(\hat{\beta}_{1}\right)} \tag{3.14}
\end{equation*}
$$

which measures the number of standard deviations that $\hat{\beta}_{1}$ is away from 0 . If there really is no relationship between X and Y, then we expect that (3.14) will have a t-distribution with $n-2$ degrees of freedom. The tdistribution has a bell shape and for values of n greater than approximately 30 it is quite similar to the normal distribution. Consequently, it is a simple matter to compute the probability of observing any number equal to $|t|$ or larger in absolute value, assuming $\beta_{1}=0$. We call this probability the p-value. Roughly speaking, we interpret the p -value as follows: a small p -value indicates that it is unlikely to observe such a substantial association between the predictor and the response due to chance, in the absence of any real association between the predictor and the response. Hence, if we see a small p-value,
then we can infer that there is an association between the predictor and the response. We reject the null hypothesis - that is, we declare a relationship to exist between X and Y-if the p-value is small enough. Typical p-value cutoffs for rejecting the null hypothesis are 5 or 1%. When $n=30$, these correspond to t-statistics (3.14) of around 2 and 2.75 , respectively.

	Coefficient	Std. error	t-statistic	p-value
Intercept	7.0325	0.4578	15.36	<0.0001
TV	0.0475	0.0027	17.67	<0.0001

TABLE 3.1. For the Advertising data, coefficients of the least squares model for the regression of number of units sold on TV advertising budget. An increase of $\$ 1,000$ in the TV advertising budget is associated with an increase in sales by around 50 units (Recall that the sales variable is in thousands of units, and the TV variable is in thousands of dollars).

Table 3.1 provides details of the least squares model for the regression of number of units sold on TV advertising budget for the Advertising data. Notice that the coefficients for $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$ are very large relative to their standard errors, so the t-statistics are also large; the probabilities of seeing such values if H_{0} is true are virtually zero. Hence we can conclude that $\beta_{0} \neq 0$ and $\beta_{1} \neq 0 .{ }^{4}$

3.1.3 Assessing the Accuracy of the Model

Once we have rejected the null hypothesis (3.12) in favor of the alternative hypothesis (3.13), it is natural to want to quantify the extent to which the model fits the data. The quality of a linear regression fit is typically assessed using two related quantities: the residual standard error (RSE) and the R^{2} statistic.

Table 3.2 displays the RSE, the R^{2} statistic, and the F-statistic (to be described in Section 3.2.2) for the linear regression of number of units sold on TV advertising budget.

Residual Standard Error

Recall from the model (3.5) that associated with each observation is an error term ϵ. Due to the presence of these error terms, even if we knew the true regression line (i.e. even if β_{0} and β_{1} were known), we would not be able to perfectly predict Y from X. The RSE is an estimate of the standard

[^3]| Quantity | Value |
| :--- | :--- |
| Residual standard error | 3.26 |
| R^{2} | 0.612 |
| F-statistic | 312.1 |

TABLE 3.2. For the Advertising data, more information about the least squares model for the regression of number of units sold on TV advertising budget.
deviation of ϵ. Roughly speaking, it is the average amount that the response will deviate from the true regression line. It is computed using the formula

$$
\begin{equation*}
\operatorname{RSE}=\sqrt{\frac{1}{n-2} \mathrm{RSS}}=\sqrt{\frac{1}{n-2} \sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}} \tag{3.15}
\end{equation*}
$$

Note that RSS was defined in Section 3.1.1, and is given by the formula

$$
\begin{equation*}
\mathrm{RSS}=\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2} . \tag{3.16}
\end{equation*}
$$

In the case of the advertising data, we see from the linear regression output in Table 3.2 that the RSE is 3.26 . In other words, actual sales in each market deviate from the true regression line by approximately 3,260 units, on average. Another way to think about this is that even if the model were correct and the true values of the unknown coefficients β_{0} and β_{1} were known exactly, any prediction of sales on the basis of TV advertising would still be off by about 3,260 units on average. Of course, whether or not 3,260 units is an acceptable prediction error depends on the problem context. In the advertising data set, the mean value of sales over all markets is approximately 14,000 units, and so the percentage error is $3,260 / 14,000=23 \%$.

The RSE is considered a measure of the lack of fit of the model (3.5) to the data. If the predictions obtained using the model are very close to the true outcome values-that is, if $\hat{y}_{i} \approx y_{i}$ for $i=1, \ldots, n$-then (3.15) will be small, and we can conclude that the model fits the data very well. On the other hand, if \hat{y}_{i} is very far from y_{i} for one or more observations, then the RSE may be quite large, indicating that the model doesn't fit the data well.
R^{2} Statistic
The RSE provides an absolute measure of lack of fit of the model (3.5) to the data. But since it is measured in the units of Y, it is not always clear what constitutes a good RSE. The R^{2} statistic provides an alternative measure of fit. It takes the form of a proportion - the proportion of variance explained-and so it always takes on a value between 0 and 1 , and is independent of the scale of Y.

To calculate R^{2}, we use the formula

$$
\begin{equation*}
R^{2}=\frac{\mathrm{TSS}-\mathrm{RSS}}{\mathrm{TSS}}=1-\frac{\mathrm{RSS}}{\mathrm{TSS}} \tag{3.17}
\end{equation*}
$$

where TSS $=\sum\left(y_{i}-\bar{y}\right)^{2}$ is the total sum of squares, and RSS is defined in (3.16). TSS measures the total variance in the response Y, and can be thought of as the amount of variability inherent in the response before the regression is performed. In contrast, RSS measures the amount of variability that is left unexplained after performing the regression. Hence, TSS - RSS measures the amount of variability in the response that is explained (or removed) by performing the regression, and R^{2} measures the proportion of variability in Y that can be explained using X. An R^{2} statistic that is close to 1 indicates that a large proportion of the variability in the response has been explained by the regression. A number near 0 indicates that the regression did not explain much of the variability in the response; this might occur because the linear model is wrong, or the inherent error σ^{2} is high, or both. In Table 3.2, the R^{2} was 0.61 , and so just under two-thirds of the variability in sales is explained by a linear regression on TV.
The R^{2} statistic (3.17) has an interpretational advantage over the RSE (3.15), since unlike the RSE, it always lies between 0 and 1 . However, it can still be challenging to determine what is a good R^{2} value, and in general, this will depend on the application. For instance, in certain problems in physics, we may know that the data truly comes from a linear model with a small residual error. In this case, we would expect to see an R^{2} value that is extremely close to 1 , and a substantially smaller R^{2} value might indicate a serious problem with the experiment in which the data were generated. On the other hand, in typical applications in biology, psychology, marketing, and other domains, the linear model (3.5) is at best an extremely rough approximation to the data, and residual errors due to other unmeasured factors are often very large. In this setting, we would expect only a very small proportion of the variance in the response to be explained by the predictor, and an R^{2} value well below 0.1 might be more realistic!

The R^{2} statistic is a measure of the linear relationship between X and Y. Recall that correlation, defined as

$$
\begin{equation*}
\operatorname{Cor}(X, Y)=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sqrt{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} \sqrt{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}}}, \tag{3.18}
\end{equation*}
$$

is also a measure of the linear relationship between X and $Y .{ }^{5}$ This suggests that we might be able to use $r=\operatorname{Cor}(X, Y)$ instead of R^{2} in order to assess the fit of the linear model. In fact, it can be shown that in the simple linear regression setting, $R^{2}=r^{2}$. In other words, the squared correlation

[^4]and the R^{2} statistic are identical. However, in the next section we will discuss the multiple linear regression problem, in which we use several predictors simultaneously to predict the response. The concept of correlation between the predictors and the response does not extend automatically to this setting, since correlation quantifies the association between a single pair of variables rather than between a larger number of variables. We will see that R^{2} fills this role.

3.2 Multiple Linear Regression

Simple linear regression is a useful approach for predicting a response on the basis of a single predictor variable. However, in practice we often have more than one predictor. For example, in the Advertising data, we have examined the relationship between sales and TV advertising. We also have data for the amount of money spent advertising on the radio and in newspapers, and we may want to know whether either of these two media is associated with sales. How can we extend our analysis of the advertising data in order to accommodate these two additional predictors?

One option is to run three separate simple linear regressions, each of which uses a different advertising medium as a predictor. For instance, we can fit a simple linear regression to predict sales on the basis of the amount spent on radio advertisements. Results are shown in Table 3.3 (top table). We find that a $\$ 1,000$ increase in spending on radio advertising is associated with an increase in sales by around 203 units. Table 3.3 (bottom table) contains the least squares coefficients for a simple linear regression of sales onto newspaper advertising budget. A $\$ 1,000$ increase in newspaper advertising budget is associated with an increase in sales by approximately 55 units.

However, the approach of fitting a separate simple linear regression model for each predictor is not entirely satisfactory. First of all, it is unclear how to make a single prediction of sales given levels of the three advertising media budgets, since each of the budgets is associated with a separate regression equation. Second, each of the three regression equations ignores the other two media in forming estimates for the regression coefficients. We will see shortly that if the media budgets are correlated with each other in the 200 markets that constitute our data set, then this can lead to very misleading estimates of the individual media effects on sales.
Instead of fitting a separate simple linear regression model for each predictor, a better approach is to extend the simple linear regression model (3.5) so that it can directly accommodate multiple predictors. We can do this by giving each predictor a separate slope coefficient in a single model. In general, suppose that we have p distinct predictors. Then the multiple linear regression model takes the form

$$
\begin{equation*}
Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\cdots+\beta_{p} X_{p}+\epsilon, \tag{3.19}
\end{equation*}
$$

Simple regression of sales on radio

	Coefficient	Std. error	t-statistic	p-value
Intercept	9.312	0.563	16.54	<0.0001
radio	0.203	0.020	9.92	<0.0001

Simple regression of sales on newspaper

	Coefficient	Std. error	t-statistic	p-value
Intercept	12.351	0.621	19.88	<0.0001
newspaper	0.055	0.017	3.30	0.00115

TABLE 3.3. More simple linear regression models for the Advertising data. Coefficients of the simple linear regression model for number of units sold on Top: radio advertising budget and Bottom: newspaper advertising budget. A $\$ 1,000 \mathrm{in}$ crease in spending on radio advertising is associated with an average increase in sales by around 203 units, while the same increase in spending on newspaper advertising is associated with an average increase in sales by around 55 units (Note that the sales variable is in thousands of units, and the radio and newspaper variables are in thousands of dollars).
where X_{j} represents the j th predictor and β_{j} quantifies the association between that variable and the response. We interpret β_{j} as the average effect on Y of a one unit increase in X_{j}, holding all other predictors fixed. In the advertising example, (3.19) becomes

$$
\begin{equation*}
\text { sales }=\beta_{0}+\beta_{1} \times \mathrm{TV}+\beta_{2} \times \text { radio }+\beta_{3} \times \text { newspaper }+\epsilon \tag{3.20}
\end{equation*}
$$

3.2.1 Estimating the Regression Coefficients

As was the case in the simple linear regression setting, the regression coefficients $\beta_{0}, \beta_{1}, \ldots, \beta_{p}$ in (3.19) are unknown, and must be estimated. Given estimates $\hat{\beta}_{0}, \hat{\beta}_{1}, \ldots, \hat{\beta}_{p}$, we can make predictions using the formula

$$
\begin{equation*}
\hat{y}=\hat{\beta}_{0}+\hat{\beta}_{1} x_{1}+\hat{\beta}_{2} x_{2}+\cdots+\hat{\beta}_{p} x_{p} \tag{3.21}
\end{equation*}
$$

The parameters are estimated using the same least squares approach that we saw in the context of simple linear regression. We choose $\beta_{0}, \beta_{1}, \ldots, \beta_{p}$ to minimize the sum of squared residuals

$$
\begin{align*}
\mathrm{RSS} & =\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2} \\
& =\sum_{i=1}^{n}\left(y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{i 1}-\hat{\beta}_{2} x_{i 2}-\cdots-\hat{\beta}_{p} x_{i p}\right)^{2} \tag{3.22}
\end{align*}
$$

FIGURE 3.4. In a three-dimensional setting, with two predictors and one response, the least squares regression line becomes a plane. The plane is chosen to minimize the sum of the squared vertical distances between each observation (shown in red) and the plane.

The values $\hat{\beta}_{0}, \hat{\beta}_{1}, \ldots, \hat{\beta}_{p}$ that minimize (3.22) are the multiple least squares regression coefficient estimates. Unlike the simple linear regression estimates given in (3.4), the multiple regression coefficient estimates have somewhat complicated forms that are most easily represented using matrix algebra. For this reason, we do not provide them here. Any statistical software package can be used to compute these coefficient estimates, and later in this chapter we will show how this can be done in R. Figure 3.4 illustrates an example of the least squares fit to a toy data set with $p=2$ predictors.

Table 3.4 displays the multiple regression coefficient estimates when TV, radio, and newspaper advertising budgets are used to predict product sales using the Advertising data. We interpret these results as follows: for a given amount of TV and newspaper advertising, spending an additional $\$ 1,000$ on radio advertising leads to an increase in sales by approximately 189 units. Comparing these coefficient estimates to those displayed in Tables 3.1 and 3.3, we notice that the multiple regression coefficient estimates for TV and radio are pretty similar to the simple linear regression coefficient estimates. However, while the newspaper regression coefficient estimate in Table 3.3 was significantly non-zero, the coefficient estimate for newspaper in the multiple regression model is close to zero, and the corresponding p -value is no longer significant, with a value around 0.86 . This illustrates

	Coefficient	Std. error	t-statistic	p-value
Intercept	2.939	0.3119	9.42	<0.0001
TV	0.046	0.0014	32.81	<0.0001
radio	0.189	0.0086	21.89	<0.0001
newspaper	-0.001	0.0059	-0.18	0.8599

TABLE 3.4. For the Advertising data, least squares coefficient estimates of the multiple linear regression of number of units sold on radio, TV, and newspaper advertising budgets.
that the simple and multiple regression coefficients can be quite different. This difference stems from the fact that in the simple regression case, the slope term represents the average effect of a $\$ 1,000$ increase in newspaper advertising, ignoring other predictors such as TV and radio. In contrast, in the multiple regression setting, the coefficient for newspaper represents the average effect of increasing newspaper spending by $\$ 1,000$ while holding TV and radio fixed.

Does it make sense for the multiple regression to suggest no relationship between sales and newspaper while the simple linear regression implies the opposite? In fact it does. Consider the correlation matrix for the three predictor variables and response variable, displayed in Table 3.5. Notice that the correlation between radio and newspaper is 0.35 . This reveals a tendency to spend more on newspaper advertising in markets where more is spent on radio advertising. Now suppose that the multiple regression is correct and newspaper advertising has no direct impact on sales, but radio advertising does increase sales. Then in markets where we spend more on radio our sales will tend to be higher, and as our correlation matrix shows, we also tend to spend more on newspaper advertising in those same markets. Hence, in a simple linear regression which only examines sales versus newspaper, we will observe that higher values of newspaper tend to be associated with higher values of sales, even though newspaper advertising does not actually affect sales. So newspaper sales are a surrogate for radio advertising; newspaper gets "credit" for the effect of radio on sales.

This slightly counterintuitive result is very common in many real life situations. Consider an absurd example to illustrate the point. Running a regression of shark attacks versus ice cream sales for data collected at a given beach community over a period of time would show a positive relationship, similar to that seen between sales and newspaper. Of course no one (yet) has suggested that ice creams should be banned at beaches to reduce shark attacks. In reality, higher temperatures cause more people to visit the beach, which in turn results in more ice cream sales and more shark attacks. A multiple regression of attacks versus ice cream sales and temperature reveals that, as intuition implies, the former predictor is no longer significant after adjusting for temperature.

	TV	radio	newspaper	sales
TV	1.0000	0.0548	0.0567	0.7822
radio		1.0000	0.3541	0.5762
newspaper			1.0000	0.2283
sales				1.0000

TABLE 3.5. Correlation matrix for TV, radio, newspaper, and sales for the Advertising data.

3.2.2 Some Important Questions

When we perform multiple linear regression, we usually are interested in answering a few important questions.

1. Is at least one of the predictors $X_{1}, X_{2}, \ldots, X_{p}$ useful in predicting the response?
2. Do all the predictors help to explain Y, or is only a subset of the predictors useful?
3. How well does the model fit the data?
4. Given a set of predictor values, what response value should we predict, and how accurate is our prediction?

We now address each of these questions in turn.

One: Is There a Relationship Between the Response and Predictors?

Recall that in the simple linear regression setting, in order to determine whether there is a relationship between the response and the predictor we can simply check whether $\beta_{1}=0$. In the multiple regression setting with p predictors, we need to ask whether all of the regression coefficients are zero, i.e. whether $\beta_{1}=\beta_{2}=\cdots=\beta_{p}=0$. As in the simple linear regression setting, we use a hypothesis test to answer this question. We test the null hypothesis,

$$
H_{0}: \beta_{1}=\beta_{2}=\cdots=\beta_{p}=0
$$

versus the alternative

$$
H_{a}: \text { at least one } \beta_{j} \text { is non-zero. }
$$

This hypothesis test is performed by computing the F-statistic,

$$
\begin{equation*}
F=\frac{(\mathrm{TSS}-\mathrm{RSS}) / p}{\operatorname{RSS} /(n-p-1)} \tag{3.23}
\end{equation*}
$$

Quantity	Value
Residual standard error	1.69
R^{2}	0.897
F-statistic	570

TABLE 3.6. More information about the least squares model for the regression of number of units sold on TV, newspaper, and radio advertising budgets in the Advertising data. Other information about this model was displayed in Table 3.4.
where, as with simple linear regression, TSS $=\sum\left(y_{i}-\bar{y}\right)^{2}$ and $\mathrm{RSS}=$ $\sum\left(y_{i}-\hat{y}_{i}\right)^{2}$. If the linear model assumptions are correct, one can show that

$$
E\{\operatorname{RSS} /(n-p-1)\}=\sigma^{2}
$$

and that, provided H_{0} is true,

$$
E\{(\mathrm{TSS}-\mathrm{RSS}) / p\}=\sigma^{2}
$$

Hence, when there is no relationship between the response and predictors, one would expect the F -statistic to take on a value close to 1 . On the other hand, if H_{a} is true, then $E\{(\mathrm{TSS}-\mathrm{RSS}) / p\}>\sigma^{2}$, so we expect F to be greater than 1.

The F-statistic for the multiple linear regression model obtained by regressing sales onto radio, TV, and newspaper is shown in Table 3.6. In this example the F-statistic is 570 . Since this is far larger than 1 , it provides compelling evidence against the null hypothesis H_{0}. In other words, the large F -statistic suggests that at least one of the advertising media must be related to sales. However, what if the F-statistic had been closer to 1? How large does the F -statistic need to be before we can reject H_{0} and conclude that there is a relationship? It turns out that the answer depends on the values of n and p. When n is large, an F -statistic that is just a little larger than 1 might still provide evidence against H_{0}. In contrast, a larger F -statistic is needed to reject H_{0} if n is small. When H_{0} is true and the errors ϵ_{i} have a normal distribution, the F -statistic follows an F-distribution. ${ }^{6}$ For any given value of n and p, any statistical software package can be used to compute the p-value associated with the F-statistic using this distribution. Based on this p-value, we can determine whether or not to reject H_{0}. For the advertising data, the p-value associated with the F-statistic in Table 3.6 is essentially zero, so we have extremely strong evidence that at least one of the media is associated with increased sales.

In (3.23) we are testing H_{0} that all the coefficients are zero. Sometimes we want to test that a particular subset of q of the coefficients are zero. This corresponds to a null hypothesis

$$
H_{0}: \quad \beta_{p-q+1}=\beta_{p-q+2}=\ldots=\beta_{p}=0
$$

[^5]where for convenience we have put the variables chosen for omission at the end of the list. In this case we fit a second model that uses all the variables except those last q. Suppose that the residual sum of squares for that model is RSS_{0}. Then the appropriate F-statistic is
\[

$$
\begin{equation*}
F=\frac{\left(\operatorname{RSS}_{0}-\mathrm{RSS}\right) / q}{\operatorname{RSS} /(n-p-1)} \tag{3.24}
\end{equation*}
$$

\]

Notice that in Table 3.4, for each individual predictor a t-statistic and a p-value were reported. These provide information about whether each individual predictor is related to the response, after adjusting for the other predictors. It turns out that each of these are exactly equivalent ${ }^{7}$ to the F-test that omits that single variable from the model, leaving all the others in-i.e. $q=1$ in (3.24). So it reports the partial effect of adding that variable to the model. For instance, as we discussed earlier, these p-values indicate that TV and radio are related to sales, but that there is no evidence that newspaper is associated with sales, in the presence of these two.

Given these individual p-values for each variable, why do we need to look at the overall F-statistic? After all, it seems likely that if any one of the p -values for the individual variables is very small, then at least one of the predictors is related to the response. However, this logic is flawed, especially when the number of predictors p is large.

For instance, consider an example in which $p=100$ and $H_{0}: \beta_{1}=\beta_{2}=$ $\ldots=\beta_{p}=0$ is true, so no variable is truly associated with the response. In this situation, about 5% of the p-values associated with each variable (of the type shown in Table 3.4) will be below 0.05 by chance. In other words, we expect to see approximately five small p -values even in the absence of any true association between the predictors and the response. In fact, we are almost guaranteed that we will observe at least one p-value below 0.05 by chance! Hence, if we use the individual t-statistics and associated pvalues in order to decide whether or not there is any association between the variables and the response, there is a very high chance that we will incorrectly conclude that there is a relationship. However, the F-statistic does not suffer from this problem because it adjusts for the number of predictors. Hence, if H_{0} is true, there is only a 5% chance that the Fstatistic will result in a p-value below 0.05 , regardless of the number of predictors or the number of observations.

The approach of using an F-statistic to test for any association between the predictors and the response works when p is relatively small, and certainly small compared to n. However, sometimes we have a very large number of variables. If $p>n$ then there are more coefficients β_{j} to estimate than observations from which to estimate them. In this case we cannot even fit the multiple linear regression model using least squares, so the

[^6]F-statistic cannot be used, and neither can most of the other concepts that we have seen so far in this chapter. When p is large, some of the approaches discussed in the next section, such as forward selection, can be used. This high-dimensional setting is discussed in greater detail in Chapter 6.
high-
dimensional
Two: Deciding on Important Variables
As discussed in the previous section, the first step in a multiple regression analysis is to compute the F -statistic and to examine the associated pvalue. If we conclude on the basis of that p-value that at least one of the predictors is related to the response, then it is natural to wonder which are the guilty ones! We could look at the individual p-values as in Table 3.4, but as discussed, if p is large we are likely to make some false discoveries.

It is possible that all of the predictors are associated with the response, but it is more often the case that the response is only related to a subset of the predictors. The task of determining which predictors are associated with the response, in order to fit a single model involving only those predictors, is referred to as variable selection. The variable selection problem is studied extensively in Chapter 6, and so here we will provide only a brief outline of some classical approaches.

Ideally, we would like to perform variable selection by trying out a lot of different models, each containing a different subset of the predictors. For instance, if $p=2$, then we can consider four models: (1) a model containing no variables, (2) a model containing X_{1} only, (3) a model containing X_{2} only, and (4) a model containing both X_{1} and X_{2}. We can then select the best model out of all of the models that we have considered. How do we determine which model is best? Various statistics can be used to judge the quality of a model. These include Mallow's C_{p}, Akaike information criterion (AIC), Bayesian information criterion (BIC), and adjusted R^{2}. These are discussed in more detail in Chapter 6. We can also determine which model is best by plotting various model outputs, such as the residuals, in order to search for patterns.

Unfortunately, there are a total of 2^{p} models that contain subsets of p variables. This means that even for moderate p, trying out every possible subset of the predictors is infeasible. For instance, we saw that if $p=2$, then there are $2^{2}=4$ models to consider. But if $p=30$, then we must consider $2^{30}=1,073,741,824$ models! This is not practical. Therefore, unless p is very small, we cannot consider all 2^{p} models, and instead we need an automated and efficient approach to choose a smaller set of models to consider. There are three classical approaches for this task:

- Forward selection. We begin with the null model - a model that contains an intercept but no predictors. We then fit p simple linear regressions and add to the null model the variable that results in the lowest RSS. We then add to that model the variable that results

Mallow's C_{p}
Akaike information criterion Bayesian information criterion adjusted R^{2}
forward selection null model
in the lowest RSS for the new two-variable model. This approach is continued until some stopping rule is satisfied.

- Backward selection. We start with all variables in the model, and remove the variable with the largest p -value - that is, the variable
backward selection that is the least statistically significant. The new ($p-1$)-variable model is fit, and the variable with the largest p-value is removed. This procedure continues until a stopping rule is reached. For instance, we may stop when all remaining variables have a p -value below some threshold.
- Mixed selection. This is a combination of forward and backward selection. We start with no variables in the model, and as with forward selection, we add the variable that provides the best fit. We continue to add variables one-by-one. Of course, as we noted with the Advertising example, the p-values for variables can become larger as new predictors are added to the model. Hence, if at any point the p-value for one of the variables in the model rises above a certain threshold, then we remove that variable from the model. We continue to perform these forward and backward steps until all variables in the model have a sufficiently low p-value, and all variables outside the model would have a large p-value if added to the model.

Backward selection cannot be used if $p>n$, while forward selection can always be used. Forward selection is a greedy approach, and might include variables early that later become redundant. Mixed selection can remedy this.

Three: Model Fit

Two of the most common numerical measures of model fit are the RSE and R^{2}, the fraction of variance explained. These quantities are computed and interpreted in the same fashion as for simple linear regression.

Recall that in simple regression, R^{2} is the square of the correlation of the response and the variable. In multiple linear regression, it turns out that it equals $\operatorname{Cor}(Y, \hat{Y})^{2}$, the square of the correlation between the response and the fitted linear model; in fact one property of the fitted linear model is that it maximizes this correlation among all possible linear models.

An R^{2} value close to 1 indicates that the model explains a large portion of the variance in the response variable. As an example, we saw in Table 3.6 that for the Advertising data, the model that uses all three advertising media to predict sales has an R^{2} of 0.8972 . On the other hand, the model that uses only TV and radio to predict sales has an R^{2} value of 0.89719 . In other words, there is a small increase in R^{2} if we include newspaper advertising in the model that already contains TV and radio advertising, even though we saw earlier that the p-value for newspaper advertising in Table 3.4 is not significant. It turns out that R^{2} will always increase when more variables
are added to the model, even if those variables are only weakly associated with the response. This is due to the fact that adding another variable to the least squares equations must allow us to fit the training data (though not necessarily the testing data) more accurately. Thus, the R^{2} statistic, which is also computed on the training data, must increase. The fact that adding newspaper advertising to the model containing only TV and radio advertising leads to just a tiny increase in R^{2} provides additional evidence that newspaper can be dropped from the model. Essentially, newspaper provides no real improvement in the model fit to the training samples, and its inclusion will likely lead to poor results on independent test samples due to overfitting.

In contrast, the model containing only TV as a predictor had an R^{2} of 0.61 (Table 3.2). Adding radio to the model leads to a substantial improvement in R^{2}. This implies that a model that uses TV and radio expenditures to predict sales is substantially better than one that uses only TV advertising. We could further quantify this improvement by looking at the p-value for the radio coefficient in a model that contains only TV and radio as predictors.

The model that contains only TV and radio as predictors has an RSE of 1.681 , and the model that also contains newspaper as a predictor has an RSE of 1.686 (Table 3.6). In contrast, the model that contains only TV has an RSE of 3.26 (Table 3.2). This corroborates our previous conclusion that a model that uses TV and radio expenditures to predict sales is much more accurate (on the training data) than one that only uses TV spending. Furthermore, given that TV and radio expenditures are used as predictors, there is no point in also using newspaper spending as a predictor in the model. The observant reader may wonder how RSE can increase when newspaper is added to the model given that RSS must decrease. In general RSE is defined as

$$
\begin{equation*}
\mathrm{RSE}=\sqrt{\frac{1}{n-p-1} \mathrm{RSS}}, \tag{3.25}
\end{equation*}
$$

which simplifies to (3.15) for a simple linear regression. Thus, models with more variables can have higher RSE if the decrease in RSS is small relative to the increase in p.

In addition to looking at the RSE and R^{2} statistics just discussed, it can be useful to plot the data. Graphical summaries can reveal problems with a model that are not visible from numerical statistics. For example, Figure 3.5 displays a three-dimensional plot of TV and radio versus sales. We see that some observations lie above and some observations lie below the least squares regression plane. In particular, the linear model seems to overestimate sales for instances in which most of the advertising money was spent exclusively on either TV or radio. It underestimates sales for instances where the budget was split between the two media. This pronounced non-linear pattern cannot be modeled accurately using linear re-

FIGURE 3.5. For the Advertising data, a linear regression fit to sales using TV and radio as predictors. From the pattern of the residuals, we can see that there is a pronounced non-linear relationship in the data. The positive residuals (those visible above the surface), tend to lie along the 45-degree line, where TV and Radio budgets are split evenly. The negative residuals (most not visible), tend to lie away from this line, where budgets are more lopsided.
gression. It suggests a synergy or interaction effect between the advertising media, whereby combining the media together results in a bigger boost to sales than using any single medium. In Section 3.3.2, we will discuss extending the linear model to accommodate such synergistic effects through the use of interaction terms.

Four: Predictions

Once we have fit the multiple regression model, it is straightforward to apply (3.21) in order to predict the response Y on the basis of a set of values for the predictors $X_{1}, X_{2}, \ldots, X_{p}$. However, there are three sorts of uncertainty associated with this prediction.

1. The coefficient estimates $\hat{\beta}_{0}, \hat{\beta}_{1}, \ldots, \hat{\beta}_{p}$ are estimates for $\beta_{0}, \beta_{1}, \ldots, \beta_{p}$. That is, the least squares plane

$$
\hat{Y}=\hat{\beta}_{0}+\hat{\beta}_{1} X_{1}+\cdots+\hat{\beta}_{p} X_{p}
$$

is only an estimate for the true population regression plane

$$
f(X)=\beta_{0}+\beta_{1} X_{1}+\cdots+\beta_{p} X_{p}
$$

The inaccuracy in the coefficient estimates is related to the reducible error from Chapter 2. We can compute a confidence interval in order to determine how close \hat{Y} will be to $f(X)$.
2. Of course, in practice assuming a linear model for $f(X)$ is almost always an approximation of reality, so there is an additional source of potentially reducible error which we call model bias. So when we use a linear model, we are in fact estimating the best linear approximation to the true surface. However, here we will ignore this discrepancy, and operate as if the linear model were correct.
3. Even if we knew $f(X)$-that is, even if we knew the true values for $\beta_{0}, \beta_{1}, \ldots, \beta_{p}$-the response value cannot be predicted perfectly because of the random error ϵ in the model (3.21). In Chapter 2, we referred to this as the irreducible error. How much will Y vary from \hat{Y} ? We use prediction intervals to answer this question. Prediction intervals are always wider than confidence intervals, because they incorporate both the error in the estimate for $f(X)$ (the reducible error) and the uncertainty as to how much an individual point will differ from the population regression plane (the irreducible error).

We use a confidence interval to quantify the uncertainty surrounding the average sales over a large number of cities. For example, given that
confidence interval $\$ 100,000$ is spent on TV advertising and $\$ 20,000$ is spent on radio advertising in each city, the 95% confidence interval is $[10,985,11,528]$. We interpret this to mean that 95% of intervals of this form will contain the true value of $f(X) .{ }^{8}$ On the other hand, a prediction interval can be used to quantify the uncertainty surrounding sales for a particular city. Given that \$100,000 is spent on TV advertising and $\$ 20,000$ is spent on radio advertising in that city the 95% prediction interval is $[7,930,14,580]$. We interpret this to mean that 95% of intervals of this form will contain the true value of Y for this city. Note that both intervals are centered at 11,256 , but that the prediction interval is substantially wider than the confidence interval, reflecting the increased uncertainty about sales for a given city in comparison to the average sales over many locations.

3.3 Other Considerations in the Regression Model

3.3.1 Qualitative Predictors

In our discussion so far, we have assumed that all variables in our linear regression model are quantitative. But in practice, this is not necessarily the case; often some predictors are qualitative.

[^7]For example, the Credit data set displayed in Figure 3.6 records balance (average credit card debt for a number of individuals) as well as several quantitative predictors: age, cards (number of credit cards), education (years of education), income (in thousands of dollars), limit (credit limit), and rating (credit rating). Each panel of Figure 3.6 is a scatterplot for a pair of variables whose identities are given by the corresponding row and column labels. For example, the scatterplot directly to the right of the word "Balance" depicts balance versus age, while the plot directly to the right of "Age" corresponds to age versus cards. In addition to these quantitative variables, we also have four qualitative variables: gender, student (student status), status (marital status), and ethnicity (Caucasian, African American or Asian).

FIGURE 3.6. The Credit data set contains information about balance, age, cards, education, income, limit, and rating for a number of potential customers.

	Coefficient	Std. error	t-statistic	p-value
Intercept	509.80	33.13	15.389	<0.0001
gender [Female]	19.73	46.05	0.429	0.6690

TABLE 3.7. Least squares coefficient estimates associated with the regression of balance onto gender in the Credit data set. The linear model is given in (3.27). That is, gender is encoded as a dummy variable, as in (3.26).

Predictors with Only Two Levels

Suppose that we wish to investigate differences in credit card balance between males and females, ignoring the other variables for the moment. If a qualitative predictor (also known as a factor) only has two levels, or possible values, then incorporating it into a regression model is very simple. We simply create an indicator or dummy variable that takes on two possible numerical values. For example, based on the gender variable, we can create
factor level dummy variable a new variable that takes the form

$$
x_{i}= \begin{cases}1 & \text { if } i \text { th person is female } \tag{3.26}\\ 0 & \text { if } i \text { th person is male }\end{cases}
$$

and use this variable as a predictor in the regression equation. This results in the model

$$
y_{i}=\beta_{0}+\beta_{1} x_{i}+\epsilon_{i}= \begin{cases}\beta_{0}+\beta_{1}+\epsilon_{i} & \text { if } i \text { th person is female } \tag{3.27}\\ \beta_{0}+\epsilon_{i} & \text { if } i \text { th person is male }\end{cases}
$$

Now β_{0} can be interpreted as the average credit card balance among males, $\beta_{0}+\beta_{1}$ as the average credit card balance among females, and β_{1} as the average difference in credit card balance between females and males.

Table 3.7 displays the coefficient estimates and other information associated with the model (3.27). The average credit card debt for males is estimated to be $\$ 509.80$, whereas females are estimated to carry $\$ 19.73$ in additional debt for a total of $\$ 509.80+\$ 19.73=\$ 529.53$. However, we notice that the p-value for the dummy variable is very high. This indicates that there is no statistical evidence of a difference in average credit card balance between the genders.

The decision to code females as 1 and males as 0 in (3.27) is arbitrary, and has no effect on the regression fit, but does alter the interpretation of the coefficients. If we had coded males as 1 and females as 0 , then the estimates for β_{0} and β_{1} would have been 529.53 and -19.73 , respectively, leading once again to a prediction of credit card debt of $\$ 529.53-\$ 19.73=\$ 509.80$ for males and a prediction of $\$ 529.53$ for females. Alternatively, instead of a $0 / 1$ coding scheme, we could create a dummy variable

$$
x_{i}= \begin{cases}1 & \text { if } i \text { th person is female } \\ -1 & \text { if } i \text { th person is male }\end{cases}
$$

and use this variable in the regression equation. This results in the model

$$
y_{i}=\beta_{0}+\beta_{1} x_{i}+\epsilon_{i}= \begin{cases}\beta_{0}+\beta_{1}+\epsilon_{i} & \text { if } i \text { th person is female } \\ \beta_{0}-\beta_{1}+\epsilon_{i} & \text { if } i \text { th person is male }\end{cases}
$$

Now β_{0} can be interpreted as the overall average credit card balance (ignoring the gender effect), and β_{1} is the amount that females are above the average and males are below the average. In this example, the estimate for β_{0} would be $\$ 519.665$, halfway between the male and female averages of $\$ 509.80$ and $\$ 529.53$. The estimate for β_{1} would be $\$ 9.865$, which is half of $\$ 19.73$, the average difference between females and males. It is important to note that the final predictions for the credit balances of males and females will be identical regardless of the coding scheme used. The only difference is in the way that the coefficients are interpreted.

Qualitative Predictors with More than Two Levels

When a qualitative predictor has more than two levels, a single dummy variable cannot represent all possible values. In this situation, we can create additional dummy variables. For example, for the ethnicity variable we create two dummy variables. The first could be

$$
x_{i 1}= \begin{cases}1 & \text { if } i \text { th person is Asian } \tag{3.28}\\ 0 & \text { if } i \text { th person is not Asian }\end{cases}
$$

and the second could be

$$
x_{i 2}= \begin{cases}1 & \text { if } i \text { th person is Caucasian } \tag{3.29}\\ 0 & \text { if } i \text { th person is not Caucasian }\end{cases}
$$

Then both of these variables can be used in the regression equation, in order to obtain the model

$$
y_{i}=\beta_{0}+\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+\epsilon_{i}= \begin{cases}\beta_{0}+\beta_{1}+\epsilon_{i} & \text { if } i \text { th person is Asian } \tag{3.30}\\ \beta_{0}+\beta_{2}+\epsilon_{i} & \text { if } i \text { th person is Caucasian } \\ \beta_{0}+\epsilon_{i} & \text { if } i \text { th person is African American. }\end{cases}
$$

Now β_{0} can be interpreted as the average credit card balance for African Americans, β_{1} can be interpreted as the difference in the average balance between the Asian and African American categories, and β_{2} can be interpreted as the difference in the average balance between the Caucasian and

	Coefficient	Std. error	t-statistic	p-value
Intercept	531.00	46.32	11.464	<0.0001
ethnicity [Asian]	-18.69	65.02	-0.287	0.7740
ethnicity [Caucasian]	-12.50	56.68	-0.221	0.8260

TABLE 3.8. Least squares coefficient estimates associated with the regression of balance onto ethnicity in the Credit data set. The linear model is given in (3.30). That is, ethnicity is encoded via two dummy variables (3.28) and (3.29).

African American categories. There will always be one fewer dummy variable than the number of levels. The level with no dummy variable-African American in this example - is known as the baseline.
From Table 3.8, we see that the estimated balance for the baseline, African American, is $\$ 531.00$. It is estimated that the Asian category will have $\$ 18.69$ less debt than the African American category, and that the Caucasian category will have $\$ 12.50$ less debt than the African American category. However, the p-values associated with the coefficient estimates for the two dummy variables are very large, suggesting no statistical evidence of a real difference in credit card balance between the ethnicities. Once again, the level selected as the baseline category is arbitrary, and the final predictions for each group will be the same regardless of this choice. However, the coefficients and their p-values do depend on the choice of dummy variable coding. Rather than rely on the individual coefficients, we can use an F-test to test $H_{0}: \beta_{1}=\beta_{2}=0$; this does not depend on the coding. This F-test has a p-value of 0.96 , indicating that we cannot reject the null hypothesis that there is no relationship between balance and ethnicity.

Using this dummy variable approach presents no difficulties when incorporating both quantitative and qualitative predictors. For example, to regress balance on both a quantitative variable such as income and a qualitative variable such as student, we must simply create a dummy variable for student and then fit a multiple regression model using income and the dummy variable as predictors for credit card balance.

There are many different ways of coding qualitative variables besides the dummy variable approach taken here. All of these approaches lead to equivalent model fits, but the coefficients are different and have different interpretations, and are designed to measure particular contrasts. This topic is beyond the scope of the book, and so we will not pursue it further.

3.3.2 Extensions of the Linear Model

The standard linear regression model (3.19) provides interpretable results and works quite well on many real-world problems. However, it makes several highly restrictive assumptions that are often violated in practice. Two of the most important assumptions state that the relationship between the predictors and response are additive and linear. The additive assumption
means that the effect of changes in a predictor X_{j} on the response Y is independent of the values of the other predictors. The linear assumption states that the change in the response Y due to a one-unit change in X_{j} is constant, regardless of the value of X_{j}. In this book, we examine a number of sophisticated methods that relax these two assumptions. Here, we briefly examine some common classical approaches for extending the linear model.

Removing the Additive Assumption

In our previous analysis of the Advertising data, we concluded that both TV and radio seem to be associated with sales. The linear models that formed the basis for this conclusion assumed that the effect on sales of increasing one advertising medium is independent of the amount spent on the other media. For example, the linear model (3.20) states that the average effect on sales of a one-unit increase in TV is always β_{1}, regardless of the amount spent on radio.

However, this simple model may be incorrect. Suppose that spending money on radio advertising actually increases the effectiveness of TV advertising, so that the slope term for TV should increase as radio increases. In this situation, given a fixed budget of $\$ 100,000$, spending half on radio and half on TV may increase sales more than allocating the entire amount to either TV or to radio. In marketing, this is known as a synergy effect, and in statistics it is referred to as an interaction effect. Figure 3.5 suggests that such an effect may be present in the advertising data. Notice that when levels of either TV or radio are low, then the true sales are lower than predicted by the linear model. But when advertising is split between the two media, then the model tends to underestimate sales.

Consider the standard linear regression model with two variables,

$$
Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\epsilon .
$$

According to this model, if we increase X_{1} by one unit, then Y will increase by an average of β_{1} units. Notice that the presence of X_{2} does not alter this statement - that is, regardless of the value of X_{2}, a one-unit increase in X_{1} will lead to a β_{1}-unit increase in Y. One way of extending this model to allow for interaction effects is to include a third predictor, called an interaction term, which is constructed by computing the product of X_{1} and X_{2}. This results in the model

$$
\begin{equation*}
Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{3} X_{1} X_{2}+\epsilon \tag{3.31}
\end{equation*}
$$

How does inclusion of this interaction term relax the additive assumption? Notice that (3.31) can be rewritten as

$$
\begin{align*}
Y & =\beta_{0}+\left(\beta_{1}+\beta_{3} X_{2}\right) X_{1}+\beta_{2} X_{2}+\epsilon \tag{3.32}\\
& =\beta_{0}+\tilde{\beta}_{1} X_{1}+\beta_{2} X_{2}+\epsilon
\end{align*}
$$

	Coefficient	Std. error	t-statistic	p-value
Intercept	6.7502	0.248	27.23	<0.0001
TV	0.0191	0.002	12.70	<0.0001
radio	0.0289	0.009	3.24	0.0014
TV \times radio	0.0011	0.000	20.73	<0.0001

TABLE 3.9. For the Advertising data, least squares coefficient estimates associated with the regression of sales onto TV and radio, with an interaction term, as in (3.33).
where $\tilde{\beta}_{1}=\beta_{1}+\beta_{3} X_{2}$. Since $\tilde{\beta}_{1}$ changes with X_{2}, the effect of X_{1} on Y is no longer constant: adjusting X_{2} will change the impact of X_{1} on Y.

For example, suppose that we are interested in studying the productivity of a factory. We wish to predict the number of units produced on the basis of the number of production lines and the total number of workers. It seems likely that the effect of increasing the number of production lines will depend on the number of workers, since if no workers are available to operate the lines, then increasing the number of lines will not increase production. This suggests that it would be appropriate to include an interaction term between lines and workers in a linear model to predict units. Suppose that when we fit the model, we obtain

$$
\begin{aligned}
\text { units } & \approx 1.2+3.4 \times \text { lines }+0.22 \times \text { workers }+1.4 \times(\text { lines } \times \text { workers }) \\
& =1.2+(3.4+1.4 \times \text { workers }) \times \text { lines }+0.22 \times \text { workers }
\end{aligned}
$$

In other words, adding an additional line will increase the number of units produced by $3.4+1.4 \times$ workers. Hence the more workers we have, the stronger will be the effect of lines.

We now return to the Advertising example. A linear model that uses radio, TV, and an interaction between the two to predict sales takes the form

$$
\begin{align*}
\text { sales } & =\beta_{0}+\beta_{1} \times \mathrm{TV}+\beta_{2} \times \text { radio }+\beta_{3} \times(\text { radio } \times \mathrm{TV})+\epsilon \\
& =\beta_{0}+\left(\beta_{1}+\beta_{3} \times \text { radio }\right) \times \mathrm{TV}+\beta_{2} \times \text { radio }+\epsilon \tag{3.33}
\end{align*}
$$

We can interpret β_{3} as the increase in the effectiveness of TV advertising for a one unit increase in radio advertising (or vice-versa). The coefficients that result from fitting the model (3.33) are given in Table 3.9.

The results in Table 3.9 strongly suggest that the model that includes the interaction term is superior to the model that contains only main effects. The p-value for the interaction term, $\mathrm{TV} \times$ radio, is extremely low, indicating that there is strong evidence for $H_{a}: \beta_{3} \neq 0$. In other words, it is clear that the true relationship is not additive. The R^{2} for the model (3.33) is 96.8%, compared to only 89.7% for the model that predicts sales using TV and radio without an interaction term. This means that $(96.8-89.7) /(100-$ $89.7)=69 \%$ of the variability in sales that remains after fitting the additive model has been explained by the interaction term. The coefficient
estimates in Table 3.9 suggest that an increase in TV advertising of $\$ 1,000$ is associated with increased sales of $\left(\hat{\beta}_{1}+\hat{\beta}_{3} \times\right.$ radio $) \times 1,000=19+1.1 \times$ radio units. And an increase in radio advertising of $\$ 1,000$ will be associated with an increase in sales of $\left(\hat{\beta}_{2}+\hat{\beta}_{3} \times \mathrm{TV}\right) \times 1,000=29+1.1 \times \mathrm{TV}$ units.

In this example, the p-values associated with TV, radio, and the interaction term all are statistically significant (Table 3.9), and so it is obvious that all three variables should be included in the model. However, it is sometimes the case that an interaction term has a very small p-value, but the associated main effects (in this case, TV and radio) do not. The hierarchical principle states that if we include an interaction in a model, we should also include the main effects, even if the p-values associated with
hierarchical principle their coefficients are not significant. In other words, if the interaction between X_{1} and X_{2} seems important, then we should include both X_{1} and X_{2} in the model even if their coefficient estimates have large p-values. The rationale for this principle is that if $X_{1} \times X_{2}$ is related to the response, then whether or not the coefficients of X_{1} or X_{2} are exactly zero is of little interest. Also $X_{1} \times X_{2}$ is typically correlated with X_{1} and X_{2}, and so leaving them out tends to alter the meaning of the interaction.

In the previous example, we considered an interaction between TV and radio, both of which are quantitative variables. However, the concept of interactions applies just as well to qualitative variables, or to a combination of quantitative and qualitative variables. In fact, an interaction between a qualitative variable and a quantitative variable has a particularly nice interpretation. Consider the Credit data set from Section 3.3.1, and suppose that we wish to predict balance using the income (quantitative) and student (qualitative) variables. In the absence of an interaction term, the model takes the form

$$
\begin{align*}
\text { balance }_{i} & \approx \beta_{0}+\beta_{1} \times \text { income }_{i}+ \begin{cases}\beta_{2} & \text { if } i \text { th person is a student } \\
0 & \text { if } i \text { th person is not a student }\end{cases} \\
& =\beta_{1} \times \text { income }_{i}+ \begin{cases}\beta_{0}+\beta_{2} & \text { if } i \text { th person is a student } \\
\beta_{0} & \text { if } i \text { th person is not a student. }\end{cases} \tag{3.34}
\end{align*}
$$

Notice that this amounts to fitting two parallel lines to the data, one for students and one for non-students. The lines for students and non-students have different intercepts, $\beta_{0}+\beta_{2}$ versus β_{0}, but the same slope, β_{1}. This is illustrated in the left-hand panel of Figure 3.7. The fact that the lines are parallel means that the average effect on balance of a one-unit increase in income does not depend on whether or not the individual is a student. This represents a potentially serious limitation of the model, since in fact a change in income may have a very different effect on the credit card balance of a student versus a non-student.

This limitation can be addressed by adding an interaction variable, created by multiplying income with the dummy variable for student. Our

FIGURE 3.7. For the Credit data, the least squares lines are shown for prediction of balance from income for students and non-students. Left: The model (3.34) was fit. There is no interaction between income and student. Right: The model (3.35) was fit. There is an interaction term between income and student.
model now becomes

$$
\begin{align*}
\text { balance }_{i} & \approx \beta_{0}+\beta_{1} \times \text { income }_{i}+ \begin{cases}\beta_{2}+\beta_{3} \times \text { income }_{i} & \text { if student } \\
0 & \text { if not student }\end{cases} \\
& = \begin{cases}\left(\beta_{0}+\beta_{2}\right)+\left(\beta_{1}+\beta_{3}\right) \times \text { income }_{i} & \text { if student } \\
\beta_{0}+\beta_{1} \times \text { income }_{i} & \text { if not student }\end{cases} \tag{3.35}
\end{align*}
$$

Once again, we have two different regression lines for the students and the non-students. But now those regression lines have different intercepts, $\beta_{0}+\beta_{2}$ versus β_{0}, as well as different slopes, $\beta_{1}+\beta_{3}$ versus β_{1}. This allows for the possibility that changes in income may affect the credit card balances of students and non-students differently. The right-hand panel of Figure 3.7 shows the estimated relationships between income and balance for students and non-students in the model (3.35). We note that the slope for students is lower than the slope for non-students. This suggests that increases in income are associated with smaller increases in credit card balance among students as compared to non-students.

Non-linear Relationships

As discussed previously, the linear regression model (3.19) assumes a linear relationship between the response and predictors. But in some cases, the true relationship between the response and the predictors may be nonlinear. Here we present a very simple way to directly extend the linear model to accommodate non-linear relationships, using polynomial regression. In later chapters, we will present more complex approaches for performing non-linear fits in more general settings.

Consider Figure 3.8, in which the mpg (gas mileage in miles per gallon) versus horsepower is shown for a number of cars in the Auto data set. The

FIGURE 3.8. The Auto data set. For a number of cars, mpg and horsepower are shown. The linear regression fit is shown in orange. The linear regression fit for a model that includes horsepower ${ }^{2}$ is shown as a blue curve. The linear regression fit for a model that includes all polynomials of horsepower up to fifth-degree is shown in green.
orange line represents the linear regression fit. There is a pronounced relationship between mpg and horsepower, but it seems clear that this relationship is in fact non-linear: the data suggest a curved relationship. A simple approach for incorporating non-linear associations in a linear model is to include transformed versions of the predictors in the model. For example, the points in Figure 3.8 seem to have a quadratic shape, suggesting that a model of the form

$$
\begin{equation*}
\operatorname{mpg}=\beta_{0}+\beta_{1} \times \text { horsepower }+\beta_{2} \times \text { horsepower }{ }^{2}+\epsilon \tag{3.36}
\end{equation*}
$$

may provide a better fit. Equation 3.36 involves predicting mpg using a non-linear function of horsepower. But it is still a linear model! That is, (3.36) is simply a multiple linear regression model with $X_{1}=$ horsepower and $X_{2}=$ horsepower ${ }^{2}$. So we can use standard linear regression software to estimate β_{0}, β_{1}, and β_{2} in order to produce a non-linear fit. The blue curve in Figure 3.8 shows the resulting quadratic fit to the data. The quadratic fit appears to be substantially better than the fit obtained when just the linear term is included. The R^{2} of the quadratic fit is 0.688 , compared to 0.606 for the linear fit, and the p-value in Table 3.10 for the quadratic term is highly significant.

If including horsepower ${ }^{2}$ led to such a big improvement in the model, why not include horsepower ${ }^{3}$, horsepower ${ }^{4}$, or even horsepower ${ }^{5}$? The green curve

	Coefficient	Std. error	t-statistic	p-value
Intercept	56.9001	1.8004	31.6	<0.0001
horsepower	-0.4662	0.0311	-15.0	<0.0001
horsepower	20.0012	0.0001	10.1	<0.0001

TABLE 3.10. For the Auto data set, least squares coefficient estimates associated with the regression of mpg onto horsepower and horsepower ${ }^{2}$.
in Figure 3.8 displays the fit that results from including all polynomials up to fifth degree in the model (3.36). The resulting fit seems unnecessarily wiggly - that is, it is unclear that including the additional terms really has led to a better fit to the data.

The approach that we have just described for extending the linear model to accommodate non-linear relationships is known as polynomial regression, since we have included polynomial functions of the predictors in the regression model. We further explore this approach and other non-linear extensions of the linear model in Chapter 7.

3.3.3 Potential Problems

When we fit a linear regression model to a particular data set, many problems may occur. Most common among these are the following:

1. Non-linearity of the response-predictor relationships.
2. Correlation of error terms.
3. Non-constant variance of error terms.
4. Outliers.
5. High-leverage points.
6. Collinearity.

In practice, identifying and overcoming these problems is as much an art as a science. Many pages in countless books have been written on this topic. Since the linear regression model is not our primary focus here, we will provide only a brief summary of some key points.

1. Non-linearity of the Data

The linear regression model assumes that there is a straight-line relationship between the predictors and the response. If the true relationship is far from linear, then virtually all of the conclusions that we draw from the fit are suspect. In addition, the prediction accuracy of the model can be significantly reduced.

Residual plots are a useful graphical tool for identifying non-linearity. Given a simple linear regression model, we can plot the residuals, $e_{i}=$ $y_{i}-\hat{y}_{i}$, versus the predictor x_{i}. In the case of a multiple regression model,
residual plot

FIGURE 3.9. Plots of residuals versus predicted (or fitted) values for the Auto data set. In each plot, the red line is a smooth fit to the residuals, intended to make it easier to identify a trend. Left: A linear regression of mpg on horsepower. A strong pattern in the residuals indicates non-linearity in the data. Right: A linear regression of mpg on horsepower and horsepower ${ }^{2}$. There is little pattern in the residuals.
since there are multiple predictors, we instead plot the residuals versus the predicted (or fitted) values \hat{y}_{i}. Ideally, the residual plot will show no discernible pattern. The presence of a pattern may indicate a problem with some aspect of the linear model.

The left panel of Figure 3.9 displays a residual plot from the linear regression of mpg onto horsepower on the Auto data set that was illustrated in Figure 3.8. The red line is a smooth fit to the residuals, which is displayed in order to make it easier to identify any trends. The residuals exhibit a clear U-shape, which provides a strong indication of non-linearity in the data. In contrast, the right-hand panel of Figure 3.9 displays the residual plot that results from the model (3.36), which contains a quadratic term. There appears to be little pattern in the residuals, suggesting that the quadratic term improves the fit to the data.

If the residual plot indicates that there are non-linear associations in the data, then a simple approach is to use non-linear transformations of the predictors, such as $\log X, \sqrt{X}$, and X^{2}, in the regression model. In the later chapters of this book, we will discuss other more advanced non-linear approaches for addressing this issue.

2. Correlation of Error Terms

An important assumption of the linear regression model is that the error terms, $\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{n}$, are uncorrelated. What does this mean? For instance, if the errors are uncorrelated, then the fact that ϵ_{i} is positive provides little or no information about the sign of ϵ_{i+1}. The standard errors that are computed for the estimated regression coefficients or the fitted values
are based on the assumption of uncorrelated error terms. If in fact there is correlation among the error terms, then the estimated standard errors will tend to underestimate the true standard errors. As a result, confidence and prediction intervals will be narrower than they should be. For example, a 95% confidence interval may in reality have a much lower probability than 0.95 of containing the true value of the parameter. In addition, p-values associated with the model will be lower than they should be; this could cause us to erroneously conclude that a parameter is statistically significant. In short, if the error terms are correlated, we may have an unwarranted sense of confidence in our model.

As an extreme example, suppose we accidentally doubled our data, leading to observations and error terms identical in pairs. If we ignored this, our standard error calculations would be as if we had a sample of size $2 n$, when in fact we have only n samples. Our estimated parameters would be the same for the $2 n$ samples as for the n samples, but the confidence intervals would be narrower by a factor of $\sqrt{2}$!

Why might correlations among the error terms occur? Such correlations frequently occur in the context of time series data, which consists of observations for which measurements are obtained at discrete points in time. In many cases, observations that are obtained at adjacent time points will have positively correlated errors. In order to determine if this is the case for a given data set, we can plot the residuals from our model as a function of time. If the errors are uncorrelated, then there should be no discernible pattern. On the other hand, if the error terms are positively correlated, then we may see tracking in the residuals - that is, adjacent residuals may have similar values. Figure 3.10 provides an illustration. In the top panel, we see the residuals from a linear regression fit to data generated with uncorrelated errors. There is no evidence of a time-related trend in the residuals. In contrast, the residuals in the bottom panel are from a data set in which adjacent errors had a correlation of 0.9. Now there is a clear pattern in the residuals-adjacent residuals tend to take on similar values. Finally, the center panel illustrates a more moderate case in which the residuals had a correlation of 0.5 . There is still evidence of tracking, but the pattern is less clear.

Many methods have been developed to properly take account of correlations in the error terms in time series data. Correlation among the error terms can also occur outside of time series data. For instance, consider a study in which individuals' heights are predicted from their weights. The assumption of uncorrelated errors could be violated if some of the individuals in the study are members of the same family, or eat the same diet, or have been exposed to the same environmental factors. In general, the assumption of uncorrelated errors is extremely important for linear regression as well as for other statistical methods, and good experimental design is crucial in order to mitigate the risk of such correlations.

FIGURE 3.10. Plots of residuals from simulated time series data sets generated with differing levels of correlation ρ between error terms for adjacent time points.

3. Non-constant Variance of Error Terms

Another important assumption of the linear regression model is that the error terms have a constant variance, $\operatorname{Var}\left(\epsilon_{i}\right)=\sigma^{2}$. The standard errors, confidence intervals, and hypothesis tests associated with the linear model rely upon this assumption.

Unfortunately, it is often the case that the variances of the error terms are non-constant. For instance, the variances of the error terms may increase with the value of the response. One can identify non-constant variances in the errors, or heteroscedasticity, from the presence of a funnel shape in the residual plot. An example is shown in the left-hand panel of Figure 3.11, in which the magnitude of the residuals tends to increase with the fitted values. When faced with this problem, one possible solution is to transform the response Y using a concave function such as $\log Y$ or \sqrt{Y}. Such a transformation results in a greater amount of shrinkage of the larger responses, leading to a reduction in heteroscedasticity. The right-hand panel of Figure 3.11 displays the residual plot after transforming the response

FIGURE 3.11. Residual plots. In each plot, the red line is a smooth fit to the residuals, intended to make it easier to identify a trend. The blue lines track the outer quantiles of the residuals, and emphasize patterns. Left: The funnel shape indicates heteroscedasticity. Right: The response has been log transformed, and there is now no evidence of heteroscedasticity.
using $\log Y$. The residuals now appear to have constant variance, though there is some evidence of a slight non-linear relationship in the data.

Sometimes we have a good idea of the variance of each response. For example, the i th response could be an average of n_{i} raw observations. If each of these raw observations is uncorrelated with variance σ^{2}, then their average has variance $\sigma_{i}^{2}=\sigma^{2} / n_{i}$. In this case a simple remedy is to fit our model by weighted least squares, with weights proportional to the inverse variances-i.e. $w_{i}=n_{i}$ in this case. Most linear regression software allows
weighted least squares for observation weights.

4. Outliers

An outlier is a point for which y_{i} is far from the value predicted by the model. Outliers can arise for a variety of reasons, such as incorrect recording of an observation during data collection.

The red point (observation 20) in the left-hand panel of Figure 3.12 illustrates a typical outlier. The red solid line is the least squares regression fit, while the blue dashed line is the least squares fit after removal of the outlier. In this case, removing the outlier has little effect on the least squares line: it leads to almost no change in the slope, and a miniscule reduction in the intercept. It is typical for an outlier that does not have an unusual predictor value to have little effect on the least squares fit. However, even if an outlier does not have much effect on the least squares fit, it can cause other problems. For instance, in this example, the RSE is 1.09 when the outlier is included in the regression, but it is only 0.77 when the outlier is removed. Since the RSE is used to compute all confidence intervals and

FIGURE 3.12. Left: The least squares regression line is shown in red, and the regression line after removing the outlier is shown in blue. Center: The residual plot clearly identifies the outlier. Right: The outlier has a studentized residual of 6 ; typically we expect values between -3 and 3.
p-values, such a dramatic increase caused by a single data point can have implications for the interpretation of the fit. Similarly, inclusion of the outlier causes the R^{2} to decline from 0.892 to 0.805 .

Residual plots can be used to identify outliers. In this example, the outlier is clearly visible in the residual plot illustrated in the center panel of Figure 3.12. But in practice, it can be difficult to decide how large a residual needs to be before we consider the point to be an outlier. To address this problem, instead of plotting the residuals, we can plot the studentized residuals, computed by dividing each residual e_{i} by its estimated standard error. Observations whose studentized residuals are greater than 3 in abso-
studentized
residual lute value are possible outliers. In the right-hand panel of Figure 3.12, the outlier's studentized residual exceeds 6 , while all other observations have studentized residuals between -2 and 2 .

If we believe that an outlier has occurred due to an error in data collection or recording, then one solution is to simply remove the observation. However, care should be taken, since an outlier may instead indicate a deficiency with the model, such as a missing predictor.

5. High Leverage Points

We just saw that outliers are observations for which the response y_{i} is unusual given the predictor x_{i}. In contrast, observations with high leverage have an unusual value for x_{i}. For example, observation 41 in the left-hand panel of Figure 3.13 has high leverage, in that the predictor value for this observation is large relative to the other observations. (Note that the data displayed in Figure 3.13 are the same as the data displayed in Figure 3.12, but with the addition of a single high leverage observation.) The red solid line is the least squares fit to the data, while the blue dashed line is the fit produced when observation 41 is removed. Comparing the left-hand panels of Figures 3.12 and 3.13, we observe that removing the high leverage observation has a much more substantial impact on the least squares line

FIGURE 3.13. Left: Observation 41 is a high leverage point, while 20 is not. The red line is the fit to all the data, and the blue line is the fit with observation 41 removed. Center: The red observation is not unusual in terms of its X_{1} value or its X_{2} value, but still falls outside the bulk of the data, and hence has high leverage. Right: Observation 41 has a high leverage and a high residual.
than removing the outlier. In fact, high leverage observations tend to have a sizable impact on the estimated regression line. It is cause for concern if the least squares line is heavily affected by just a couple of observations, because any problems with these points may invalidate the entire fit. For this reason, it is important to identify high leverage observations.

In a simple linear regression, high leverage observations are fairly easy to identify, since we can simply look for observations for which the predictor value is outside of the normal range of the observations. But in a multiple linear regression with many predictors, it is possible to have an observation that is well within the range of each individual predictor's values, but that is unusual in terms of the full set of predictors. An example is shown in the center panel of Figure 3.13, for a data set with two predictors, X_{1} and X_{2}. Most of the observations' predictor values fall within the blue dashed ellipse, but the red observation is well outside of this range. But neither its value for X_{1} nor its value for X_{2} is unusual. So if we examine just X_{1} or just X_{2}, we will fail to notice this high leverage point. This problem is more pronounced in multiple regression settings with more than two predictors, because then there is no simple way to plot all dimensions of the data simultaneously.

In order to quantify an observation's leverage, we compute the leverage statistic. A large value of this statistic indicates an observation with high leverage. For a simple linear regression,

$$
\begin{equation*}
h_{i}=\frac{1}{n}+\frac{\left(x_{i}-\bar{x}\right)^{2}}{\sum_{i^{\prime}=1}^{n}\left(x_{i^{\prime}}-\bar{x}\right)^{2}} . \tag{3.37}
\end{equation*}
$$

It is clear from this equation that h_{i} increases with the distance of x_{i} from \bar{x}. There is a simple extension of h_{i} to the case of multiple predictors, though we do not provide the formula here. The leverage statistic h_{i} is always between $1 / n$ and 1 , and the average leverage for all the observations is always equal to $(p+1) / n$. So if a given observation has a leverage statistic

FIGURE 3.14. Scatterplots of the observations from the Credit data set. Left: A plot of age versus limit. These two variables are not collinear. Right: A plot of rating versus limit. There is high collinearity.
that greatly exceeds $(p+1) / n$, then we may suspect that the corresponding point has high leverage.

The right-hand panel of Figure 3.13 provides a plot of the studentized residuals versus h_{i} for the data in the left-hand panel of Figure 3.13. Observation 41 stands out as having a very high leverage statistic as well as a high studentized residual. In other words, it is an outlier as well as a high leverage observation. This is a particularly dangerous combination! This plot also reveals the reason that observation 20 had relatively little effect on the least squares fit in Figure 3.12: it has low leverage.

6. Collinearity

Collinearity refers to the situation in which two or more predictor variables are closely related to one another. The concept of collinearity is illustrated in Figure 3.14 using the Credit data set. In the left-hand panel of Figure 3.14, the two predictors limit and age appear to have no obvious relationship. In contrast, in the right-hand panel of Figure 3.14, the predictors limit and rating are very highly correlated with each other, and we say that they are collinear. The presence of collinearity can pose problems in the regression context, since it can be difficult to separate out the individual effects of collinear variables on the response. In other words, since limit and rating tend to increase or decrease together, it can be difficult to determine how each one separately is associated with the response, balance.

Figure 3.15 illustrates some of the difficulties that can result from collinearity. The left-hand panel of Figure 3.15 is a contour plot of the RSS (3.22) associated with different possible coefficient estimates for the regression of balance on limit and age. Each ellipse represents a set of coefficients that correspond to the same RSS, with ellipses nearest to the center taking on the lowest values of RSS. The black dots and associated dashed

FIGURE 3.15. Contour plots for the RSS values as a function of the parameters β for various regressions involving the Credit data set. In each plot, the black dots represent the coefficient values corresponding to the minimum RSS. Left: A contour plot of $R S S$ for the regression of balance onto age and limit. The minimum value is well defined. Right: A contour plot of RSS for the regression of balance onto rating and limit. Because of the collinearity, there are many pairs $\left(\beta_{\text {Limit }}, \beta_{\text {Rating }}\right)$ with a similar value for $R S S$.
lines represent the coefficient estimates that result in the smallest possible RSS - in other words, these are the least squares estimates. The axes for limit and age have been scaled so that the plot includes possible coefficient estimates that are up to four standard errors on either side of the least squares estimates. Thus the plot includes all plausible values for the coefficients. For example, we see that the true limit coefficient is almost certainly somewhere between 0.15 and 0.20 .

In contrast, the right-hand panel of Figure 3.15 displays contour plots of the RSS associated with possible coefficient estimates for the regression of balance onto limit and rating, which we know to be highly collinear. Now the contours run along a narrow valley; there is a broad range of values for the coefficient estimates that result in equal values for RSS. Hence a small change in the data could cause the pair of coefficient values that yield the smallest RSS - that is, the least squares estimates - to move anywhere along this valley. This results in a great deal of uncertainty in the coefficient estimates. Notice that the scale for the limit coefficient now runs from roughly -0.2 to 0.2 ; this is an eight-fold increase over the plausible range of the limit coefficient in the regression with age. Interestingly, even though the limit and rating coefficients now have much more individual uncertainty, they will almost certainly lie somewhere in this contour valley. For example, we would not expect the true value of the limit and rating coefficients to be -0.1 and 1 respectively, even though such a value is plausible for each coefficient individually.

		Coefficient	Std. error	t-statistic	p-value
Model 1	Intercept	-173.411	43.828	-3.957	<0.0001
	age	-2.292	0.672	-3.407	0.0007
	limit	0.173	0.005	34.496	<0.0001
	Intercept	-377.537	45.254	-8.343	<0.0001
Model 2	rating	2.202	0.952	2.312	0.0213
	limit	0.025	0.064	0.384	0.7012

TABLE 3.11. The results for two multiple regression models involving the Credit data set are shown. Model 1 is a regression of balance on age and limit, and Model 2 a regression of balance on rating and limit. The standard error of $\hat{\beta}_{\text {limit }}$ increases 12-fold in the second regression, due to collinearity.

Since collinearity reduces the accuracy of the estimates of the regression coefficients, it causes the standard error for $\hat{\beta}_{j}$ to grow. Recall that the t-statistic for each predictor is calculated by dividing $\hat{\beta}_{j}$ by its standard error. Consequently, collinearity results in a decline in the t-statistic. As a result, in the presence of collinearity, we may fail to reject $H_{0}: \beta_{j}=0$. This means that the power of the hypothesis test-the probability of correctly detecting a non-zero coefficient-is reduced by collinearity.
Table 3.11 compares the coefficient estimates obtained from two separate multiple regression models. The first is a regression of balance on age and limit, and the second is a regression of balance on rating and limit. In the first regression, both age and limit are highly significant with very small pvalues. In the second, the collinearity between limit and rating has caused the standard error for the limit coefficient estimate to increase by a factor of 12 and the p-value to increase to 0.701 . In other words, the importance of the limit variable has been masked due to the presence of collinearity. To avoid such a situation, it is desirable to identify and address potential collinearity problems while fitting the model.

A simple way to detect collinearity is to look at the correlation matrix of the predictors. An element of this matrix that is large in absolute value indicates a pair of highly correlated variables, and therefore a collinearity problem in the data. Unfortunately, not all collinearity problems can be detected by inspection of the correlation matrix: it is possible for collinearity to exist between three or more variables even if no pair of variables has a particularly high correlation. We call this situation multicollinearity. Instead of inspecting the correlation matrix, a better way to assess multicollinearity is to compute the variance inflation factor (VIF). The VIF is the ratio of the variance of $\hat{\beta}_{j}$ when fitting the full model divided by the variance of $\hat{\beta}_{j}$ if fit on its own. The smallest possible value for VIF is 1 , which indicates the complete absence of collinearity. Typically in practice there is a small amount of collinearity among the predictors. As a rule of thumb, a VIF value that exceeds 5 or 10 indicates a problematic amount of
multicollinearity
variance inflation factor
collinearity. The VIF for each variable can be computed using the formula

$$
\operatorname{VIF}\left(\hat{\beta}_{j}\right)=\frac{1}{1-R_{X_{j} \mid X_{-j}}^{2}}
$$

where $R_{X_{j} \mid X_{-j}}^{2}$ is the R^{2} from a regression of X_{j} onto all of the other predictors. If $R_{X_{j} \mid X_{-j}}^{2}$ is close to one, then collinearity is present, and so the VIF will be large.

In the Credit data, a regression of balance on age, rating, and limit indicates that the predictors have VIF values of 1.01, 160.67, and 160.59. As we suspected, there is considerable collinearity in the data!

When faced with the problem of collinearity, there are two simple solutions. The first is to drop one of the problematic variables from the regression. This can usually be done without much compromise to the regression fit, since the presence of collinearity implies that the information that this variable provides about the response is redundant in the presence of the other variables. For instance, if we regress balance onto age and limit, without the rating predictor, then the resulting VIF values are close to the minimum possible value of 1 , and the R^{2} drops from 0.754 to 0.75 . So dropping rating from the set of predictors has effectively solved the collinearity problem without compromising the fit. The second solution is to combine the collinear variables together into a single predictor. For instance, we might take the average of standardized versions of limit and rating in order to create a new variable that measures credit worthiness.

3.4 The Marketing Plan

We now briefly return to the seven questions about the Advertising data that we set out to answer at the beginning of this chapter.

1. Is there a relationship between advertising sales and budget?

This question can be answered by fitting a multiple regression model of sales onto TV, radio, and newspaper, as in (3.20), and testing the hypothesis $H_{0}: \beta_{\text {TV }}=\beta_{\text {radio }}=\beta_{\text {newspaper }}=0$. In Section 3.2.2, we showed that the F-statistic can be used to determine whether or not we should reject this null hypothesis. In this case the p-value corresponding to the F-statistic in Table 3.6 is very low, indicating clear evidence of a relationship between advertising and sales.
2. How strong is the relationship?

We discussed two measures of model accuracy in Section 3.1.3. First, the RSE estimates the standard deviation of the response from the population regression line. For the Advertising data, the RSE is 1,681
units while the mean value for the response is 14,022 , indicating a percentage error of roughly 12%. Second, the R^{2} statistic records the percentage of variability in the response that is explained by the predictors. The predictors explain almost 90% of the variance in sales. The RSE and R^{2} statistics are displayed in Table 3.6.
3. Which media contribute to sales?

To answer this question, we can examine the p-values associated with each predictor's t-statistic (Section 3.1.2). In the multiple linear regression displayed in Table 3.4, the p-values for TV and radio are low, but the p-value for newspaper is not. This suggests that only TV and radio are related to sales. In Chapter 6 we explore this question in greater detail.
4. How large is the effect of each medium on sales?

We saw in Section 3.1.2 that the standard error of $\hat{\beta}_{j}$ can be used to construct confidence intervals for β_{j}. For the Advertising data, the 95% confidence intervals are as follows: $(0.043,0.049)$ for TV, $(0.172,0.206)$ for radio, and $(-0.013,0.011)$ for newspaper. The confidence intervals for TV and radio are narrow and far from zero, providing evidence that these media are related to sales. But the interval for newspaper includes zero, indicating that the variable is not statistically significant given the values of TV and radio.

We saw in Section 3.3.3 that collinearity can result in very wide standard errors. Could collinearity be the reason that the confidence interval associated with newspaper is so wide? The VIF scores are 1.005, 1.145 , and 1.145 for TV, radio, and newspaper, suggesting no evidence of collinearity.

In order to assess the association of each medium individually on sales, we can perform three separate simple linear regressions. Results are shown in Tables 3.1 and 3.3. There is evidence of an extremely strong association between TV and sales and between radio and sales. There is evidence of a mild association between newspaper and sales, when the values of TV and radio are ignored.
5. How accurately can we predict future sales?

The response can be predicted using (3.21). The accuracy associated with this estimate depends on whether we wish to predict an individual response, $Y=f(X)+\epsilon$, or the average response, $f(X)$ (Section 3.2.2). If the former, we use a prediction interval, and if the latter, we use a confidence interval. Prediction intervals will always be wider than confidence intervals because they account for the uncertainty associated with ϵ, the irreducible error.

6. Is the relationship linear?

In Section 3.3.3, we saw that residual plots can be used in order to identify non-linearity. If the relationships are linear, then the residual plots should display no pattern. In the case of the Advertising data, we observe a non-linear effect in Figure 3.5, though this effect could also be observed in a residual plot. In Section 3.3.2, we discussed the inclusion of transformations of the predictors in the linear regression model in order to accommodate non-linear relationships.
7. Is there synergy among the advertising media?

The standard linear regression model assumes an additive relationship between the predictors and the response. An additive model is easy to interpret because the effect of each predictor on the response is unrelated to the values of the other predictors. However, the additive assumption may be unrealistic for certain data sets. In Section 3.3.2, we showed how to include an interaction term in the regression model in order to accommodate non-additive relationships. A small p-value associated with the interaction term indicates the presence of such relationships. Figure 3.5 suggested that the Advertising data may not be additive. Including an interaction term in the model results in a substantial increase in R^{2}, from around 90% to almost 97%.

3.5 Comparison of Linear Regression with K-Nearest Neighbors

As discussed in Chapter 2, linear regression is an example of a parametric approach because it assumes a linear functional form for $f(X)$. Parametric methods have several advantages. They are often easy to fit, because one need estimate only a small number of coefficients. In the case of linear regression, the coefficients have simple interpretations, and tests of statistical significance can be easily performed. But parametric methods do have a disadvantage: by construction, they make strong assumptions about the form of $f(X)$. If the specified functional form is far from the truth, and prediction accuracy is our goal, then the parametric method will perform poorly. For instance, if we assume a linear relationship between X and Y but the true relationship is far from linear, then the resulting model will provide a poor fit to the data, and any conclusions drawn from it will be suspect.

In contrast, non-parametric methods do not explicitly assume a parametric form for $f(X)$, and thereby provide an alternative and more flexible approach for performing regression. We discuss various non-parametric methods in this book. Here we consider one of the simplest and best-known non-parametric methods, K-nearest neighbors regression (KNN regression).

FIGURE 3.16. Plots of $\hat{f}(X)$ using KNN regression on a two-dimensional data set with 64 observations (orange dots). Left: $K=1$ results in a rough step function fit. Right: $K=9$ produces a much smoother fit.

The KNN regression method is closely related to the KNN classifier discussed in Chapter 2. Given a value for K and a prediction point x_{0}, KNN regression first identifies the K training observations that are closest to x_{0}, represented by \mathcal{N}_{0}. It then estimates $f\left(x_{0}\right)$ using the average of all the training responses in \mathcal{N}_{0}. In other words,

$$
\hat{f}\left(x_{0}\right)=\frac{1}{K} \sum_{x_{i} \in \mathcal{N}_{0}} y_{i}
$$

Figure 3.16 illustrates two KNN fits on a data set with $p=2$ predictors. The fit with $K=1$ is shown in the left-hand panel, while the right-hand panel corresponds to $K=9$. We see that when $K=1$, the KNN fit perfectly interpolates the training observations, and consequently takes the form of a step function. When $K=9$, the KNN fit still is a step function, but averaging over nine observations results in much smaller regions of constant prediction, and consequently a smoother fit. In general, the optimal value for K will depend on the bias-variance tradeoff, which we introduced in Chapter 2. A small value for K provides the most flexible fit, which will have low bias but high variance. This variance is due to the fact that the prediction in a given region is entirely dependent on just one observation. In contrast, larger values of K provide a smoother and less variable fit; the prediction in a region is an average of several points, and so changing one observation has a smaller effect. However, the smoothing may cause bias by masking some of the structure in $f(X)$. In Chapter 5 , we introduce several approaches for estimating test error rates. These methods can be used to identify the optimal value of K in KNN regression.

In what setting will a parametric approach such as least squares linear regression outperform a non-parametric approach such as KNN regression? The answer is simple: the parametric approach will outperform the nonparametric approach if the parametric form that has been selected is close to the true form of f. Figure 3.17 provides an example with data generated from a one-dimensional linear regression model. The black solid lines represent $f(X)$, while the blue curves correspond to the KNN fits using $K=1$ and $K=9$. In this case, the $K=1$ predictions are far too variable, while the smoother $K=9$ fit is much closer to $f(X)$. However, since the true relationship is linear, it is hard for a non-parametric approach to compete with linear regression: a non-parametric approach incurs a cost in variance that is not offset by a reduction in bias. The blue dashed line in the lefthand panel of Figure 3.18 represents the linear regression fit to the same data. It is almost perfect. The right-hand panel of Figure 3.18 reveals that linear regression outperforms KNN for this data. The green solid line, plotted as a function of $1 / K$, represents the test set mean squared error (MSE) for KNN. The KNN errors are well above the black dashed line, which is the test MSE for linear regression. When the value of K is large, then KNN performs only a little worse than least squares regression in terms of MSE. It performs far worse when K is small.

In practice, the true relationship between X and Y is rarely exactly linear. Figure 3.19 examines the relative performances of least squares regression and KNN under increasing levels of non-linearity in the relationship between X and Y. In the top row, the true relationship is nearly linear. In this case we see that the test MSE for linear regression is still superior to that of KNN for low values of K. However, for $K \geq 4$, KNN outperforms linear regression. The second row illustrates a more substantial deviation from linearity. In this situation, KNN substantially outperforms linear regression for all values of K. Note that as the extent of non-linearity increases, there is little change in the test set MSE for the non-parametric KNN method, but there is a large increase in the test set MSE of linear regression.

Figures 3.18 and 3.19 display situations in which KNN performs slightly worse than linear regression when the relationship is linear, but much better than linear regression for non-linear situations. In a real life situation in which the true relationship is unknown, one might draw the conclusion that KNN should be favored over linear regression because it will at worst be slightly inferior than linear regression if the true relationship is linear, and may give substantially better results if the true relationship is non-linear. But in reality, even when the true relationship is highly non-linear, KNN may still provide inferior results to linear regression. In particular, both Figures 3.18 and 3.19 illustrate settings with $p=1$ predictor. But in higher dimensions, KNN often performs worse than linear regression.

Figure 3.20 considers the same strongly non-linear situation as in the second row of Figure 3.19, except that we have added additional noise

FIGURE 3.17. Plots of $\hat{f}(X)$ using KNN regression on a one-dimensional data set with 100 observations. The true relationship is given by the black solid line. Left: The blue curve corresponds to $K=1$ and interpolates (i.e. passes directly through) the training data. Right: The blue curve corresponds to $K=9$, and represents a smoother fit.

FIGURE 3.18. The same data set shown in Figure 3.17 is investigated further. Left: The blue dashed line is the least squares fit to the data. Since $f(X)$ is in fact linear (displayed as the black line), the least squares regression line provides a very good estimate of $f(X)$. Right: The dashed horizontal line represents the least squares test set MSE, while the green solid line corresponds to the MSE for $K N N$ as a function of $1 / K$ (on the log scale). Linear regression achieves a lower test MSE than does KNN regression, since $f(X)$ is in fact linear. For KNN regression, the best results occur with a very large value of K, corresponding to a small value of $1 / K$.

FIGURE 3.19. Top Left: In a setting with a slightly non-linear relationship between X and Y (solid black line), the $K N N$ fits with $K=1$ (blue) and $K=9$ (red) are displayed. Top Right: For the slightly non-linear data, the test set MSE for least squares regression (horizontal black) and KNN with various values of $1 / K$ (green) are displayed. Bottom Left and Bottom Right: As in the top panel, but with a strongly non-linear relationship between X and Y.
predictors that are not associated with the response. When $p=1$ or $p=2$, KNN outperforms linear regression. But for $p=3$ the results are mixed, and for $p \geq 4$ linear regression is superior to KNN. In fact, the increase in dimension has only caused a small deterioration in the linear regression test set MSE, but it has caused more than a ten-fold increase in the MSE for KNN. This decrease in performance as the dimension increases is a common problem for KNN, and results from the fact that in higher dimensions there is effectively a reduction in sample size. In this data set there are 100 training observations; when $p=1$, this provides enough information to accurately estimate $f(X)$. However, spreading 100 observations over $p=20$ dimensions results in a phenomenon in which a given observation has no nearby neighbors - this is the so-called curse of dimensionality. That is, the K observations that are nearest to a given test observation x_{0} may be
curse of dimensionality very far away from x_{0} in p-dimensional space when p is large, leading to a

FIGURE 3.20. Test MSE for linear regression (black dashed lines) and KNN (green curves) as the number of variables p increases. The true function is nonlinear in the first variable, as in the lower panel in Figure 3.19, and does not depend on the additional variables. The performance of linear regression deteriorates slowly in the presence of these additional noise variables, whereas KNN's performance degrades much more quickly as p increases.
very poor prediction of $f\left(x_{0}\right)$ and hence a poor KNN fit. As a general rule, parametric methods will tend to outperform non-parametric approaches when there is a small number of observations per predictor.

Even in problems in which the dimension is small, we might prefer linear regression to KNN from an interpretability standpoint. If the test MSE of KNN is only slightly lower than that of linear regression, we might be willing to forego a little bit of prediction accuracy for the sake of a simple model that can be described in terms of just a few coefficients, and for which p -values are available.

3.6 Lab: Linear Regression

3.6.1 Libraries

The library () function is used to load libraries, or groups of functions and data sets that are not included in the base R distribution. Basic functions that perform least squares linear regression and other simple analyses come standard with the base distribution, but more exotic functions require additional libraries. Here we load the MASS package, which is a very large collection of data sets and functions. We also load the ISLR package, which includes the data sets associated with this book.

```
> library(MASS)
> library(ISLR)
```

If you receive an error message when loading any of these libraries, it likely indicates that the corresponding library has not yet been installed on your system. Some libraries, such as MASS, come with R and do not need to be separately installed on your computer. However, other packages, such as

ISLR, must be downloaded the first time they are used. This can be done directly from within R. For example, on a Windows system, select the Install package option under the Packages tab. After you select any mirror site, a list of available packages will appear. Simply select the package you wish to install and R will automatically download the package. Alternatively, this can be done at the R command line via install.packages("ISLR"). This installation only needs to be done the first time you use a package. However, the library () function must be called each time you wish to use a given package.

3.6.2 Simple Linear Regression

The MASS library contains the Boston data set, which records medv (median house value) for 506 neighborhoods around Boston. We will seek to predict medv using 13 predictors such as rm (average number of rooms per house), age (average age of houses), and lstat (percent of households with low socioeconomic status).

```
> fix(Boston)
> names(Boston)
    [1] "crim" "zn" "indus" "chas" "nox" "rm" "age"
    [8] "dis" "rad" "tax" "ptratio" "black" "lstat" "medv"
```

To find out more about the data set, we can type ?Boston.
We will start by using the $\operatorname{lm}()$ function to fit a simple linear regression model, with medv as the response and lstat as the predictor. The basic syntax is $\operatorname{lm}(\mathrm{y} \sim \mathrm{x}$, data), where y is the response, x is the predictor, and data is the data set in which these two variables are kept.

```
> lm.fit=lm(medv~lstat)
Error in eval(expr, envir, enclos) : Object "medv" not found
```

The command causes an error because R does not know where to find the variables medv and lstat. The next line tells R that the variables are in Boston. If we attach Boston, the first line works fine because R now recognizes the variables.

```
> lm.fit=lm(medv~lstat,data=Boston)
> attach(Boston)
> lm.fit=lm(medv~lstat)
```

If we type lm.fit, some basic information about the model is output. For more detailed information, we use summary (lm.fit). This gives us pvalues and standard errors for the coefficients, as well as the R^{2} statistic and F-statistic for the model.

```
> lm.fit
Call:
lm(formula = medv ~ lstat)
```

```
Coefficients:
(Intercept) lstat
> summary(lm.fit)
Call:
lm(formula = medv ~ lstat)
Residuals:
    Min
Coefficients:
    Estimate Std. Error t value Pr (>|t|)
(Intercept) 34.5538 0.5626 61.4 <2e-16 ***
lstat -0.9500 0.0387 -24.5 <2e-16 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 6.22 on 504 degrees of freedom
Multiple R-squared: 0.544, Adjusted R-squared: 0.543
F-statistic: 602 on 1 and 504 DF, p-value: <2e-16
```

We can use the names() function in order to find out what other pieces of information are stored in lm.fit. Although we can extract these quantities by name e.g. lm.fit\$coefficients-it is safer to use the extractor functions like coef() to access them.

```
> names(lm.fit)
```

 [1] "coefficients" "residuals" "effects"
    ```
    [1] "coefficients" "residuals" "effects"
    [4] "rank" "fitted.values" "assign"
    [4] "rank" "fitted.values" "assign"
    [7] "qr" "df.residual" "xlevels"
    [7] "qr" "df.residual" "xlevels"
[10] "call" "terms" "model"
[10] "call" "terms" "model"
> coef(lm.fit)
> coef(lm.fit)
(Intercept) lstat
(Intercept) lstat
    34.55 -0.95
```

```
    34.55 -0.95
```

```

In order to obtain a confidence interval for the coefficient estimates, we can use the confint() command.
```

> confint(lm.fit)
2.5 % 97.5 %
(Intercept) 33.45 35.659
lstat -1.03 -0.874

```

The predict() function can be used to produce confidence intervals and prediction intervals for the prediction of medv for a given value of lstat.
```

> predict(lm.fit,data.frame(lstat=c(5,10,15)),
interval="confidence ")
fit lwr upr
129.80 29.01 30.60
2 25.05 24.47 25.63

```

```

> predict(lm.fit, data.frame(lstat=c(5,10,15)),
interval="prediction ")
fit lwr upr
1 29.80 17.566 42.04
2 25.05 12.828 37.28
3 20.30 8.078 32.53

```

For instance, the \(95 \%\) confidence interval associated with a lstat value of 10 is \((24.47,25.63)\), and the \(95 \%\) prediction interval is \((12.828,37.28)\). As expected, the confidence and prediction intervals are centered around the same point (a predicted value of 25.05 for medv when 1stat equals 10 ), but the latter are substantially wider.

We will now plot medv and lstat along with the least squares regression line using the plot() and abline() functions.
```

> plot(lstat,medv)
> abline(lm.fit)

```

There is some evidence for non-linearity in the relationship between lstat and medv. We will explore this issue later in this lab.

The abline() function can be used to draw any line, not just the least squares regression line. To draw a line with intercept a and slope b, we type abline ( \(\mathrm{a}, \mathrm{b}\) ). Below we experiment with some additional settings for plotting lines and points. The \(1 w d=3\) command causes the width of the regression line to be increased by a factor of 3 ; this works for the plot() and lines() functions also. We can also use the pch option to create different plotting symbols.
```

> abline(lm.fit,lwd=3)
> abline(lm.fit,lwd=3,col="red")
> plot(lstat,medv,col="red")
> plot(lstat,medv,pch=20)
> plot(lstat,medv,pch="+")
> plot(1:20,1:20,pch=1:20)

```

Next we examine some diagnostic plots, several of which were discussed in Section 3.3.3. Four diagnostic plots are automatically produced by applying the plot() function directly to the output from \(\operatorname{lm}()\). In general, this command will produce one plot at a time, and hitting Enter will generate the next plot. However, it is often convenient to view all four plots together. We can achieve this by using the par() function, which tells R to split the display screen into separate panels so that multiple plots can be viewed simultaneously. For example, par (mfrow=c \((2,2)\) ) divides the plotting region into a \(2 \times 2\) grid of panels.
```

> par(mfrow=c(2,2))
> plot(lm.fit)

```

Alternatively, we can compute the residuals from a linear regression fit using the residuals() function. The function rstudent() will return the studentized residuals, and we can use this function to plot the residuals
par()
```

> plot(predict(lm.fit), residuals(lm.fit))
> plot(predict(lm.fit), rstudent(lm.fit))

```

On the basis of the residual plots, there is some evidence of non-linearity. Leverage statistics can be computed for any number of predictors using the hatvalues() function.
```

> plot(hatvalues(lm.fit))
> which.max(hatvalues(lm.fit))
375

```

The which.max () function identifies the index of the largest element of a vector. In this case, it tells us which observation has the largest leverage statistic.

\subsection*{3.6.3 Multiple Linear Regression}

In order to fit a multiple linear regression model using least squares, we again use the \(\operatorname{lm}()\) function. The syntax \(\operatorname{lm}(y \sim x 1+x 2+x 3)\) is used to fit a model with three predictors, x1, x2, and x3. The summary() function now outputs the regression coefficients for all the predictors.
```

> lm.fit=lm(medv~lstat+age,data=Boston)
> summary(lm.fit)
Call:
lm(formula = medv ~ lstat + age, data = Boston)
Residuals:

| Min | $1 Q$ | Median | $3 Q$ | Max |
| ---: | ---: | ---: | ---: | ---: |
| -15.98 | -3.98 | -1.28 | 1.97 | 23.16 |

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 33.2228 0.7308 45.46 <2e-16 ***
lstat -1.0321 0.0482 -21.42 <2e-16 ***
age 0.0345 0.0122 2.83 0.0049**

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 6.17 on 503 degrees of freedom
Multiple R-squared: 0.551, Adjusted R-squared: 0.549
F-statistic: 309 on 2 and 503 DF, p-value: <2e-16

```

The Boston data set contains 13 variables, and so it would be cumbersome to have to type all of these in order to perform a regression using all of the predictors. Instead, we can use the following short-hand:
```

> lm.fit=lm(medv~.,data=Boston)
> summary(lm.fit)
Call:
lm(formula = medv ~ ., data = Boston)

```
```

Residuals:

| Min | $1 Q$ | Median | 3Q | Max |
| ---: | ---: | ---: | ---: | ---: |
| -15.594 | -2.730 | -0.518 | 1.777 | 26.199 |

Coefficients:
Estimate Std. Error t value Pr (>|t|)
(Intercept) 3.646e+01 5.103e+00 7.144 3.28e-12 ***
crim -1.080e-01 3.286e-02 -3.287 0.001087 **
zn 4.642e-02 1.373e-02 3.382 0.000778 ***
indus 2.056e-02 6.150e-02 0.334 0.738288
chas 2.687e+00 8.616e-01 3.118 0.001925 **
nox -1.777e+01 3.820e+00 -4.651 4.25e-06 ***
rm 3.810e+00 4.179e-01 9.116 < 2e-16 ***
age 6.922e-04 1.321e-02 0.052 0.958229
dis -1.476e+00 1.995e-01 -7.398 6.01e-13 ***
rad 3.060e-01 6.635e-02 4.613 5.07e-06 ***
tax -1.233e-02 3.761e-03 -3.280 0.001112 **
ptratio -9.527e-01 1.308e-01 -7.283 1.31e-12 ***
black 9.312e-03 2.686e-03 3.467 0.000573 ***
lstat -5.248e-01 5.072e-02 -10.347 < 2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 4.745 on 492 degrees of freedom
Multiple R-Squared: 0.7406, Adjusted R-squared: 0.7338
F-statistic: 108.1 on 13 and 492 DF, p-value: < 2.2e-16

```

We can access the individual components of a summary object by name (type ?summary.lm to see what is available). Hence summary (lm.fit) \(\$ \mathrm{r} . \mathrm{sq}\) gives us the \(R^{2}\), and summary (lm.fit)\$sigma gives us the RSE. The vif() function, part of the car package, can be used to compute variance inflation factors. Most VIF's are low to moderate for this data. The car package is not part of the base \(R\) installation so it must be downloaded the first time you use it via the install. packages option in R.
```

> library(car)
> vif(lm.fit)

| crim | zn | indus | chas | nox | rm | age |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1.79 | 2.30 | 3.99 | 1.07 | 4.39 | 1.93 | 3.10 |
| dis | rad | tax | ptratio | black | lstat | |
| 3.96 | 7.48 | 9.01 | 1.80 | 1.35 | 2.94 | |

```

What if we would like to perform a regression using all of the variables but one? For example, in the above regression output, age has a high p-value. So we may wish to run a regression excluding this predictor. The following syntax results in a regression using all predictors except age.
```

> lm.fit1=lm(medv~.-age,data=Boston)
> summary(lm.fit1)

```

Alternatively, the update() function can be used.
```

> lm.fit1=update(lm.fit, ~.-age)

```

\subsection*{3.6.4 Interaction Terms}

It is easy to include interaction terms in a linear model using the \(\operatorname{lm}()\) function. The syntax lstat:black tells R to include an interaction term between lstat and black. The syntax 1stat*age simultaneously includes lstat, age, and the interaction term lstat×age as predictors; it is a shorthand for lstat+age+lstat:age.
```

> summary(lm(medv~lstat*age,data=Boston))
Call:
lm(formula = medv ~ lstat * age, data = Boston)
Residuals:
Min }r\mathrm{ 1Q Median
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 36.088536 1.469835 24.55 < 2e-16 ***
lstat -1.392117 0.167456 -8.31 8.8e-16 ***
age -0.000721 0.019879 -0.04 0.971
lstat:age 0.004156 0.001852 2.24 0.025 *
Signif. codes: 0,***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 , , 1
Residual standard error: 6.15 on 502 degrees of freedom
Multiple R-squared: 0.556, Adjusted R-squared: 0.553
F-statistic: 209 on 3 and 502 DF, p-value: <2e-16

```

\subsection*{3.6.5 Non-linear Transformations of the Predictors}

The \(\operatorname{lm}()\) function can also accommodate non-linear transformations of the predictors. For instance, given a predictor \(X\), we can create a predictor \(X^{2}\) using \(I\left(X^{\wedge} 2\right)\). The function \(I()\) is needed since the ^ has a special meaning in a formula; wrapping as we do allows the standard usage in \(R\), which is to raise X to the power 2 . We now perform a regression of medv onto lstat and 1 stat \({ }^{2}\).
```

> lm.fit2=lm(medv~lstat+I(lstat`2))
> summary(lm.fit2)
Call:
lm(formula = medv ~ lstat + I(lstat^2))
Residuals:

| Min | $1 Q$ | Median | $3 Q$ | Max |
| ---: | ---: | ---: | ---: | ---: |
| -15.28 | -3.83 | -0.53 | 2.31 | 25.41 |

```
```

Coefficients:
Estimate Std. Error t value Pr (>|t|)
(Intercept) 42.86201 0.87208 49.1 <2e-16 ***
lstat -2.33282 0.12380 -18.8 <2e-16 ***
I(lstat 2) 0.04355 0.00375 11.6 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**, 0.01 '*, 0.05 ,., 0.1 , , 1
Residual standard error: 5.52 on 503 degrees of freedom
Multiple R-squared: 0.641, Adjusted R-squared: 0.639
F-statistic: 449 on 2 and 503 DF, p-value: <2e-16

```

The near-zero p-value associated with the quadratic term suggests that it leads to an improved model. We use the anova() function to further quantify the extent to which the quadratic fit is superior to the linear fit.
```

> lm.fit=lm(medv~lstat)
> anova(lm.fit,lm.fit2)
Analysis of Variance Table
Model 1: medv ~ lstat
Model 2: medv ~ lstat + I(lstat ^2)
Res.Df RSS Df Sum of Sq F Pr (>F)
504 19472
503 15347 1 4125 135 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 , ' 1

```

Here Model 1 represents the linear submodel containing only one predictor, lstat, while Model 2 corresponds to the larger quadratic model that has two predictors, 1stat and lstat \({ }^{2}\). The anova() function performs a hypothesis test comparing the two models. The null hypothesis is that the two models fit the data equally well, and the alternative hypothesis is that the full model is superior. Here the F-statistic is 135 and the associated p-value is virtually zero. This provides very clear evidence that the model containing the predictors lstat and 1 stat \({ }^{2}\) is far superior to the model that only contains the predictor lstat. This is not surprising, since earlier we saw evidence for non-linearity in the relationship between medv and lstat. If we type
```

> par(mfrow=c(2,2))
> plot(lm.fit2)

```
then we see that when the 1 stat \({ }^{2}\) term is included in the model, there is little discernible pattern in the residuals.

In order to create a cubic fit, we can include a predictor of the form \(I\left(X^{\wedge} 3\right)\). However, this approach can start to get cumbersome for higherorder polynomials. A better approach involves using the poly() function to create the polynomial within \(\operatorname{lm}()\). For example, the following command produces a fifth-order polynomial fit:
```

> lm.fit5=lm(medv~poly(lstat,5))
> summary(lm.fit5)
Call:
lm(formula = medv ~ poly(lstat, 5))
Residuals:

| Min | $1 Q$ | Median | $3 Q$ | Max |
| ---: | ---: | ---: | ---: | ---: |
| -13.543 | -3.104 | -0.705 | 2.084 | 27.115 |

Coefficients:
Estimate Std. Error t value Pr (>|t|)
(Intercept) 22.533 0.232 97.20<2e-16 ***
poly(lstat, 5) 1 -152.460 5.215 - 29.24< 2e-16 ***
poly(lstat, 5)2 64.227 5.215 12.32< < e-16 ***
poly(lstat, 5)3 -27.051 5.215 -5.19 3.1e-07 ***
poly(lstat, 5)4

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '., 0.1 , , 1
Residual standard error: 5.21 on 500 degrees of freedom
Multiple R-squared: 0.682, Adjusted R-squared: 0.679
F-statistic: 214 on 5 and 500 DF, p-value: <2e-16

```

This suggests that including additional polynomial terms, up to fifth order, leads to an improvement in the model fit! However, further investigation of the data reveals that no polynomial terms beyond fifth order have significant p-values in a regression fit.

Of course, we are in no way restricted to using polynomial transformations of the predictors. Here we try a log transformation.
```

> summary(lm(medv~log(rm),data=Boston))

```

\subsection*{3.6.6 Qualitative Predictors}

We will now examine the Carseats data, which is part of the ISLR library. We will attempt to predict Sales (child car seat sales) in 400 locations based on a number of predictors.
```

> fix(Carseats)
> names(Carseats)

```
```

[1] "Sales" "CompPrice" "Income" "Advertising"

```
[1] "Sales" "CompPrice" "Income" "Advertising"
[5] "Population" "Price" "ShelveLoc" "Age"
[5] "Population" "Price" "ShelveLoc" "Age"
[9] "Education" "Urban" "US"
```

[9] "Education" "Urban" "US"

```

The Carseats data includes qualitative predictors such as Shelveloc, an indicator of the quality of the shelving location - that is, the space within a store in which the car seat is displayed-at each location. The predictor Shelveloc takes on three possible values, Bad, Medium, and Good.

Given a qualitative variable such as Shelveloc, R generates dummy variables automatically. Below we fit a multiple regression model that includes some interaction terms.
```

> lm.fit=lm(Sales~.+Income:Advertising+Price:Age,data=Carseats)
> summary(lm.fit)
Call:
lm(formula = Sales ~ . + Income:Advertising + Price:Age, data =
Carseats)
Residuals:

| Min | $1 Q$ | Median | 3Q | Max |
| ---: | ---: | ---: | ---: | ---: |
| -2.921 | -0.750 | 0.018 | 0.675 | 3.341 |

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.575565 1.008747 6.52 2.2e-10 ***
CompPrice
Income
Advertising 0.070246 0.022609 3.11 0.00203 **
Population 0.000159 0.000368 0.43 0.66533
Price -0.100806 0.007440 -13.55 < 2e-16 ***
ShelveLocGood 4.848676 0.152838 31.72 < 2e-16 ***
ShelveLocMedium 1.953262 0.125768 15.53 < 2e-16 ***
Age -0.057947 0.015951
Education -0.020852 0.019613 -1.06 0.28836
UrbanYes 0.140160 0.112402 1.25 0.21317
USYes -0.157557 0.148923 -1.06 0.29073

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ', 1
Residual standard error: 1.01 on 386 degrees of freedom
Multiple R-squared: 0.876, Adjusted R-squared: 0.872
F-statistic: 210 on 13 and 386 DF, p-value: <2e-16

```

The contrasts() function returns the coding that \(R\) uses for the dummy variables.
```

> attach(Carseats)
> contrasts (ShelveLoc)
Good Medium
Bad 0 0
Good 1 0
Medium 0 1

```

Use ?contrasts to learn about other contrasts, and how to set them.
\(R\) has created a ShelveLocGood dummy variable that takes on a value of 1 if the shelving location is good, and 0 otherwise. It has also created a ShelveLocMedium dummy variable that equals 1 if the shelving location is medium, and 0 otherwise. A bad shelving location corresponds to a zero for each of the two dummy variables. The fact that the coefficient for

ShelveLocGood in the regression output is positive indicates that a good shelving location is associated with high sales (relative to a bad location). And ShelveLocMedium has a smaller positive coefficient, indicating that a medium shelving location leads to higher sales than a bad shelving location but lower sales than a good shelving location.

\subsection*{3.6.7 Writing Functions}

As we have seen, \(R\) comes with many useful functions, and still more functions are available by way of R libraries. However, we will often be interested in performing an operation for which no function is available. In this setting, we may want to write our own function. For instance, below we provide a simple function that reads in the ISLR and MASS libraries, called LoadLibraries(). Before we have created the function, \(R\) returns an error if we try to call it.
```

> LoadLibraries
Error: object 'LoadLibraries', not found
> LoadLibraries()
Error: could not find function "LoadLibraries"

```

We now create the function. Note that the + symbols are printed by \(R\) and should not be typed in. The \(\{\) symbol informs \(R\) that multiple commands are about to be input. Hitting Enter after typing \{ will cause R to print the + symbol. We can then input as many commands as we wish, hitting Enter after each one. Finally the \} symbol informs R that no further commands will be entered.
```

> LoadLibraries=function(){

+ library(ISLR)
+ library(MASS)
+ print("The libraries have been loaded.")
+ }

```

Now if we type in LoadLibraries, \(R\) will tell us what is in the function.
```

> LoadLibraries
function(){
library(ISLR)
library(MASS)
print("The libraries have been loaded.")
}

```

If we call the function, the libraries are loaded in and the print statement is output.
```

> LoadLibraries()
[1] "The libraries have been loaded."

```

\subsection*{3.7 Exercises}

\section*{Conceptual}
1. Describe the null hypotheses to which the p-values given in Table 3.4 correspond. Explain what conclusions you can draw based on these p-values. Your explanation should be phrased in terms of sales, TV, radio, and newspaper, rather than in terms of the coefficients of the linear model.
2. Carefully explain the differences between the KNN classifier and KNN regression methods.
3. Suppose we have a data set with five predictors, \(X_{1}=\) GPA, \(X_{2}=\mathrm{IQ}\), \(X_{3}=\) Gender ( 1 for Female and 0 for Male), \(X_{4}=\) Interaction between GPA and IQ, and \(X_{5}=\) Interaction between GPA and Gender. The response is starting salary after graduation (in thousands of dollars). Suppose we use least squares to fit the model, and get \(\hat{\beta}_{0}=50, \hat{\beta}_{1}=\) \(20, \hat{\beta}_{2}=0.07, \hat{\beta}_{3}=35, \hat{\beta}_{4}=0.01, \hat{\beta}_{5}=-10\).
(a) Which answer is correct, and why?
i. For a fixed value of IQ and GPA, males earn more on average than females.
ii. For a fixed value of IQ and GPA, females earn more on average than males.
iii. For a fixed value of IQ and GPA, males earn more on average than females provided that the GPA is high enough.
iv. For a fixed value of IQ and GPA, females earn more on average than males provided that the GPA is high enough.
(b) Predict the salary of a female with IQ of 110 and a GPA of 4.0.
(c) True or false: Since the coefficient for the GPA/IQ interaction term is very small, there is very little evidence of an interaction effect. Justify your answer.
4. I collect a set of data ( \(n=100\) observations) containing a single predictor and a quantitative response. I then fit a linear regression model to the data, as well as a separate cubic regression, i.e. \(Y=\) \(\beta_{0}+\beta_{1} X+\beta_{2} X^{2}+\beta_{3} X^{3}+\epsilon\).
(a) Suppose that the true relationship between X and Y is linear, i.e. \(Y=\beta_{0}+\beta_{1} X+\epsilon\). Consider the training residual sum of squares (RSS) for the linear regression, and also the training RSS for the cubic regression. Would we expect one to be lower than the other, would we expect them to be the same, or is there not enough information to tell? Justify your answer.
(b) Answer (a) using test rather than training RSS.
(c) Suppose that the true relationship between X and Y is not linear, but we don't know how far it is from linear. Consider the training RSS for the linear regression, and also the training RSS for the cubic regression. Would we expect one to be lower than the other, would we expect them to be the same, or is there not enough information to tell? Justify your answer.
(d) Answer (c) using test rather than training RSS.
5. Consider the fitted values that result from performing linear regression without an intercept. In this setting, the \(i\) th fitted value takes the form
\[
\hat{y}_{i}=x_{i} \hat{\beta},
\]
where
\[
\begin{equation*}
\hat{\beta}=\left(\sum_{i=1}^{n} x_{i} y_{i}\right) /\left(\sum_{i^{\prime}=1}^{n} x_{i^{\prime}}^{2}\right) . \tag{3.38}
\end{equation*}
\]

Show that we can write
\[
\hat{y}_{i}=\sum_{i^{\prime}=1}^{n} a_{i^{\prime}} y_{i^{\prime}} .
\]

What is \(a_{i^{\prime}}\) ?

Note: We interpret this result by saying that the fitted values from linear regression are linear combinations of the response values.
6. Using (3.4), argue that in the case of simple linear regression, the least squares line always passes through the point \((\bar{x}, \bar{y})\).
7. It is claimed in the text that in the case of simple linear regression of \(Y\) onto \(X\), the \(R^{2}\) statistic (3.17) is equal to the square of the correlation between \(X\) and \(Y\) (3.18). Prove that this is the case. For simplicity, you may assume that \(\bar{x}=\bar{y}=0\).

\section*{Applied}
8. This question involves the use of simple linear regression on the Auto data set.
(a) Use the \(\operatorname{lm}()\) function to perform a simple linear regression with mpg as the response and horsepower as the predictor. Use the summary () function to print the results. Comment on the output. For example:
i. Is there a relationship between the predictor and the response?
ii. How strong is the relationship between the predictor and the response?
iii. Is the relationship between the predictor and the response positive or negative?
iv. What is the predicted mpg associated with a horsepower of 98 ? What are the associated \(95 \%\) confidence and prediction intervals?
(b) Plot the response and the predictor. Use the abline() function to display the least squares regression line.
(c) Use the plot() function to produce diagnostic plots of the least squares regression fit. Comment on any problems you see with the fit.
9. This question involves the use of multiple linear regression on the Auto data set.
(a) Produce a scatterplot matrix which includes all of the variables in the data set.
(b) Compute the matrix of correlations between the variables using the function cor(). You will need to exclude the name variable, which is qualitative.
(c) Use the \(\operatorname{lm}()\) function to perform a multiple linear regression with mpg as the response and all other variables except name as the predictors. Use the summary () function to print the results. Comment on the output. For instance:
i. Is there a relationship between the predictors and the response?
ii. Which predictors appear to have a statistically significant relationship to the response?
iii. What does the coefficient for the year variable suggest?
(d) Use the plot() function to produce diagnostic plots of the linear regression fit. Comment on any problems you see with the fit. Do the residual plots suggest any unusually large outliers? Does the leverage plot identify any observations with unusually high leverage?
(e) Use the * and : symbols to fit linear regression models with interaction effects. Do any interactions appear to be statistically significant?
(f) Try a few different transformations of the variables, such as \(\log (X), \sqrt{X}, X^{2}\). Comment on your findings.
10. This question should be answered using the Carseats data set.
(a) Fit a multiple regression model to predict Sales using Price, Urban, and US.
(b) Provide an interpretation of each coefficient in the model. Be careful-some of the variables in the model are qualitative!
(c) Write out the model in equation form, being careful to handle the qualitative variables properly.
(d) For which of the predictors can you reject the null hypothesis \(H_{0}: \beta_{j}=0\) ?
(e) On the basis of your response to the previous question, fit a smaller model that only uses the predictors for which there is evidence of association with the outcome.
(f) How well do the models in (a) and (e) fit the data?
(g) Using the model from (e), obtain \(95 \%\) confidence intervals for the coefficient(s).
(h) Is there evidence of outliers or high leverage observations in the model from (e)?
11. In this problem we will investigate the t-statistic for the null hypothesis \(H_{0}: \beta=0\) in simple linear regression without an intercept. To begin, we generate a predictor x and a response y as follows.
```

> set.seed(1)
> x=rnorm(100)
> y=2*x+rnorm(100)

```
(a) Perform a simple linear regression of y onto x , without an intercept. Report the coefficient estimate \(\hat{\beta}\), the standard error of this coefficient estimate, and the t-statistic and p-value associated with the null hypothesis \(H_{0}: \beta=0\). Comment on these results. (You can perform regression without an intercept using the command \(\operatorname{lm}(y \sim x+0)\).)
(b) Now perform a simple linear regression of x onto y without an intercept, and report the coefficient estimate, its standard error, and the corresponding t-statistic and p-values associated with the null hypothesis \(H_{0}: \beta=0\). Comment on these results.
(c) What is the relationship between the results obtained in (a) and (b)?
(d) For the regression of \(Y\) onto \(X\) without an intercept, the tstatistic for \(H_{0}: \beta=0\) takes the form \(\hat{\beta} / \operatorname{SE}(\hat{\beta})\), where \(\hat{\beta}\) is given by (3.38), and where
\[
\mathrm{SE}(\hat{\beta})=\sqrt{\frac{\sum_{i=1}^{n}\left(y_{i}-x_{i} \hat{\beta}\right)^{2}}{(n-1) \sum_{i^{\prime}=1}^{n} x_{i^{\prime}}^{2}}} .
\]
(These formulas are slightly different from those given in Sections 3.1.1 and 3.1.2, since here we are performing regression without an intercept.) Show algebraically, and confirm numerically in \(R\), that the t-statistic can be written as
\[
\frac{(\sqrt{n-1}) \sum_{i=1}^{n} x_{i} y_{i}}{\sqrt{\left(\sum_{i=1}^{n} x_{i}^{2}\right)\left(\sum_{i^{\prime}=1}^{n} y_{i^{\prime}}^{2}\right)-\left(\sum_{i^{\prime}=1}^{n} x_{i^{\prime}} y_{i^{\prime}}\right)^{2}}} .
\]
(e) Using the results from (d), argue that the t-statistic for the regression of y onto x is the same as the t -statistic for the regression of \(x\) onto \(y\).
(f) In R, show that when regression is performed with an intercept, the t -statistic for \(H_{0}: \beta_{1}=0\) is the same for the regression of y onto x as it is for the regression of x onto y .
12. This problem involves simple linear regression without an intercept.
(a) Recall that the coefficient estimate \(\hat{\beta}\) for the linear regression of \(Y\) onto \(X\) without an intercept is given by (3.38). Under what circumstance is the coefficient estimate for the regression of \(X\) onto \(Y\) the same as the coefficient estimate for the regression of \(Y\) onto \(X\) ?
(b) Generate an example in R with \(n=100\) observations in which the coefficient estimate for the regression of \(X\) onto \(Y\) is different from the coefficient estimate for the regression of \(Y\) onto \(X\).
(c) Generate an example in R with \(n=100\) observations in which the coefficient estimate for the regression of \(X\) onto \(Y\) is the same as the coefficient estimate for the regression of \(Y\) onto \(X\).
13. In this exercise you will create some simulated data and will fit simple linear regression models to it. Make sure to use set.seed(1) prior to starting part (a) to ensure consistent results.
(a) Using the rnorm() function, create a vector, \(x\), containing 100 observations drawn from a \(N(0,1)\) distribution. This represents a feature, \(X\).
(b) Using the rnorm() function, create a vector, eps, containing 100 observations drawn from a \(N(0,0.25)\) distribution i.e. a normal distribution with mean zero and variance 0.25 .
(c) Using x and eps, generate a vector y according to the model
\[
\begin{equation*}
Y=-1+0.5 X+\epsilon \tag{3.39}
\end{equation*}
\]

What is the length of the vector y ? What are the values of \(\beta_{0}\) and \(\beta_{1}\) in this linear model?
(d) Create a scatterplot displaying the relationship between x and y. Comment on what you observe.
(e) Fit a least squares linear model to predict y using x. Comment on the model obtained. How do \(\hat{\beta}_{0}\) and \(\hat{\beta}_{1}\) compare to \(\beta_{0}\) and \(\beta_{1}\) ?
(f) Display the least squares line on the scatterplot obtained in (d). Draw the population regression line on the plot, in a different color. Use the legend() command to create an appropriate legend.
(g) Now fit a polynomial regression model that predicts y using \(x\) and \(x^{2}\). Is there evidence that the quadratic term improves the model fit? Explain your answer.
(h) Repeat (a)-(f) after modifying the data generation process in such a way that there is less noise in the data. The model (3.39) should remain the same. You can do this by decreasing the variance of the normal distribution used to generate the error term \(\epsilon\) in (b). Describe your results.
(i) Repeat (a)-(f) after modifying the data generation process in such a way that there is more noise in the data. The model (3.39) should remain the same. You can do this by increasing the variance of the normal distribution used to generate the error term \(\epsilon\) in (b). Describe your results.
(j) What are the confidence intervals for \(\beta_{0}\) and \(\beta_{1}\) based on the original data set, the noisier data set, and the less noisy data set? Comment on your results.
14. This problem focuses on the collinearity problem.
(a) Perform the following commands in R :
```

> set.seed(1)
> x1=runif(100)
> x2=0.5*x1+rnorm(100)/10
>y=2+2*x1+0.3*x2+rnorm(100)

```

The last line corresponds to creating a linear model in which y is a function of \(x 1\) and \(x 2\). Write out the form of the linear model. What are the regression coefficients?
(b) What is the correlation between x1 and x2? Create a scatterplot displaying the relationship between the variables.
(c) Using this data, fit a least squares regression to predict y using \(x 1\) and \(x 2\). Describe the results obtained. What are \(\hat{\beta}_{0}, \hat{\beta}_{1}\), and \(\hat{\beta}_{2}\) ? How do these relate to the true \(\beta_{0}, \beta_{1}\), and \(\beta_{2}\) ? Can you reject the null hypothesis \(H_{0}: \beta_{1}=0\) ? How about the null hypothesis \(H_{0}: \beta_{2}=0\) ?
(d) Now fit a least squares regression to predict y using only \(x 1\). Comment on your results. Can you reject the null hypothesis \(H_{0}: \beta_{1}=0 ?\)
(e) Now fit a least squares regression to predict y using only \(x 2\). Comment on your results. Can you reject the null hypothesis \(H_{0}: \beta_{1}=0 ?\)
(f) Do the results obtained in (c)-(e) contradict each other? Explain your answer.
(g) Now suppose we obtain one additional observation, which was unfortunately mismeasured.
```

> x1=c(x1, 0.1)
> x2=c(x2, 0.8)
> y=c(y,6)

```

Re-fit the linear models from (c) to (e) using this new data. What effect does this new observation have on the each of the models? In each model, is this observation an outlier? A high-leverage point? Both? Explain your answers.
15. This problem involves the Boston data set, which we saw in the lab for this chapter. We will now try to predict per capita crime rate using the other variables in this data set. In other words, per capita crime rate is the response, and the other variables are the predictors.
(a) For each predictor, fit a simple linear regression model to predict the response. Describe your results. In which of the models is there a statistically significant association between the predictor and the response? Create some plots to back up your assertions.
(b) Fit a multiple regression model to predict the response using all of the predictors. Describe your results. For which predictors can we reject the null hypothesis \(H_{0}: \beta_{j}=0\) ?
(c) How do your results from (a) compare to your results from (b)? Create a plot displaying the univariate regression coefficients from (a) on the \(x\)-axis, and the multiple regression coefficients from (b) on the \(y\)-axis. That is, each predictor is displayed as a single point in the plot. Its coefficient in a simple linear regression model is shown on the \(x\)-axis, and its coefficient estimate in the multiple linear regression model is shown on the \(y\)-axis.
(d) Is there evidence of non-linear association between any of the predictors and the response? To answer this question, for each predictor \(X\), fit a model of the form
\[
Y=\beta_{0}+\beta_{1} X+\beta_{2} X^{2}+\beta_{3} X^{3}+\epsilon
\]

\section*{4}

\section*{Classification}

The linear regression model discussed in Chapter 3 assumes that the response variable \(Y\) is quantitative. But in many situations, the response variable is instead qualitative. For example, eye color is qualitative, taking on values blue, brown, or green. Often qualitative variables are referred to as categorical; we will use these terms interchangeably. In this chapter, we study approaches for predicting qualitative responses, a process that is known as classification. Predicting a qualitative response for an observation can be referred to as classifying that observation, since it involves assigning the observation to a category, or class. On the other hand, often the methods used for classification first predict the probability of each of the categories of a qualitative variable, as the basis for making the classification. In this sense they also behave like regression methods.

There are many possible classification techniques, or classifiers, that one might use to predict a qualitative response. We touched on some of these in Sections 2.1.5 and 2.2.3. In this chapter we discuss three of the most widely-used classifiers: logistic regression, linear discriminant analysis, and \(K\)-nearest neighbors. We discuss more computer-intensive methods in later chapters, such as generalized additive models (Chapter 7), trees, random forests, and boosting (Chapter 8), and support vector machines (Chapter 9\()\).
qualitative
classification
classifier
logistic
regression
linear
discriminant
analysis
\(K\)-nearest
neighbors

\subsection*{4.1 An Overview of Classification}

Classification problems occur often, perhaps even more so than regression problems. Some examples include:
1. A person arrives at the emergency room with a set of symptoms that could possibly be attributed to one of three medical conditions. Which of the three conditions does the individual have?
2. An online banking service must be able to determine whether or not a transaction being performed on the site is fraudulent, on the basis of the user's IP address, past transaction history, and so forth.
3. On the basis of DNA sequence data for a number of patients with and without a given disease, a biologist would like to figure out which DNA mutations are deleterious (disease-causing) and which are not.

Just as in the regression setting, in the classification setting we have a set of training observations \(\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\) that we can use to build a classifier. We want our classifier to perform well not only on the training data, but also on test observations that were not used to train the classifier.

In this chapter, we will illustrate the concept of classification using the simulated Default data set. We are interested in predicting whether an individual will default on his or her credit card payment, on the basis of annual income and monthly credit card balance. The data set is displayed in Figure 4.1. We have plotted annual income and monthly credit card balance for a subset of 10, 000 individuals. The left-hand panel of Figure 4.1 displays individuals who defaulted in a given month in orange, and those who did not in blue. (The overall default rate is about \(3 \%\), so we have plotted only a fraction of the individuals who did not default.) It appears that individuals who defaulted tended to have higher credit card balances than those who did not. In the right-hand panel of Figure 4.1, two pairs of boxplots are shown. The first shows the distribution of balance split by the binary default variable; the second is a similar plot for income. In this chapter, we learn how to build a model to predict default \((Y)\) for any given value of balance ( \(X_{1}\) ) and income ( \(X_{2}\) ). Since \(Y\) is not quantitative, the simple linear regression model of Chapter 3 is not appropriate.

It is worth noting that Figure 4.1 displays a very pronounced relationship between the predictor balance and the response default. In most real applications, the relationship between the predictor and the response will not be nearly so strong. However, for the sake of illustrating the classification procedures discussed in this chapter, we use an example in which the relationship between the predictor and the response is somewhat exaggerated.


FIGURE 4.1. The Default data set. Left: The annual incomes and monthly credit card balances of a number of individuals. The individuals who defaulted on their credit card payments are shown in orange, and those who did not are shown in blue. Center: Boxplots of balance as a function of default status. Right: Boxplots of income as a function of default status.

\subsection*{4.2 Why Not Linear Regression?}

We have stated that linear regression is not appropriate in the case of a qualitative response. Why not?

Suppose that we are trying to predict the medical condition of a patient in the emergency room on the basis of her symptoms. In this simplified example, there are three possible diagnoses: stroke, drug overdose, and epileptic seizure. We could consider encoding these values as a quantitative response variable, \(Y\), as follows:
\[
Y= \begin{cases}1 & \text { if stroke } \\ 2 & \text { if drug overdose } \\ 3 & \text { if epileptic seizure }\end{cases}
\]

Using this coding, least squares could be used to fit a linear regression model to predict \(Y\) on the basis of a set of predictors \(X_{1}, \ldots, X_{p}\). Unfortunately, this coding implies an ordering on the outcomes, putting drug overdose in between stroke and epileptic seizure, and insisting that the difference between stroke and drug overdose is the same as the difference between drug overdose and epileptic seizure. In practice there is no particular reason that this needs to be the case. For instance, one could choose an equally reasonable coding,
\[
Y= \begin{cases}1 & \text { if epileptic seizure } \\ 2 & \text { if stroke } \\ 3 & \text { if drug overdose }\end{cases}
\]
which would imply a totally different relationship among the three conditions. Each of these codings would produce fundamentally different linear models that would ultimately lead to different sets of predictions on test observations.
If the response variable's values did take on a natural ordering, such as mild, moderate, and severe, and we felt the gap between mild and moderate was similar to the gap between moderate and severe, then a \(1,2,3\) coding would be reasonable. Unfortunately, in general there is no natural way to convert a qualitative response variable with more than two levels into a quantitative response that is ready for linear regression.

For a binary (two level) qualitative response, the situation is better. For instance, perhaps there are only two possibilities for the patient's medical condition: stroke and drug overdose. We could then potentially use the dummy variable approach from Section 3.3 .1 to code the response as follows:
\[
Y= \begin{cases}0 & \text { if stroke } \\ 1 & \text { if drug overdose }\end{cases}
\]

We could then fit a linear regression to this binary response, and predict drug overdose if \(\hat{Y}>0.5\) and stroke otherwise. In the binary case it is not hard to show that even if we flip the above coding, linear regression will produce the same final predictions.

For a binary response with a \(0 / 1\) coding as above, regression by least squares does make sense; it can be shown that the \(X \hat{\beta}\) obtained using linear regression is in fact an estimate of \(\operatorname{Pr}(\) drug overdose \(\mid X)\) in this special case. However, if we use linear regression, some of our estimates might be outside the \([0,1]\) interval (see Figure 4.2), making them hard to interpret as probabilities! Nevertheless, the predictions provide an ordering and can be interpreted as crude probability estimates. Curiously, it turns out that the classifications that we get if we use linear regression to predict a binary response will be the same as for the linear discriminant analysis (LDA) procedure we discuss in Section 4.4.

However, the dummy variable approach cannot be easily extended to accommodate qualitative responses with more than two levels. For these reasons, it is preferable to use a classification method that is truly suited for qualitative response values, such as the ones presented next.

\subsection*{4.3 Logistic Regression}

Consider again the Default data set, where the response default falls into one of two categories, Yes or No. Rather than modeling this response \(Y\) directly, logistic regression models the probability that \(Y\) belongs to a particular category.


FIGURE 4.2. Classification using the Default data. Left: Estimated probability of default using linear regression. Some estimated probabilities are negative! The orange ticks indicate the 0/1 values coded for default(No or Yes). Right: Predicted probabilities of default using logistic regression. All probabilities lie between 0 and 1.

For the Default data, logistic regression models the probability of default. For example, the probability of default given balance can be written as
\[
\operatorname{Pr}(\text { default }=\text { Yes|balance })
\]

The values of \(\operatorname{Pr}(\) default \(=\) Yes|balance), which we abbreviate \(p\) (balance), will range between 0 and 1 . Then for any given value of balance, a prediction can be made for default. For example, one might predict default \(=\) Yes for any individual for whom \(p(\) balance \()>0.5\). Alternatively, if a company wishes to be conservative in predicting individuals who are at risk for default, then they may choose to use a lower threshold, such as \(p(\) balance \()>0.1\).

\subsection*{4.3.1 The Logistic Model}

How should we model the relationship between \(p(X)=\operatorname{Pr}(Y=1 \mid X)\) and \(X\) ? (For convenience we are using the generic \(0 / 1\) coding for the response). In Section 4.2 we talked of using a linear regression model to represent these probabilities:
\[
\begin{equation*}
p(X)=\beta_{0}+\beta_{1} X \tag{4.1}
\end{equation*}
\]

If we use this approach to predict default=Yes using balance, then we obtain the model shown in the left-hand panel of Figure 4.2. Here we see the problem with this approach: for balances close to zero we predict a negative probability of default; if we were to predict for very large balances, we would get values bigger than 1. These predictions are not sensible, since of course the true probability of default, regardless of credit card balance, must fall between 0 and 1 . This problem is not unique to the credit default data. Any time a straight line is fit to a binary response that is coded as

0 or 1 , in principle we can always predict \(p(X)<0\) for some values of \(X\) and \(p(X)>1\) for others (unless the range of \(X\) is limited).

To avoid this problem, we must model \(p(X)\) using a function that gives outputs between 0 and 1 for all values of \(X\). Many functions meet this description. In logistic regression, we use the logistic function,
\[
\begin{equation*}
p(X)=\frac{e^{\beta_{0}+\beta_{1} X}}{1+e^{\beta_{0}+\beta_{1} X}} \tag{4.2}
\end{equation*}
\]

To fit the model (4.2), we use a method called maximum likelihood, which we discuss in the next section. The right-hand panel of Figure 4.2 illustrates the fit of the logistic regression model to the Default data. Notice that for low balances we now predict the probability of default as close to, but never below, zero. Likewise, for high balances we predict a default probability close to, but never above, one. The logistic function will always produce an \(S\)-shaped curve of this form, and so regardless of the value of \(X\), we will obtain a sensible prediction. We also see that the logistic model is better able to capture the range of probabilities than is the linear regression model in the left-hand plot. The average fitted probability in both cases is 0.0333 (averaged over the training data), which is the same as the overall proportion of defaulters in the data set.

After a bit of manipulation of (4.2), we find that
\[
\begin{equation*}
\frac{p(X)}{1-p(X)}=e^{\beta_{0}+\beta_{1} X} \tag{4.3}
\end{equation*}
\]

The quantity \(p(X) /[1-p(X)]\) is called the odds, and can take on any value between 0 and \(\infty\). Values of the odds close to 0 and \(\infty\) indicate very low and very high probabilities of default, respectively. For example, on average 1 in 5 people with an odds of \(1 / 4\) will default, since \(p(X)=0.2\) implies an odds of \(\frac{0.2}{1-0.2}=1 / 4\). Likewise on average nine out of every ten people with an odds of 9 will default, since \(p(X)=0.9\) implies an odds of \(\frac{0.9}{1-0.9}=9\). Odds are traditionally used instead of probabilities in horse-racing, since they relate more naturally to the correct betting strategy.

By taking the logarithm of both sides of (4.3), we arrive at
\[
\begin{equation*}
\log \left(\frac{p(X)}{1-p(X)}\right)=\beta_{0}+\beta_{1} X \tag{4.4}
\end{equation*}
\]

The left-hand side is called the log-odds or logit. We see that the logistic regression model (4.2) has a logit that is linear in \(X\).

Recall from Chapter 3 that in a linear regression model, \(\beta_{1}\) gives the average change in \(Y\) associated with a one-unit increase in \(X\). In contrast, in a logistic regression model, increasing \(X\) by one unit changes the log odds by \(\beta_{1}\) (4.4), or equivalently it multiplies the odds by \(e^{\beta_{1}}\) (4.3). However, because the relationship between \(p(X)\) and \(X\) in (4.2) is not a straight line,
\(\beta_{1}\) does not correspond to the change in \(p(X)\) associated with a one-unit increase in \(X\). The amount that \(p(X)\) changes due to a one-unit change in \(X\) will depend on the current value of \(X\). But regardless of the value of \(X\), if \(\beta_{1}\) is positive then increasing \(X\) will be associated with increasing \(p(X)\), and if \(\beta_{1}\) is negative then increasing \(X\) will be associated with decreasing \(p(X)\). The fact that there is not a straight-line relationship between \(p(X)\) and \(X\), and the fact that the rate of change in \(p(X)\) per unit change in \(X\) depends on the current value of \(X\), can also be seen by inspection of the right-hand panel of Figure 4.2.

\subsection*{4.3.2 Estimating the Regression Coefficients}

The coefficients \(\beta_{0}\) and \(\beta_{1}\) in (4.2) are unknown, and must be estimated based on the available training data. In Chapter 3, we used the least squares approach to estimate the unknown linear regression coefficients. Although we could use (non-linear) least squares to fit the model (4.4), the more general method of maximum likelihood is preferred, since it has better statistical properties. The basic intuition behind using maximum likelihood to fit a logistic regression model is as follows: we seek estimates for \(\beta_{0}\) and \(\beta_{1}\) such that the predicted probability \(\hat{p}\left(x_{i}\right)\) of default for each individual, using (4.2), corresponds as closely as possible to the individual's observed default status. In other words, we try to find \(\hat{\beta}_{0}\) and \(\hat{\beta}_{1}\) such that plugging these estimates into the model for \(p(X)\), given in (4.2), yields a number close to one for all individuals who defaulted, and a number close to zero for all individuals who did not. This intuition can be formalized using a mathematical equation called a likelihood function:
\[
\begin{equation*}
\ell\left(\beta_{0}, \beta_{1}\right)=\prod_{i: y_{i}=1} p\left(x_{i}\right) \prod_{i^{\prime}: y_{i^{\prime}}=0}\left(1-p\left(x_{i^{\prime}}\right)\right) . \tag{4.5}
\end{equation*}
\]

The estimates \(\hat{\beta}_{0}\) and \(\hat{\beta}_{1}\) are chosen to maximize this likelihood function.
Maximum likelihood is a very general approach that is used to fit many of the non-linear models that we examine throughout this book. In the linear regression setting, the least squares approach is in fact a special case of maximum likelihood. The mathematical details of maximum likelihood are beyond the scope of this book. However, in general, logistic regression and other models can be easily fit using a statistical software package such as \(R\), and so we do not need to concern ourselves with the details of the maximum likelihood fitting procedure.

Table 4.1 shows the coefficient estimates and related information that result from fitting a logistic regression model on the Default data in order to predict the probability of default=Yes using balance. We see that \(\hat{\beta}_{1}=\) 0.0055 ; this indicates that an increase in balance is associated with an increase in the probability of default. To be precise, a one-unit increase in balance is associated with an increase in the log odds of default by 0.0055 units.
\begin{tabular}{l|rrrr}
\hline & Coefficient & Std. error & Z-statistic & P-value \\
\hline Intercept & -10.6513 & 0.3612 & -29.5 & \(<0.0001\) \\
balance & 0.0055 & 0.0002 & 24.9 & \(<0.0001\) \\
\hline
\end{tabular}

TABLE 4.1. For the Default data, estimated coefficients of the logistic regression model that predicts the probability of default using balance. A one-unit increase in balance is associated with an increase in the log odds of default by 0.0055 units.

Many aspects of the logistic regression output shown in Table 4.1 are similar to the linear regression output of Chapter 3. For example, we can measure the accuracy of the coefficient estimates by computing their standard errors. The \(z\)-statistic in Table 4.1 plays the same role as the \(t\)-statistic in the linear regression output, for example in Table 3.1 on page 68. For instance, the \(z\)-statistic associated with \(\beta_{1}\) is equal to \(\hat{\beta}_{1} / S E\left(\hat{\beta}_{1}\right)\), and so a large (absolute) value of the \(z\)-statistic indicates evidence against the null hypothesis \(H_{0}: \beta_{1}=0\). This null hypothesis implies that \(p(X)=\frac{e^{\beta_{0}}}{1+e^{\beta_{0}}}-\) in other words, that the probability of default does not depend on balance. Since the p-value associated with balance in Table 4.1 is tiny, we can reject \(H_{0}\). In other words, we conclude that there is indeed an association between balance and probability of default. The estimated intercept in Table 4.1 is typically not of interest; its main purpose is to adjust the average fitted probabilities to the proportion of ones in the data.

\subsection*{4.3.3 Making Predictions}

Once the coefficients have been estimated, it is a simple matter to compute the probability of default for any given credit card balance. For example, using the coefficient estimates given in Table 4.1, we predict that the default probability for an individual with a balance of \(\$ 1,000\) is
\[
\hat{p}(X)=\frac{e^{\hat{\beta}_{0}+\hat{\beta}_{1} X}}{1+e^{\hat{\beta}_{0}+\hat{\beta}_{1} X}}=\frac{e^{-10.6513+0.0055 \times 1,000}}{1+e^{-10.6513+0.0055 \times 1,000}}=0.00576,
\]
which is below \(1 \%\). In contrast, the predicted probability of default for an individual with a balance of \(\$ 2,000\) is much higher, and equals 0.586 or \(58.6 \%\).

One can use qualitative predictors with the logistic regression model using the dummy variable approach from Section 3.3.1. As an example, the Default data set contains the qualitative variable student. To fit the model we simply create a dummy variable that takes on a value of 1 for students and 0 for non-students. The logistic regression model that results from predicting probability of default from student status can be seen in Table 4.2. The coefficient associated with the dummy variable is positive,
\begin{tabular}{lrrrr}
\hline & Coefficient & Std. error & Z-statistic & P-value \\
\hline Intercept & -3.5041 & 0.0707 & -49.55 & \(<0.0001\) \\
student [Yes] & 0.4049 & 0.1150 & 3.52 & 0.0004 \\
\hline
\end{tabular}

TABLE 4.2. For the Default data, estimated coefficients of the logistic regression model that predicts the probability of default using student status. Student status is encoded as a dummy variable, with a value of 1 for a student and a value of 0 for a non-student, and represented by the variable student [Yes] in the table.
and the associated p-value is statistically significant. This indicates that students tend to have higher default probabilities than non-students:
\[
\begin{aligned}
\widehat{\operatorname{Pr}}(\text { default }=\text { Yes } \mid \text { student }=\text { Yes }) & =\frac{e^{-3.5041+0.4049 \times 1}}{1+e^{-3.5041+0.4049 \times 1}}=0.0431, \\
\widehat{\operatorname{Pr}}(\text { default }=\text { Yes } \mid \text { student }=\mathrm{No}) & =\frac{e^{-3.5041+0.4049 \times 0}}{1+e^{-3.5041+0.4049 \times 0}}=0.0292 .
\end{aligned}
\]

\subsection*{4.3.4 Multiple Logistic Regression}

We now consider the problem of predicting a binary response using multiple predictors. By analogy with the extension from simple to multiple linear regression in Chapter 3, we can generalize (4.4) as follows:
\[
\begin{equation*}
\log \left(\frac{p(X)}{1-p(X)}\right)=\beta_{0}+\beta_{1} X_{1}+\cdots+\beta_{p} X_{p} \tag{4.6}
\end{equation*}
\]
where \(X=\left(X_{1}, \ldots, X_{p}\right)\) are \(p\) predictors. Equation 4.6 can be rewritten as
\[
\begin{equation*}
p(X)=\frac{e^{\beta_{0}+\beta_{1} X_{1}+\cdots+\beta_{p} X_{p}}}{1+e^{\beta_{0}+\beta_{1} X_{1}+\cdots+\beta_{p} X_{p}}} . \tag{4.7}
\end{equation*}
\]

Just as in Section 4.3.2, we use the maximum likelihood method to estimate \(\beta_{0}, \beta_{1}, \ldots, \beta_{p}\).

Table 4.3 shows the coefficient estimates for a logistic regression model that uses balance, income (in thousands of dollars), and student status to predict probability of default. There is a surprising result here. The pvalues associated with balance and the dummy variable for student status are very small, indicating that each of these variables is associated with the probability of default. However, the coefficient for the dummy variable is negative, indicating that students are less likely to default than nonstudents. In contrast, the coefficient for the dummy variable is positive in Table 4.2. How is it possible for student status to be associated with an increase in probability of default in Table 4.2 and a decrease in probability of default in Table 4.3? The left-hand panel of Figure 4.3 provides a graphical illustration of this apparent paradox. The orange and blue solid lines show the average default rates for students and non-students, respectively,
\begin{tabular}{lrrrr}
\hline & Coefficient & Std. error & Z-statistic & P-value \\
\hline Intercept & -10.8690 & 0.4923 & -22.08 & \(<0.0001\) \\
balance & 0.0057 & 0.0002 & 24.74 & \(<0.0001\) \\
income & 0.0030 & 0.0082 & 0.37 & 0.7115 \\
student [Yes] & -0.6468 & 0.2362 & -2.74 & 0.0062 \\
\hline
\end{tabular}

TABLE 4.3. For the Default data, estimated coefficients of the logistic regression model that predicts the probability of default using balance, income, and student status. Student status is encoded as a dummy variable student[Yes], with a value of 1 for a student and a value of 0 for a non-student. In fitting this model, income was measured in thousands of dollars.
as a function of credit card balance. The negative coefficient for student in the multiple logistic regression indicates that for a fixed value of balance and income, a student is less likely to default than a non-student. Indeed, we observe from the left-hand panel of Figure 4.3 that the student default rate is at or below that of the non-student default rate for every value of balance. But the horizontal broken lines near the base of the plot, which show the default rates for students and non-students averaged over all values of balance and income, suggest the opposite effect: the overall student default rate is higher than the non-student default rate. Consequently, there is a positive coefficient for student in the single variable logistic regression output shown in Table 4.2.

The right-hand panel of Figure 4.3 provides an explanation for this discrepancy. The variables student and balance are correlated. Students tend to hold higher levels of debt, which is in turn associated with higher probability of default. In other words, students are more likely to have large credit card balances, which, as we know from the left-hand panel of Figure 4.3 , tend to be associated with high default rates. Thus, even though an individual student with a given credit card balance will tend to have a lower probability of default than a non-student with the same credit card balance, the fact that students on the whole tend to have higher credit card balances means that overall, students tend to default at a higher rate than non-students. This is an important distinction for a credit card company that is trying to determine to whom they should offer credit. A student is riskier than a non-student if no information about the student's credit card balance is available. However, that student is less risky than a non-student with the same credit card balance!

This simple example illustrates the dangers and subtleties associated with performing regressions involving only a single predictor when other predictors may also be relevant. As in the linear regression setting, the results obtained using one predictor may be quite different from those obtained using multiple predictors, especially when there is correlation among the predictors. In general, the phenomenon seen in Figure 4.3 is known as confounding.


FIGURE 4.3. Confounding in the Default data. Left: Default rates are shown for students (orange) and non-students (blue). The solid lines display default rate as a function of balance, while the horizontal broken lines display the overall default rates. Right: Boxplots of balance for students (orange) and non-students (blue) are shown.

By substituting estimates for the regression coefficients from Table 4.3 into (4.7), we can make predictions. For example, a student with a credit card balance of \(\$ 1,500\) and an income of \(\$ 40,000\) has an estimated probability of default of
\[
\begin{equation*}
\hat{p}(X)=\frac{e^{-10.869+0.00574 \times 1,500+0.003 \times 40-0.6468 \times 1}}{1+e^{-10.869+0.00574 \times 1,500+0.003 \times 40-0.6468 \times 1}}=0.058 \tag{4.8}
\end{equation*}
\]

A non-student with the same balance and income has an estimated probability of default of
\[
\begin{equation*}
\hat{p}(X)=\frac{e^{-10.869+0.00574 \times 1,500+0.003 \times 40-0.6468 \times 0}}{1+e^{-10.869+0.00574 \times 1,500+0.003 \times 40-0.6468 \times 0}}=0.105 . \tag{4.9}
\end{equation*}
\]
(Here we multiply the income coefficient estimate from Table 4.3 by 40, rather than by 40,000 , because in that table the model was fit with income measured in units of \(\$ 1,000\).)

\subsection*{4.3.5 Logistic Regression for >2 Response Classes}

We sometimes wish to classify a response variable that has more than two classes. For example, in Section 4.2 we had three categories of medical condition in the emergency room: stroke, drug overdose, epileptic seizure. In this setting, we wish to model both \(\operatorname{Pr}(Y=\) stroke \(\mid X)\) and \(\operatorname{Pr}(Y=\) drug overdose \(\mid X)\), with the remaining \(\operatorname{Pr}(Y=\) epileptic seizure \(\mid X)=\) \(1-\operatorname{Pr}(Y=\) stroke \(\mid X)-\operatorname{Pr}(Y=\) drug overdose \(\mid X)\). The two-class logistic regression models discussed in the previous sections have multiple-class extensions, but in practice they tend not to be used all that often. One of the reasons is that the method we discuss in the next section, discriminant
analysis, is popular for multiple-class classification. So we do not go into the details of multiple-class logistic regression here, but simply note that such an approach is possible, and that software for it is available in R.

\subsection*{4.4 Linear Discriminant Analysis}

Logistic regression involves directly modeling \(\operatorname{Pr}(Y=k \mid X=x)\) using the logistic function, given by (4.7) for the case of two response classes. In statistical jargon, we model the conditional distribution of the response \(Y\), given the predictor(s) \(X\). We now consider an alternative and less direct approach to estimating these probabilities. In this alternative approach, we model the distribution of the predictors \(X\) separately in each of the response classes (i.e. given \(Y\) ), and then use Bayes' theorem to flip these around into estimates for \(\operatorname{Pr}(Y=k \mid X=x)\). When these distributions are assumed to be normal, it turns out that the model is very similar in form to logistic regression.

Why do we need another method, when we have logistic regression? There are several reasons:
- When the classes are well-separated, the parameter estimates for the logistic regression model are surprisingly unstable. Linear discriminant analysis does not suffer from this problem.
- If \(n\) is small and the distribution of the predictors \(X\) is approximately normal in each of the classes, the linear discriminant model is again more stable than the logistic regression model.
- As mentioned in Section 4.3.5, linear discriminant analysis is popular when we have more than two response classes.

\subsection*{4.4.1 Using Bayes' Theorem for Classification}

Suppose that we wish to classify an observation into one of \(K\) classes, where \(K \geq 2\). In other words, the qualitative response variable \(Y\) can take on \(K\) possible distinct and unordered values. Let \(\pi_{k}\) represent the overall or prior probability that a randomly chosen observation comes from the \(k\) th class; this is the probability that a given observation is associated with the \(k\) th category of the response variable \(Y\). Let \(f_{k}(x) \equiv \operatorname{Pr}(X=x \mid Y=k)^{1}\) denote the density function of \(X\) for an observation that comes from the \(k\) th class. In other words, \(f_{k}(x)\) is relatively large if there is a high probability that an observation in the \(k\) th class has \(X \approx x\), and \(f_{k}(x)\) is small if it is very

\footnotetext{
\({ }^{1}\) Technically this definition is only correct if \(X\) is a discrete random variable. If \(X\) is continuous then \(f_{k}(x) d x\) would correspond to the probability of \(X\) falling in in a small region \(d x\) around \(x\).
}
unlikely that an observation in the \(k\) th class has \(X \approx x\). Then Bayes' theorem states that
\[
\begin{equation*}
\operatorname{Pr}(Y=k \mid X=x)=\frac{\pi_{k} f_{k}(x)}{\sum_{l=1}^{K} \pi_{l} f_{l}(x)} \tag{4.10}
\end{equation*}
\]

In accordance with our earlier notation, we will use the abbreviation \(p_{k}(X)\) \(=\operatorname{Pr}(Y=k \mid X)\). This suggests that instead of directly computing \(p_{k}(X)\) as in Section 4.3.1, we can simply plug in estimates of \(\pi_{k}\) and \(f_{k}(X)\) into (4.10). In general, estimating \(\pi_{k}\) is easy if we have a random sample of \(Y\) s from the population: we simply compute the fraction of the training observations that belong to the \(k\) th class. However, estimating \(f_{k}(X)\) tends to be more challenging, unless we assume some simple forms for these densities. We refer to \(p_{k}(x)\) as the posterior probability that an observation \(X=x\) belongs to the \(k\) th class. That is, it is the probability that the observation belongs to the \(k\) th class, given the predictor value for that observation.

We know from Chapter 2 that the Bayes classifier, which classifies an observation to the class for which \(p_{k}(X)\) is largest, has the lowest possible error rate out of all classifiers. (This is of course only true if the terms in (4.10) are all correctly specified.) Therefore, if we can find a way to estimate \(f_{k}(X)\), then we can develop a classifier that approximates the Bayes classifier. Such an approach is the topic of the following sections.

\subsection*{4.4.2 Linear Discriminant Analysis for \(p=1\)}

For now, assume that \(p=1\)-that is, we have only one predictor. We would like to obtain an estimate for \(f_{k}(x)\) that we can plug into (4.10) in order to estimate \(p_{k}(x)\). We will then classify an observation to the class for which \(p_{k}(x)\) is greatest. In order to estimate \(f_{k}(x)\), we will first make some assumptions about its form.

Suppose we assume that \(f_{k}(x)\) is normal or Gaussian. In the onedimensional setting, the normal density takes the form
normal Gaussian
\[
\begin{equation*}
f_{k}(x)=\frac{1}{\sqrt{2 \pi} \sigma_{k}} \exp \left(-\frac{1}{2 \sigma_{k}^{2}}\left(x-\mu_{k}\right)^{2}\right) \tag{4.11}
\end{equation*}
\]
where \(\mu_{k}\) and \(\sigma_{k}^{2}\) are the mean and variance parameters for the \(k\) th class. For now, let us further assume that \(\sigma_{1}^{2}=\ldots=\sigma_{K}^{2}\) : that is, there is a shared variance term across all \(K\) classes, which for simplicity we can denote by \(\sigma^{2}\). Plugging (4.11) into (4.10), we find that
\[
\begin{equation*}
p_{k}(x)=\frac{\pi_{k} \frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{1}{2 \sigma^{2}}\left(x-\mu_{k}\right)^{2}\right)}{\sum_{l=1}^{K} \pi_{l} \frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{1}{2 \sigma^{2}}\left(x-\mu_{l}\right)^{2}\right)} . \tag{4.12}
\end{equation*}
\]
(Note that in (4.12), \(\pi_{k}\) denotes the prior probability that an observation belongs to the \(k\) th class, not to be confused with \(\pi \approx 3.14159\), the mathematical constant.) The Bayes classifier involves assigning an observation


FIGURE 4.4. Left: Two one-dimensional normal density functions are shown. The dashed vertical line represents the Bayes decision boundary. Right: 20 observations were drawn from each of the two classes, and are shown as histograms. The Bayes decision boundary is again shown as a dashed vertical line. The solid vertical line represents the LDA decision boundary estimated from the training data.
\(X=x\) to the class for which (4.12) is largest. Taking the \(\log\) of (4.12) and rearranging the terms, it is not hard to show that this is equivalent to assigning the observation to the class for which
\[
\begin{equation*}
\delta_{k}(x)=x \cdot \frac{\mu_{k}}{\sigma^{2}}-\frac{\mu_{k}^{2}}{2 \sigma^{2}}+\log \left(\pi_{k}\right) \tag{4.13}
\end{equation*}
\]
is largest. For instance, if \(K=2\) and \(\pi_{1}=\pi_{2}\), then the Bayes classifier assigns an observation to class 1 if \(2 x\left(\mu_{1}-\mu_{2}\right)>\mu_{1}^{2}-\mu_{2}^{2}\), and to class 2 otherwise. In this case, the Bayes decision boundary corresponds to the point where
\[
\begin{equation*}
x=\frac{\mu_{1}^{2}-\mu_{2}^{2}}{2\left(\mu_{1}-\mu_{2}\right)}=\frac{\mu_{1}+\mu_{2}}{2} . \tag{4.14}
\end{equation*}
\]

An example is shown in the left-hand panel of Figure 4.4. The two normal density functions that are displayed, \(f_{1}(x)\) and \(f_{2}(x)\), represent two distinct classes. The mean and variance parameters for the two density functions are \(\mu_{1}=-1.25, \mu_{2}=1.25\), and \(\sigma_{1}^{2}=\sigma_{2}^{2}=1\). The two densities overlap, and so given that \(X=x\), there is some uncertainty about the class to which the observation belongs. If we assume that an observation is equally likely to come from either class-that is, \(\pi_{1}=\pi_{2}=0.5\) - then by inspection of (4.14), we see that the Bayes classifier assigns the observation to class 1 if \(x<0\) and class 2 otherwise. Note that in this case, we can compute the Bayes classifier because we know that \(X\) is drawn from a Gaussian distribution within each class, and we know all of the parameters involved. In a real-life situation, we are not able to calculate the Bayes classifier.

In practice, even if we are quite certain of our assumption that \(X\) is drawn from a Gaussian distribution within each class, we still have to estimate the parameters \(\mu_{1}, \ldots, \mu_{K}, \pi_{1}, \ldots, \pi_{K}\), and \(\sigma^{2}\). The linear discriminant
analysis (LDA) method approximates the Bayes classifier by plugging estimates for \(\pi_{k}, \mu_{k}\), and \(\sigma^{2}\) into (4.13). In particular, the following estimates are used:
\[
\begin{align*}
\hat{\mu}_{k} & =\frac{1}{n_{k}} \sum_{i: y_{i}=k} x_{i} \\
\hat{\sigma}^{2} & =\frac{1}{n-K} \sum_{k=1}^{K} \sum_{i: y_{i}=k}\left(x_{i}-\hat{\mu}_{k}\right)^{2} \tag{4.15}
\end{align*}
\]
where \(n\) is the total number of training observations, and \(n_{k}\) is the number of training observations in the \(k\) th class. The estimate for \(\mu_{k}\) is simply the average of all the training observations from the \(k\) th class, while \(\hat{\sigma}^{2}\) can be seen as a weighted average of the sample variances for each of the \(K\) classes. Sometimes we have knowledge of the class membership probabilities \(\pi_{1}, \ldots, \pi_{K}\), which can be used directly. In the absence of any additional information, LDA estimates \(\pi_{k}\) using the proportion of the training observations that belong to the \(k\) th class. In other words,
\[
\begin{equation*}
\hat{\pi}_{k}=n_{k} / n \tag{4.16}
\end{equation*}
\]

The LDA classifier plugs the estimates given in (4.15) and (4.16) into (4.13), and assigns an observation \(X=x\) to the class for which
\[
\begin{equation*}
\hat{\delta}_{k}(x)=x \cdot \frac{\hat{\mu}_{k}}{\hat{\sigma}^{2}}-\frac{\hat{\mu}_{k}^{2}}{2 \hat{\sigma}^{2}}+\log \left(\hat{\pi}_{k}\right) \tag{4.17}
\end{equation*}
\]
is largest. The word linear in the classifier's name stems from the fact that the discriminant functions \(\hat{\delta}_{k}(x)\) in (4.17) are linear functions of \(x\) (as opposed to a more complex function of \(x\) ).
discriminant function

The right-hand panel of Figure 4.4 displays a histogram of a random sample of 20 observations from each class. To implement LDA, we began by estimating \(\pi_{k}, \mu_{k}\), and \(\sigma^{2}\) using (4.15) and (4.16). We then computed the decision boundary, shown as a black solid line, that results from assigning an observation to the class for which (4.17) is largest. All points to the left of this line will be assigned to the green class, while points to the right of this line are assigned to the purple class. In this case, since \(n_{1}=n_{2}=20\), we have \(\hat{\pi}_{1}=\hat{\pi}_{2}\). As a result, the decision boundary corresponds to the midpoint between the sample means for the two classes, \(\left(\hat{\mu}_{1}+\hat{\mu}_{2}\right) / 2\). The figure indicates that the LDA decision boundary is slightly to the left of the optimal Bayes decision boundary, which instead equals \(\left(\mu_{1}+\mu_{2}\right) / 2=\) 0 . How well does the LDA classifier perform on this data? Since this is simulated data, we can generate a large number of test observations in order to compute the Bayes error rate and the LDA test error rate. These are \(10.6 \%\) and \(11.1 \%\), respectively. In other words, the LDA classifier's error rate is only \(0.5 \%\) above the smallest possible error rate! This indicates that LDA is performing pretty well on this data set.


FIGURE 4.5. Two multivariate Gaussian density functions are shown, with \(p=2\). Left: The two predictors are uncorrelated. Right: The two variables have a correlation of 0.7.

To reiterate, the LDA classifier results from assuming that the observations within each class come from a normal distribution with a class-specific mean vector and a common variance \(\sigma^{2}\), and plugging estimates for these parameters into the Bayes classifier. In Section 4.4.4, we will consider a less stringent set of assumptions, by allowing the observations in the \(k\) th class to have a class-specific variance, \(\sigma_{k}^{2}\).

\subsection*{4.4.3 Linear Discriminant Analysis for \(p>1\)}

We now extend the LDA classifier to the case of multiple predictors. To do this, we will assume that \(X=\left(X_{1}, X_{2}, \ldots, X_{p}\right)\) is drawn from a multivariate Gaussian (or multivariate normal) distribution, with a class-specific mean vector and a common covariance matrix. We begin with a brief review
multivariate Gaussian of such a distribution.

The multivariate Gaussian distribution assumes that each individual predictor follows a one-dimensional normal distribution, as in (4.11), with some correlation between each pair of predictors. Two examples of multivariate Gaussian distributions with \(p=2\) are shown in Figure 4.5. The height of the surface at any particular point represents the probability that both \(X_{1}\) and \(X_{2}\) fall in a small region around that point. In either panel, if the surface is cut along the \(X_{1}\) axis or along the \(X_{2}\) axis, the resulting cross-section will have the shape of a one-dimensional normal distribution. The left-hand panel of Figure 4.5 illustrates an example in which \(\operatorname{Var}\left(X_{1}\right)=\operatorname{Var}\left(X_{2}\right)\) and \(\operatorname{Cor}\left(X_{1}, X_{2}\right)=0\); this surface has a characteristic bell shape. However, the bell shape will be distorted if the predictors are correlated or have unequal variances, as is illustrated in the right-hand panel of Figure 4.5. In this situation, the base of the bell will have an elliptical, rather than circular,


FIGURE 4.6. An example with three classes. The observations from each class are drawn from a multivariate Gaussian distribution with \(p=2\), with a class-specific mean vector and a common covariance matrix. Left: Ellipses that contain \(95 \%\) of the probability for each of the three classes are shown. The dashed lines are the Bayes decision boundaries. Right: 20 observations were generated from each class, and the corresponding LDA decision boundaries are indicated using solid black lines. The Bayes decision boundaries are once again shown as dashed lines.
shape. To indicate that a \(p\)-dimensional random variable \(X\) has a multivariate Gaussian distribution, we write \(X \sim N(\mu, \boldsymbol{\Sigma})\). Here \(E(X)=\mu\) is the mean of \(X\) (a vector with \(p\) components), and \(\operatorname{Cov}(X)=\boldsymbol{\Sigma}\) is the \(p \times p\) covariance matrix of \(X\). Formally, the multivariate Gaussian density is defined as
\[
\begin{equation*}
f(x)=\frac{1}{(2 \pi)^{p / 2}|\boldsymbol{\Sigma}|^{1 / 2}} \exp \left(-\frac{1}{2}(x-\mu)^{T} \boldsymbol{\Sigma}^{-1}(x-\mu)\right) \tag{4.18}
\end{equation*}
\]

In the case of \(p>1\) predictors, the LDA classifier assumes that the observations in the \(k\) th class are drawn from a multivariate Gaussian distribution \(N\left(\mu_{k}, \boldsymbol{\Sigma}\right)\), where \(\mu_{k}\) is a class-specific mean vector, and \(\boldsymbol{\Sigma}\) is a covariance matrix that is common to all \(K\) classes. Plugging the density function for the \(k\) th class, \(f_{k}(X=x)\), into (4.10) and performing a little bit of algebra reveals that the Bayes classifier assigns an observation \(X=x\) to the class for which
\[
\begin{equation*}
\delta_{k}(x)=x^{T} \boldsymbol{\Sigma}^{-1} \mu_{k}-\frac{1}{2} \mu_{k}^{T} \boldsymbol{\Sigma}^{-1} \mu_{k}+\log \pi_{k} \tag{4.19}
\end{equation*}
\]
is largest. This is the vector/matrix version of (4.13).
An example is shown in the left-hand panel of Figure 4.6. Three equallysized Gaussian classes are shown with class-specific mean vectors and a common covariance matrix. The three ellipses represent regions that contain \(95 \%\) of the probability for each of the three classes. The dashed lines
are the Bayes decision boundaries. In other words, they represent the set of values \(x\) for which \(\delta_{k}(x)=\delta_{\ell}(x)\); i.e.
\[
\begin{equation*}
x^{T} \boldsymbol{\Sigma}^{-1} \mu_{k}-\frac{1}{2} \mu_{k}^{T} \boldsymbol{\Sigma}^{-1} \mu_{k}=x^{T} \boldsymbol{\Sigma}^{-1} \mu_{l}-\frac{1}{2} \mu_{l}^{T} \boldsymbol{\Sigma}^{-1} \mu_{l} \tag{4.20}
\end{equation*}
\]
for \(k \neq l\). (The \(\log \pi_{k}\) term from (4.19) has disappeared because each of the three classes has the same number of training observations; i.e. \(\pi_{k}\) is the same for each class.) Note that there are three lines representing the Bayes decision boundaries because there are three pairs of classes among the three classes. That is, one Bayes decision boundary separates class 1 from class 2, one separates class 1 from class 3, and one separates class 2 from class 3. These three Bayes decision boundaries divide the predictor space into three regions. The Bayes classifier will classify an observation according to the region in which it is located.

Once again, we need to estimate the unknown parameters \(\mu_{1}, \ldots, \mu_{K}\), \(\pi_{1}, \ldots, \pi_{K}\), and \(\Sigma\); the formulas are similar to those used in the onedimensional case, given in (4.15). To assign a new observation \(X=x\), LDA plugs these estimates into (4.19) and classifies to the class for which \(\hat{\delta}_{k}(x)\) is largest. Note that in (4.19) \(\delta_{k}(x)\) is a linear function of \(x\); that is, the LDA decision rule depends on \(x\) only through a linear combination of its elements. Once again, this is the reason for the word linear in LDA.

In the right-hand panel of Figure 4.6, 20 observations drawn from each of the three classes are displayed, and the resulting LDA decision boundaries are shown as solid black lines. Overall, the LDA decision boundaries are pretty close to the Bayes decision boundaries, shown again as dashed lines. The test error rates for the Bayes and LDA classifiers are 0.0746 and 0.0770 , respectively. This indicates that LDA is performing well on this data.

We can perform LDA on the Default data in order to predict whether or not an individual will default on the basis of credit card balance and student status. The LDA model fit to the 10, 000 training samples results in a training error rate of \(2.75 \%\). This sounds like a low error rate, but two caveats must be noted.
- First of all, training error rates will usually be lower than test error rates, which are the real quantity of interest. In other words, we might expect this classifier to perform worse if we use it to predict whether or not a new set of individuals will default. The reason is that we specifically adjust the parameters of our model to do well on the training data. The higher the ratio of parameters \(p\) to number of samples \(n\), the more we expect this overfitting to play a role. For these data we don't expect this to be a problem, since \(p=2\) and \(n=10,000\).
- Second, since only \(3.33 \%\) of the individuals in the training sample defaulted, a simple but useless classifier that always predicts that
\begin{tabular}{cc|cc|c}
\hline & & \multicolumn{3}{|c}{ True default status } \\
& & No & Yes & Total \\
\hline Predicted & No & 9,644 & 252 & 9,896 \\
default status & Yes & 23 & 81 & 104 \\
\cline { 2 - 5 } & Total & 9,667 & 333 & 10,000 \\
\hline
\end{tabular}

TABLE 4.4. A confusion matrix compares the LDA predictions to the true default statuses for the 10, 000 training observations in the Default data set. Elements on the diagonal of the matrix represent individuals whose default statuses were correctly predicted, while off-diagonal elements represent individuals that were misclassified. LDA made incorrect predictions for 23 individuals who did not default and for 252 individuals who did default.
each individual will not default, regardless of his or her credit card balance and student status, will result in an error rate of \(3.33 \%\). In other words, the trivial null classifier will achieve an error rate that is only a bit higher than the LDA training set error rate.
In practice, a binary classifier such as this one can make two types of errors: it can incorrectly assign an individual who defaults to the no default category, or it can incorrectly assign an individual who does not default to the default category. It is often of interest to determine which of these two types of errors are being made. A confusion matrix, shown for the Default data in Table 4.4, is a convenient way to display this information. The table reveals that LDA predicted that a total of 104 people would default. Of these people, 81 actually defaulted and 23 did not. Hence only 23 out of 9,667 of the individuals who did not default were incorrectly labeled. This looks like a pretty low error rate! However, of the 333 individuals who defaulted, 252 (or \(75.7 \%\) ) were missed by LDA. So while the overall error rate is low, the error rate among individuals who defaulted is very high. From the perspective of a credit card company that is trying to identify high-risk individuals, an error rate of \(252 / 333=75.7 \%\) among individuals who default may well be unacceptable.

Class-specific performance is also important in medicine and biology, where the terms sensitivity and specificity characterize the performance of a classifier or screening test. In this case the sensitivity is the percentage of
confusion matrix true defaulters that are identified, a low \(24.3 \%\) in this case. The specificity is the percentage of non-defaulters that are correctly identified, here ( \(1-\) \(23 / 9,667) \times 100=99.8 \%\).

Why does LDA do such a poor job of classifying the customers who default? In other words, why does it have such a low sensitivity? As we have seen, LDA is trying to approximate the Bayes classifier, which has the lowest total error rate out of all classifiers (if the Gaussian model is correct). That is, the Bayes classifier will yield the smallest possible total number of misclassified observations, irrespective of which class the errors come from. That is, some misclassifications will result from incorrectly assigning
\begin{tabular}{cc|cc|c}
\hline & & \multicolumn{3}{|c}{ True default status } \\
& & No & Yes & Total \\
\hline Predicted & No & 9,432 & 138 & 9,570 \\
default status & Yes & 235 & 195 & 430 \\
\cline { 2 - 5 } & Total & 9,667 & 333 & 10,000 \\
\hline
\end{tabular}

TABLE 4.5. A confusion matrix compares the LDA predictions to the true default statuses for the 10, 000 training observations in the Default data set, using a modified threshold value that predicts default for any individuals whose posterior default probability exceeds \(20 \%\).
a customer who does not default to the default class, and others will result from incorrectly assigning a customer who defaults to the non-default class. In contrast, a credit card company might particularly wish to avoid incorrectly classifying an individual who will default, whereas incorrectly classifying an individual who will not default, though still to be avoided, is less problematic. We will now see that it is possible to modify LDA in order to develop a classifier that better meets the credit card company's needs.

The Bayes classifier works by assigning an observation to the class for which the posterior probability \(p_{k}(X)\) is greatest. In the two-class case, this amounts to assigning an observation to the default class if
\[
\begin{equation*}
\operatorname{Pr}(\text { default }=\operatorname{Yes} \mid X=x)>0.5 \tag{4.21}
\end{equation*}
\]

Thus, the Bayes classifier, and by extension LDA, uses a threshold of \(50 \%\) for the posterior probability of default in order to assign an observation to the default class. However, if we are concerned about incorrectly predicting the default status for individuals who default, then we can consider lowering this threshold. For instance, we might label any customer with a posterior probability of default above \(20 \%\) to the default class. In other words, instead of assigning an observation to the default class if (4.21) holds, we could instead assign an observation to this class if
\[
\begin{equation*}
\operatorname{Pr}(\text { default }=\text { Yes } \mid X=x)>0.2 . \tag{4.22}
\end{equation*}
\]

The error rates that result from taking this approach are shown in Table 4.5. Now LDA predicts that 430 individuals will default. Of the 333 individuals who default, LDA correctly predicts all but 138 , or \(41.4 \%\). This is a vast improvement over the error rate of \(75.7 \%\) that resulted from using the threshold of \(50 \%\). However, this improvement comes at a cost: now 235 individuals who do not default are incorrectly classified. As a result, the overall error rate has increased slightly to \(3.73 \%\). But a credit card company may consider this slight increase in the total error rate to be a small price to pay for more accurate identification of individuals who do indeed default.

Figure 4.7 illustrates the trade-off that results from modifying the threshold value for the posterior probability of default. Various error rates are


FIGURE 4.7. For the Default data set, error rates are shown as a function of the threshold value for the posterior probability that is used to perform the assignment. The black solid line displays the overall error rate. The blue dashed line represents the fraction of defaulting customers that are incorrectly classified, and the orange dotted line indicates the fraction of errors among the non-defaulting customers.
shown as a function of the threshold value. Using a threshold of 0.5 , as in (4.21), minimizes the overall error rate, shown as a black solid line. This is to be expected, since the Bayes classifier uses a threshold of 0.5 and is known to have the lowest overall error rate. But when a threshold of 0.5 is used, the error rate among the individuals who default is quite high (blue dashed line). As the threshold is reduced, the error rate among individuals who default decreases steadily, but the error rate among the individuals who do not default increases. How can we decide which threshold value is best? Such a decision must be based on domain knowledge, such as detailed information about the costs associated with default.

The \(R O C\) curve is a popular graphic for simultaneously displaying the two types of errors for all possible thresholds. The name "ROC" is historic, and comes from communications theory. It is an acronym for receiver operating characteristics. Figure 4.8 displays the ROC curve for the LDA classifier on the training data. The overall performance of a classifier, summarized over all possible thresholds, is given by the area under the ( \(R O C\) ) curve (AUC). An ideal ROC curve will hug the top left corner, so the larger the AUC the better the classifier. For this data the AUC is 0.95 , which is close to the maximum of one so would be considered very good. We expect a classifier that performs no better than chance to have an AUC of 0.5 (when evaluated on an independent test set not used in model training). ROC curves are useful for comparing different classifiers, since they take into account all possible thresholds. It turns out that the ROC curve for the logistic regression model of Section 4.3 .4 fit to these data is virtually indistinguishable from this one for the LDA model, so we do not display it here.

As we have seen above, varying the classifier threshold changes its true positive and false positive rate. These are also called the sensitivity and one

ROC curve
area under the (ROC) curve

ROC Curve


FIGURE 4.8. A ROC curve for the LDA classifier on the Default data. It traces out two types of error as we vary the threshold value for the posterior probability of default. The actual thresholds are not shown. The true positive rate is the sensitivity: the fraction of defaulters that are correctly identified, using a given threshold value. The false positive rate is 1-specificity: the fraction of non-defaulters that we classify incorrectly as defaulters, using that same threshold value. The ideal ROC curve hugs the top left corner, indicating a high true positive rate and a low false positive rate. The dotted line represents the "no information" classifier; this is what we would expect if student status and credit card balance are not associated with probability of default.
\begin{tabular}{lc|c|c|c}
\hline & & \multicolumn{3}{|c}{ Predicted class } \\
& & - or Null & + or Non-null & Total \\
\cline { 2 - 5 } True & - or Null & True Neg. (TN) & False Pos. (FP) & N \\
class & + or Non-null & False Neg. (FN) & True Pos. (TP) & P \\
\cline { 2 - 5 } & Total & \(\mathrm{N}^{*}\) & \(\mathrm{P}^{*}\) & \\
\hline
\end{tabular}

TABLE 4.6. Possible results when applying a classifier or diagnostic test to a population.
minus the specificity of our classifier. Since there is an almost bewildering array of terms used in this context, we now give a summary. Table 4.6 shows the possible results when applying a classifier (or diagnostic test) to a population. To make the connection with the epidemiology literature, we think of "+" as the "disease" that we are trying to detect, and "-" as the "non-disease" state. To make the connection to the classical hypothesis testing literature, we think of "-" as the null hypothesis and "+" as the alternative (non-null) hypothesis. In the context of the Default data, "+" indicates an individual who defaults, and "-" indicates one who does not.
\begin{tabular}{l|r|l}
\hline Name & Definition & \multicolumn{1}{c}{ Synonyms } \\
\hline False Pos. rate & FP/N & Type I error, 1-Specificity \\
True Pos. rate & TP/P & 1-Type II error, power, sensitivity, recall \\
Pos. Pred. value & TP/P* & Precision, 1-false discovery proportion \\
Neg. Pred. value & \(\mathrm{TN} / \mathrm{N}^{*}\) & \\
\hline
\end{tabular}

TABLE 4.7. Important measures for classification and diagnostic testing, derived from quantities in Table 4.6.

Table 4.7 lists many of the popular performance measures that are used in this context. The denominators for the false positive and true positive rates are the actual population counts in each class. In contrast, the denominators for the positive predictive value and the negative predictive value are the total predicted counts for each class.

\subsection*{4.4.4 Quadratic Discriminant Analysis}

As we have discussed, LDA assumes that the observations within each class are drawn from a multivariate Gaussian distribution with a classspecific mean vector and a covariance matrix that is common to all \(K\) classes. Quadratic discriminant analysis (QDA) provides an alternative approach. Like LDA, the QDA classifier results from assuming that the observations from each class are drawn from a Gaussian distribution, and plugging estimates for the parameters into Bayes' theorem in order to perform prediction. However, unlike LDA, QDA assumes that each class has its own covariance matrix. That is, it assumes that an observation from the \(k\) th class is of the form \(X \sim N\left(\mu_{k}, \boldsymbol{\Sigma}_{k}\right)\), where \(\boldsymbol{\Sigma}_{k}\) is a covariance matrix for the \(k\) th class. Under this assumption, the Bayes classifier assigns an observation \(X=x\) to the class for which
\[
\begin{align*}
\delta_{k}(x) & =-\frac{1}{2}\left(x-\mu_{k}\right)^{T} \boldsymbol{\Sigma}_{k}^{-1}\left(x-\mu_{k}\right)-\frac{1}{2} \log \left|\boldsymbol{\Sigma}_{k}\right|+\log \pi_{k} \\
& =-\frac{1}{2} x^{T} \boldsymbol{\Sigma}_{k}^{-1} x+x^{T} \boldsymbol{\Sigma}_{k}^{-1} \mu_{k}-\frac{1}{2} \mu_{k}^{T} \boldsymbol{\Sigma}_{k}^{-1} \mu_{k}-\frac{1}{2} \log \left|\boldsymbol{\Sigma}_{k}\right|+\log \pi_{k} \tag{4.23}
\end{align*}
\]
quadratic discriminant analysis
is largest. So the QDA classifier involves plugging estimates for \(\boldsymbol{\Sigma}_{k}, \mu_{k}\), and \(\pi_{k}\) into (4.23), and then assigning an observation \(X=x\) to the class for which this quantity is largest. Unlike in (4.19), the quantity \(x\) appears as a quadratic function in (4.23). This is where QDA gets its name.

Why does it matter whether or not we assume that the \(K\) classes share a common covariance matrix? In other words, why would one prefer LDA to QDA, or vice-versa? The answer lies in the bias-variance trade-off. When there are \(p\) predictors, then estimating a covariance matrix requires estimating \(p(p+1) / 2\) parameters. QDA estimates a separate covariance matrix for each class, for a total of \(K p(p+1) / 2\) parameters. With 50 predictors this


FIGURE 4.9. Left: The Bayes (purple dashed), LDA (black dotted), and QDA (green solid) decision boundaries for a two-class problem with \(\boldsymbol{\Sigma}_{1}=\boldsymbol{\Sigma}_{2}\). The shading indicates the \(Q D A\) decision rule. Since the Bayes decision boundary is linear, it is more accurately approximated by \(L D A\) than by \(Q D A\). Right: Details are as given in the left-hand panel, except that \(\boldsymbol{\Sigma}_{1} \neq \boldsymbol{\Sigma}_{2}\). Since the Bayes decision boundary is non-linear, it is more accurately approximated by \(Q D A\) than by LDA.
is some multiple of 1,275 , which is a lot of parameters. By instead assuming that the \(K\) classes share a common covariance matrix, the LDA model becomes linear in \(x\), which means there are \(K p\) linear coefficients to estimate. Consequently, LDA is a much less flexible classifier than QDA, and so has substantially lower variance. This can potentially lead to improved prediction performance. But there is a trade-off: if LDA's assumption that the \(K\) classes share a common covariance matrix is badly off, then LDA can suffer from high bias. Roughly speaking, LDA tends to be a better bet than QDA if there are relatively few training observations and so reducing variance is crucial. In contrast, QDA is recommended if the training set is very large, so that the variance of the classifier is not a major concern, or if the assumption of a common covariance matrix for the \(K\) classes is clearly untenable.

Figure 4.9 illustrates the performances of LDA and QDA in two scenarios. In the left-hand panel, the two Gaussian classes have a common correlation of 0.7 between \(X_{1}\) and \(X_{2}\). As a result, the Bayes decision boundary is linear and is accurately approximated by the LDA decision boundary. The QDA decision boundary is inferior, because it suffers from higher variance without a corresponding decrease in bias. In contrast, the right-hand panel displays a situation in which the orange class has a correlation of 0.7 between the variables and the blue class has a correlation of -0.7 . Now the Bayes decision boundary is quadratic, and so QDA more accurately approximates this boundary than does LDA.

\subsection*{4.5 A Comparison of Classification Methods}

In this chapter, we have considered three different classification approaches: logistic regression, LDA, and QDA. In Chapter 2, we also discussed the \(K\)-nearest neighbors (KNN) method. We now consider the types of scenarios in which one approach might dominate the others.

Though their motivations differ, the logistic regression and LDA methods are closely connected. Consider the two-class setting with \(p=1\) predictor, and let \(p_{1}(x)\) and \(p_{2}(x)=1-p_{1}(x)\) be the probabilities that the observation \(X=x\) belongs to class 1 and class 2, respectively. In the LDA framework, we can see from (4.12) to (4.13) (and a bit of simple algebra) that the log odds is given by
\[
\begin{equation*}
\log \left(\frac{p_{1}(x)}{1-p_{1}(x)}\right)=\log \left(\frac{p_{1}(x)}{p_{2}(x)}\right)=c_{0}+c_{1} x \tag{4.24}
\end{equation*}
\]
where \(c_{0}\) and \(c_{1}\) are functions of \(\mu_{1}, \mu_{2}\), and \(\sigma^{2}\). From (4.4), we know that in logistic regression,
\[
\begin{equation*}
\log \left(\frac{p_{1}}{1-p_{1}}\right)=\beta_{0}+\beta_{1} x \tag{4.25}
\end{equation*}
\]

Both (4.24) and (4.25) are linear functions of \(x\). Hence, both logistic regression and LDA produce linear decision boundaries. The only difference between the two approaches lies in the fact that \(\beta_{0}\) and \(\beta_{1}\) are estimated using maximum likelihood, whereas \(c_{0}\) and \(c_{1}\) are computed using the estimated mean and variance from a normal distribution. This same connection between LDA and logistic regression also holds for multidimensional data with \(p>1\).

Since logistic regression and LDA differ only in their fitting procedures, one might expect the two approaches to give similar results. This is often, but not always, the case. LDA assumes that the observations are drawn from a Gaussian distribution with a common covariance matrix in each class, and so can provide some improvements over logistic regression when this assumption approximately holds. Conversely, logistic regression can outperform LDA if these Gaussian assumptions are not met.

Recall from Chapter 2 that KNN takes a completely different approach from the classifiers seen in this chapter. In order to make a prediction for an observation \(X=x\), the \(K\) training observations that are closest to \(x\) are identified. Then \(X\) is assigned to the class to which the plurality of these observations belong. Hence KNN is a completely non-parametric approach: no assumptions are made about the shape of the decision boundary. Therefore, we can expect this approach to dominate LDA and logistic regression when the decision boundary is highly non-linear. On the other hand, KNN does not tell us which predictors are important; we don't get a table of coefficients as in Table 4.3.


FIGURE 4.10. Boxplots of the test error rates for each of the linear scenarios described in the main text.


FIGURE 4.11. Boxplots of the test error rates for each of the non-linear scenarios described in the main text.

Finally, QDA serves as a compromise between the non-parametric KNN method and the linear LDA and logistic regression approaches. Since QDA assumes a quadratic decision boundary, it can accurately model a wider range of problems than can the linear methods. Though not as flexible as KNN, QDA can perform better in the presence of a limited number of training observations because it does make some assumptions about the form of the decision boundary.

To illustrate the performances of these four classification approaches, we generated data from six different scenarios. In three of the scenarios, the Bayes decision boundary is linear, and in the remaining scenarios it is non-linear. For each scenario, we produced 100 random training data sets. On each of these training sets, we fit each method to the data and computed the resulting test error rate on a large test set. Results for the linear scenarios are shown in Figure 4.10, and the results for the non-linear scenarios are in Figure 4.11. The KNN method requires selection of \(K\), the number of neighbors. We performed KNN with two values of \(K: K=1\),
and a value of \(K\) that was chosen automatically using an approach called cross-validation, which we discuss further in Chapter 5.

In each of the six scenarios, there were \(p=2\) predictors. The scenarios were as follows:

Scenario 1: There were 20 training observations in each of two classes. The observations within each class were uncorrelated random normal variables with a different mean in each class. The left-hand panel of Figure 4.10 shows that LDA performed well in this setting, as one would expect since this is the model assumed by LDA. KNN performed poorly because it paid a price in terms of variance that was not offset by a reduction in bias. QDA also performed worse than LDA, since it fit a more flexible classifier than necessary. Since logistic regression assumes a linear decision boundary, its results were only slightly inferior to those of LDA.

Scenario 2: Details are as in Scenario 1, except that within each class, the two predictors had a correlation of -0.5 . The center panel of Figure 4.10 indicates little change in the relative performances of the methods as compared to the previous scenario.

Scenario 3: We generated \(X_{1}\) and \(X_{2}\) from the \(t\)-distribution, with 50 observations per class. The \(t\)-distribution has a similar shape to distribution the normal distribution, but it has a tendency to yield more extreme points - that is, more points that are far from the mean. In this setting, the decision boundary was still linear, and so fit into the logistic regression framework. The set-up violated the assumptions of LDA, since the observations were not drawn from a normal distribution. The right-hand panel of Figure 4.10 shows that logistic regression outperformed LDA, though both methods were superior to the other approaches. In particular, the QDA results deteriorated considerably as a consequence of non-normality.

Scenario 4: The data were generated from a normal distribution, with a correlation of 0.5 between the predictors in the first class, and correlation of -0.5 between the predictors in the second class. This setup corresponded to the QDA assumption, and resulted in quadratic decision boundaries. The left-hand panel of Figure 4.11 shows that QDA outperformed all of the other approaches.

Scenario 5: Within each class, the observations were generated from a normal distribution with uncorrelated predictors. However, the responses were sampled from the logistic function using \(X_{1}^{2}, X_{2}^{2}\), and \(X_{1} \times X_{2}\) as predictors. Consequently, there is a quadratic decision boundary. The center panel of Figure 4.11 indicates that QDA once again performed best, followed closely by KNN-CV. The linear methods had poor performance.

Scenario 6: Details are as in the previous scenario, but the responses were sampled from a more complicated non-linear function. As a result, even the quadratic decision boundaries of QDA could not adequately model the data. The right-hand panel of Figure 4.11 shows that QDA gave slightly better results than the linear methods, while the much more flexible KNN-CV method gave the best results. But KNN with \(K=1\) gave the worst results out of all methods. This highlights the fact that even when the data exhibits a complex nonlinear relationship, a non-parametric method such as KNN can still give poor results if the level of smoothness is not chosen correctly.

These six examples illustrate that no one method will dominate the others in every situation. When the true decision boundaries are linear, then the LDA and logistic regression approaches will tend to perform well. When the boundaries are moderately non-linear, QDA may give better results. Finally, for much more complicated decision boundaries, a non-parametric approach such as KNN can be superior. But the level of smoothness for a non-parametric approach must be chosen carefully. In the next chapter we examine a number of approaches for choosing the correct level of smoothness and, in general, for selecting the best overall method.

Finally, recall from Chapter 3 that in the regression setting we can accommodate a non-linear relationship between the predictors and the response by performing regression using transformations of the predictors. A similar approach could be taken in the classification setting. For instance, we could create a more flexible version of logistic regression by including \(X^{2}, X^{3}\), and even \(X^{4}\) as predictors. This may or may not improve logistic regression's performance, depending on whether the increase in variance due to the added flexibility is offset by a sufficiently large reduction in bias. We could do the same for LDA. If we added all possible quadratic terms and cross-products to LDA, the form of the model would be the same as the QDA model, although the parameter estimates would be different. This device allows us to move somewhere between an LDA and a QDA model.

\subsection*{4.6 Lab: Logistic Regression, LDA, QDA, and KNN}

\subsection*{4.6.1 The Stock Market Data}

We will begin by examining some numerical and graphical summaries of the Smarket data, which is part of the ISLR library. This data set consists of percentage returns for the S\&P 500 stock index over 1, 250 days, from the beginning of 2001 until the end of 2005 . For each date, we have recorded the percentage returns for each of the five previous trading days, Lag1 through Lag5. We have also recorded volume (the number of shares traded
on the previous day, in billions), Today (the percentage return on the date in question) and Direction (whether the market was Up or Down on this date).
```

> library(ISLR)
> names(Smarket)
[1] "Year" "Lag1" "Lag2" "Lag3" "Lag4"
[6] "Lag5" "Volume" "Today" "Direction"
> dim(Smarket)
[1] 1250 9
> summary(Smarket)

```

```

1st Qu.:2002 1st Qu.:-0.63950 1st Qu.:-0.63950
Median :2003 Median : 0.03900 Median : 0.03900
Mean :2003 Mean : 0.00383 Mean : 0.00392
3rd Qu.:2004 3rd Qu.: 0.59675 3rd Qu.: 0.59675
Max. :2005 Max. : 5.73300 Max. : 5.73300
Lag3 Lag4 Lag5
Min. :-4.92200 Min. :-4.92200 Min. :-4.92200
1st Qu.:-0.64000 1st Qu.:-0.64000 1st Qu.:-0.64000
Median : 0.03850 Median : 0.03850 Median : 0.03850
Mean : 0.00172 Mean : 0.00164 Mean : 0.00561
3rd Qu.: 0.59675 3rd Qu.: 0.59675 3rd Qu.: 0.59700
Max. : 5.73300 Max. : 5.73300 Max. : 5.73300
Volume Today Direction
Min. :0.356 Min. :-4.92200 Down:602
1st Qu.:1.257 1st Qu.:-0.63950 Up :648
Median :1.423 Median : 0.03850
Mean :1.478 Mean : 0.00314
3rd Qu.:1.642 3rd Qu.: 0.59675
Max. :3.152 Max. : 5.73300
> pairs(Smarket)

```

The cor() function produces a matrix that contains all of the pairwise correlations among the predictors in a data set. The first command below gives an error message because the Direction variable is qualitative.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{\[
\begin{aligned}
& \text { Error in cor (Smarke } \\
& >\text { cor (Smarket }[,-9])
\end{aligned}
\]} \\
\hline & Year & Lag 1 & Lag 2 & Lag 3 & Lag4 & Lag 5 \\
\hline Year & 1.0000 & 0.02970 & 0.03060 & 0.03319 & 0.03569 & 0.02979 \\
\hline Lag 1 & 0.0297 & 1.00000 & -0.02629 & -0.01080 & -0.00299 & -0.00567 \\
\hline Lag 2 & 0.0306 & -0.02629 & 1.00000 & -0.02590 & -0.01085 & -0.00356 \\
\hline Lag 3 & 0.0332 & -0.01080 & -0.02590 & 1.00000 & -0.02405 & -0.01881 \\
\hline Lag4 & 0.0357 & -0.00299 & -0.01085 & -0.02405 & 1.00000 & -0.02708 \\
\hline Lag 5 & 0.0298 & -0.00567 & -0.00356 & -0.01881 & -0.02708 & 1.00000 \\
\hline Volume & 0.5390 & 0.04091 & -0.04338 & -0.04182 & -0.04841 & -0.02200 \\
\hline Today & 0.0301 & -0.02616 & -0.01025 & -0.00245 & -0.00690 & -0.03486 \\
\hline & Volum & Today & & & & \\
\hline Year & 0.5390 & 0.03010 & & & & \\
\hline
\end{tabular}
\begin{tabular}{lrr} 
Lag1 & 0.0409 & -0.02616 \\
Lag2 & -0.0434 & -0.01025 \\
Lag3 & -0.0418 & -0.00245 \\
Lag4 & -0.0484 & -0.00690 \\
Lag5 & -0.0220 & -0.03486 \\
Volume & 1.0000 & 0.01459 \\
Today & 0.0146 & 1.00000
\end{tabular}

As one would expect, the correlations between the lag variables and today's returns are close to zero. In other words, there appears to be little correlation between today's returns and previous days' returns. The only substantial correlation is between Year and Volume. By plotting the data we see that Volume is increasing over time. In other words, the average number of shares traded daily increased from 2001 to 2005.
```

> attach(Smarket)
> plot(Volume)

```

\subsection*{4.6.2 Logistic Regression}

Next, we will fit a logistic regression model in order to predict Direction using Lag1 through Lag5 and Volume. The glm() function fits generalized linear models, a class of models that includes logistic regression. The syntax of the \(\operatorname{llm}()\) function is similar to that of \(\operatorname{lm}()\), except that we must pass in the argument family=binomial in order to tell \(R\) to run a logistic regression rather than some other type of generalized linear model.
```

> glm.fits=glm(Direction~Lag1+Lag2+Lag3+Lag4+Lag5+Volume,
data=Smarket,family=binomial)
> summary(glm.fits)
Call:
glm(formula = Direction ~ Lag1 + Lag2 + Lag3 + Lag4 + Lag5
+ Volume, family = binomial, data = Smarket)
Deviance Residuals:

| Min | $1 Q$ | Median | $3 Q$ | Max |
| ---: | ---: | ---: | ---: | ---: |
| -1.45 | -1.20 | 1.07 | 1.15 | 1.33 |

Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.12600 0.24074 -0.52 0.60
Lag1 -0.07307 0.05017 -1.46 0.15
Lag2 -0.04230 0.05009 -0.84 0.40
Lag3 0.01109 0.04994 0.22 0.82
Lag4 0.00936 0.04997 0.19 0.85
Lag5 0.01031 0.04951 0.21 0.83
l:llll

```
```

(Dispersion parameter for binomial family taken to be 1)
Null deviance: 1731.2 on 1249 degrees of freedom
Residual deviance: 1727.6 on 1243 degrees of freedom
AIC: 1742
Number of Fisher Scoring iterations: 3

```

The smallest p-value here is associated with Lag1. The negative coefficient for this predictor suggests that if the market had a positive return yesterday, then it is less likely to go up today. However, at a value of 0.15 , the p-value is still relatively large, and so there is no clear evidence of a real association between Lag1 and Direction.

We use the coef () function in order to access just the coefficients for this fitted model. We can also use the summary() function to access particular aspects of the fitted model, such as the p-values for the coefficients.
```

> coef(glm.fits)
(Intercept)
> summary(glm.fits)$coef
 Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.12600 0.2407 -0.523 0.601
Lag1 -0.07307 0.0502 -1.457 0.145
Lag2 -0.04230 0.0501 -0.845 0.398
Lag3 0.01109 0.0499 0.222 0.824
Lag4 0.00936 0.0500
Lag5 0.01031
> summary(glm.fits)$coef[,4]
(Intercept)
Lag5 Volume
0.835 0.392

```

The predict() function can be used to predict the probability that the market will go up, given values of the predictors. The type="response" option tells R to output probabilities of the form \(P(Y=1 \mid X)\), as opposed to other information such as the logit. If no data set is supplied to the predict() function, then the probabilities are computed for the training data that was used to fit the logistic regression model. Here we have printed only the first ten probabilities. We know that these values correspond to the probability of the market going up, rather than down, because the contrasts() function indicates that \(R\) has created a dummy variable with a 1 for Up.
```

> glm.probs=predict(glm.fits,type="response")
> glm.probs[1:10]

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 0.507 | 0.481 | 0.481 | 0.515 | 0.511 | 0.507 | 0.493 | 0.509 | 0.518 | 0.489 |

```
```

> contrasts(Direction)
Up
Down 0
Up 1

```

In order to make a prediction as to whether the market will go up or down on a particular day, we must convert these predicted probabilities into class labels, Up or Down. The following two commands create a vector of class predictions based on whether the predicted probability of a market increase is greater than or less than 0.5.
```

> glm.pred=rep("Down",1250)
> glm.pred[glm.probs >.5]="Up"

```

The first command creates a vector of 1,250 Down elements. The second line transforms to Up all of the elements for which the predicted probability of a market increase exceeds 0.5 . Given these predictions, the table() function can be used to produce a confusion matrix in order to determine how many observations were correctly or incorrectly classified.
```

> table(glm.pred,Direction)
Direction
glm.pred Down Up
Down 145 141
Up 457 507
> (507+145)/1250
[1] 0.5216
> mean(glm.pred==Direction)
[1] 0.5216

```

The diagonal elements of the confusion matrix indicate correct predictions, while the off-diagonals represent incorrect predictions. Hence our model correctly predicted that the market would go up on 507 days and that it would go down on 145 days, for a total of \(507+145=652\) correct predictions. The mean() function can be used to compute the fraction of days for which the prediction was correct. In this case, logistic regression correctly predicted the movement of the market \(52.2 \%\) of the time.

At first glance, it appears that the logistic regression model is working a little better than random guessing. However, this result is misleading because we trained and tested the model on the same set of 1,250 observations. In other words, \(100-52.2=47.8 \%\) is the training error rate. As we have seen previously, the training error rate is often overly optimistic-it tends to underestimate the test error rate. In order to better assess the accuracy of the logistic regression model in this setting, we can fit the model using part of the data, and then examine how well it predicts the held out data. This will yield a more realistic error rate, in the sense that in practice we will be interested in our model's performance not on the data that we used to fit the model, but rather on days in the future for which the market's movements are unknown.

To implement this strategy, we will first create a vector corresponding to the observations from 2001 through 2004. We will then use this vector to create a held out data set of observations from 2005.
```

> train=(Year <2005)
> Smarket.2005=Smarket[!train,]
> dim(Smarket.2005)
[1] 252 9
> Direction.2005=Direction [!train]

```

The object train is a vector of 1,250 elements, corresponding to the observations in our data set. The elements of the vector that correspond to observations that occurred before 2005 are set to TRUE, whereas those that correspond to observations in 2005 are set to FALSE. The object train is a Boolean vector, since its elements are TRUE and FALSE. Boolean vectors can be used to obtain a subset of the rows or columns of a matrix. For instance, the command Smarket[train,] would pick out a submatrix of the stock market data set, corresponding only to the dates before 2005, since those are the ones for which the elements of train are TRUE. The ! symbol can be used to reverse all of the elements of a Boolean vector. That is, !train is a vector similar to train, except that the elements that are true in train get swapped to FALSE in !train, and the elements that are FALSE in train get swapped to TRUE in !train. Therefore, Smarket [!train,] yields a submatrix of the stock market data containing only the observations for which train is FALSE - that is, the observations with dates in 2005. The output above indicates that there are 252 such observations.

We now fit a logistic regression model using only the subset of the observations that correspond to dates before 2005, using the subset argument. We then obtain predicted probabilities of the stock market going up for each of the days in our test set - that is, for the days in 2005.
```

> glm.fits=glm(Direction~Lag1+Lag2+Lag3+Lag4+Lag5+Volume ,
data=Smarket,family=binomial, subset=train)
> glm.probs=predict(glm.fits,Smarket.2005, type="response")

```

Notice that we have trained and tested our model on two completely separate data sets: training was performed using only the dates before 2005, and testing was performed using only the dates in 2005. Finally, we compute the predictions for 2005 and compare them to the actual movements of the market over that time period.
```

> glm.pred=rep("Down",252)
> glm.pred[glm.probs >.5]="Up"
> table(glm.pred,Direction.2005)
Direction.2005
glm.pred Down Up
Down }779
Up 34 44
> mean(glm.pred==Direction.2005)

```
[1] 0.48
> mean(glm.pred!=Direction. 2005)
[1] 0.52
The != notation means not equal to, and so the last command computes the test set error rate. The results are rather disappointing: the test error rate is \(52 \%\), which is worse than random guessing! Of course this result is not all that surprising, given that one would not generally expect to be able to use previous days' returns to predict future market performance. (After all, if it were possible to do so, then the authors of this book would be out striking it rich rather than writing a statistics textbook.)

We recall that the logistic regression model had very underwhelming pvalues associated with all of the predictors, and that the smallest p-value, though not very small, corresponded to Lag1. Perhaps by removing the variables that appear not to be helpful in predicting Direction, we can obtain a more effective model. After all, using predictors that have no relationship with the response tends to cause a deterioration in the test error rate (since such predictors cause an increase in variance without a corresponding decrease in bias), and so removing such predictors may in turn yield an improvement. Below we have refit the logistic regression using just Lag1 and Lag2, which seemed to have the highest predictive power in the original logistic regression model.
```

> glm.fits=glm(Direction~Lag1+Lag2,data=Smarket,family=binomial,
subset=train)
> glm.probs=predict(glm.fits,Smarket.2005,type="response")
> glm.pred=rep("Down",252)
> glm.pred[glm.probs >.5]="Up"
> table(glm.pred,Direction.2005)
Direction.2005
glm.pred Down Up
Down 35 35
Up 76 106
> mean(glm.pred==Direction.2005)
[1] 0.56
> 106/(106+76)
[1] 0.582

```

Now the results appear to be a little better: \(56 \%\) of the daily movements have been correctly predicted. It is worth noting that in this case, a much simpler strategy of predicting that the market will increase every day will also be correct \(56 \%\) of the time! Hence, in terms of overall error rate, the logistic regression method is no better than the naïve approach. However, the confusion matrix shows that on days when logistic regression predicts an increase in the market, it has a \(58 \%\) accuracy rate. This suggests a possible trading strategy of buying on days when the model predicts an increasing market, and avoiding trades on days when a decrease is predicted. Of course one would need to investigate more carefully whether this small improvement was real or just due to random chance.

Suppose that we want to predict the returns associated with particular values of Lag1 and Lag2. In particular, we want to predict Direction on a day when Lag1 and Lag2 equal 1.2 and 1.1, respectively, and on a day when they equal 1.5 and -0.8 . We do this using the predict() function.
```

> predict(glm.fits,newdata=data.frame(Lag1=c(1.2,1.5),
Lag2=c(1.1,-0.8)), type="response")
1 2
0.4791 0.4961

```

\subsection*{4.6.3 Linear Discriminant Analysis}

Now we will perform LDA on the Smarket data. In R, we fit an LDA model using the lda() function, which is part of the MASS library. Notice that the syntax for the lda() function is identical to that of \(\operatorname{lm}()\), and to that of \(g \operatorname{lm}()\) except for the absence of the family option. We fit the model using only the observations before 2005.
```

> library(MASS)
> lda.fit=lda(Direction~Lag1+Lag2,data=Smarket, subset=train)
> lda.fit
Call:
lda(Direction ~ Lag1 + Lag2, data = Smarket, subset = train)
Prior probabilities of groups:
Down Up
0.492 0.508
Group means:
Lag1 Lag2
Down 0.0428 0.0339
Up -0.0395 -0.0313
Coefficients of linear discriminants:
LD1
Lag1 -0.642
Lag2 -0.514
> plot(lda.fit)

```

The LDA output indicates that \(\hat{\pi}_{1}=0.492\) and \(\hat{\pi}_{2}=0.508\); in other words, \(49.2 \%\) of the training observations correspond to days during which the market went down. It also provides the group means; these are the average of each predictor within each class, and are used by LDA as estimates of \(\mu_{k}\). These suggest that there is a tendency for the previous 2 days' returns to be negative on days when the market increases, and a tendency for the previous days' returns to be positive on days when the market declines. The coefficients of linear discriminants output provides the linear combination of Lag1 and Lag2 that are used to form the LDA decision rule. In other words, these are the multipliers of the elements of \(X=x\) in (4.19). If \(-0.642 \times\) Lag1 \(-0.514 \times\) Lag2 is large, then the LDA classifier will
predict a market increase, and if it is small, then the LDA classifier will predict a market decline. The plot() function produces plots of the linear discriminants, obtained by computing \(-0.642 \times \operatorname{Lag} 1-0.514 \times \operatorname{Lag} 2\) for each of the training observations.

The predict() function returns a list with three elements. The first element, class, contains LDA's predictions about the movement of the market. The second element, posterior, is a matrix whose \(k\) th column contains the posterior probability that the corresponding observation belongs to the \(k\) th class, computed from (4.10). Finally, x contains the linear discriminants, described earlier.
```

> lda.pred=predict(lda.fit, Smarket.2005)
> names(lda.pred)
[1] "class" "posterior" "x"

```

As we observed in Section 4.5, the LDA and logistic regression predictions are almost identical.
```

> lda.class=lda.pred\$class
> table(lda.class,Direction.2005)
Direction.2005
lda.pred Down Up
Down 35 35
Up 76 106
> mean(lda.class==Direction.2005)
[1] 0.56

```

Applying a \(50 \%\) threshold to the posterior probabilities allows us to recreate the predictions contained in lda.pred \(\$\) class.
```

> sum(lda.pred$posterior[,1]>=.5)
[1] 70
> sum(lda.pred$posterior[,1]<.5)
[1] }18

```

Notice that the posterior probability output by the model corresponds to the probability that the market will decrease:
```

> lda.pred\$posterior[1:20,1]
> lda.class[1:20]

```

If we wanted to use a posterior probability threshold other than \(50 \%\) in order to make predictions, then we could easily do so. For instance, suppose that we wish to predict a market decrease only if we are very certain that the market will indeed decrease on that day-say, if the posterior probability is at least \(90 \%\).
```

> sum(lda.pred\$posterior[,1]>.9)
[1] 0

```

No days in 2005 meet that threshold! In fact, the greatest posterior probability of decrease in all of 2005 was \(52.02 \%\).

\subsection*{4.6.4 Quadratic Discriminant Analysis}

We will now fit a QDA model to the Smarket data. QDA is implemented in \(R\) using the qda() function, which is also part of the mASS library. The syntax is identical to that of lda().
```

> qda.fit=qda(Direction~Lag1+Lag2,data=Smarket,subset=train)
> qda.fit
Call:
qda(Direction ~ Lag1 + Lag2, data = Smarket, subset = train)
Prior probabilities of groups:
Down Up
0.492 0.508
Group means:

| | Lag1 | Lag2 |
| :--- | ---: | ---: |
| Down | 0.0428 | 0.0339 |

Up -0.0395 -0.0313

```

The output contains the group means. But it does not contain the coefficients of the linear discriminants, because the QDA classifier involves a quadratic, rather than a linear, function of the predictors. The predict() function works in exactly the same fashion as for LDA.
```

> qda.class=predict(qda.fit,Smarket.2005)\$class
> table(qda.class,Direction.2005)
Direction.2005
qda.class Down Up
Down 30 20
Up 81 121
> mean(qda.class==Direction.2005)
[1] 0.599

```

Interestingly, the QDA predictions are accurate almost \(60 \%\) of the time, even though the 2005 data was not used to fit the model. This level of accuracy is quite impressive for stock market data, which is known to be quite hard to model accurately. This suggests that the quadratic form assumed by QDA may capture the true relationship more accurately than the linear forms assumed by LDA and logistic regression. However, we recommend evaluating this method's performance on a larger test set before betting that this approach will consistently beat the market!

\subsection*{4.6.5 \(K\)-Nearest Neighbors}

We will now perform KNN using the knn() function, which is part of the class library. This function works rather differently from the other modelfitting functions that we have encountered thus far. Rather than a two-step approach in which we first fit the model and then we use the model to make predictions, knn() forms predictions using a single command. The function requires four inputs.
1. A matrix containing the predictors associated with the training data, labeled train. X below.
2. A matrix containing the predictors associated with the data for which we wish to make predictions, labeled test. X below.
3. A vector containing the class labels for the training observations, labeled train.Direction below.
4. A value for \(K\), the number of nearest neighbors to be used by the classifier.

We use the cbind() function, short for column bind, to bind the Lag1 and Lag2 variables together into two matrices, one for the training set and the other for the test set.
```

> library(class)
> train. X=cbind(Lag1,Lag2) [train,]
> test.X=cbind(Lag1,Lag2)[!train,]
> train.Direction=Direction [train]

```

Now the knn() function can be used to predict the market's movement for the dates in 2005. We set a random seed before we apply knn() because if several observations are tied as nearest neighbors, then \(R\) will randomly break the tie. Therefore, a seed must be set in order to ensure reproducibility of results.
```

> set.seed(1)
> knn.pred=knn(train.X,test.X,train.Direction,k=1)
> table(knn.pred,Direction.2005)
Direction.2005
knn.pred Down Up
Down 43 58
Up 68 83
> (83+43)/252
[1] 0.5

```

The results using \(K=1\) are not very good, since only \(50 \%\) of the observations are correctly predicted. Of course, it may be that \(K=1\) results in an overly flexible fit to the data. Below, we repeat the analysis using \(K=3\).
```

> knn.pred=knn(train.X,test.X,train.Direction,k=3)
> table(knn.pred,Direction.2005)
Direction.2005
knn.pred Down Up
Down 48 54
Up 63 87
> mean(knn.pred==Direction.2005)
[1] 0.536

```

The results have improved slightly. But increasing \(K\) further turns out to provide no further improvements. It appears that for this data, QDA provides the best results of the methods that we have examined so far.

\subsection*{4.6.6 An Application to Caravan Insurance Data}

Finally, we will apply the KNN approach to the Caravan data set, which is part of the ISLR library. This data set includes 85 predictors that measure demographic characteristics for 5,822 individuals. The response variable is Purchase, which indicates whether or not a given individual purchases a caravan insurance policy. In this data set, only \(6 \%\) of people purchased caravan insurance.
```

> dim(Caravan)
[1] 5822 86
> attach(Caravan)
> summary(Purchase)
No Yes
5474 348
> 348/5822
[1] 0.0598

```

Because the KNN classifier predicts the class of a given test observation by identifying the observations that are nearest to it, the scale of the variables matters. Any variables that are on a large scale will have a much larger effect on the distance between the observations, and hence on the KNN classifier, than variables that are on a small scale. For instance, imagine a data set that contains two variables, salary and age (measured in dollars and years, respectively). As far as KNN is concerned, a difference of \(\$ 1,000\) in salary is enormous compared to a difference of 50 years in age. Consequently, salary will drive the KNN classification results, and age will have almost no effect. This is contrary to our intuition that a salary difference of \(\$ 1,000\) is quite small compared to an age difference of 50 years. Furthermore, the importance of scale to the KNN classifier leads to another issue: if we measured salary in Japanese yen, or if we measured age in minutes, then we'd get quite different classification results from what we get if these two variables are measured in dollars and years.

A good way to handle this problem is to standardize the data so that all variables are given a mean of zero and a standard deviation of one. Then all variables will be on a comparable scale. The scale() function does just this. In standardizing the data, we exclude column 86 , because that is the qualitative Purchase variable.
```

> standardized.X=scale(Caravan[, -86])
> var(Caravan [,1])
[1] 165
> var(Caravan[,2])
[1] 0.165
> var(standardized.X[,1])
[1] 1
> var(standardized.X[,2])
[1] 1

```

Now every column of standardized. x has a standard deviation of one and a mean of zero.

We now split the observations into a test set, containing the first 1,000 observations, and a training set, containing the remaining observations. We fit a KNN model on the training data using \(K=1\), and evaluate its performance on the test data.
```

> test=1:1000
> train.X=standardized.X[-test,]
> test.X=standardized.X[test,]
> train.Y=Purchase[-test]
> test.Y=Purchase[test]
> set.seed(1)
> knn.pred=knn(train.X,test.X,train.Y,k=1)
> mean(test.Y!=knn.pred)
[1] 0.118
> mean(test.Y!="No")
[1] 0.059

```

The vector test is numeric, with values from 1 through 1,000. Typing standardized.X[test,] yields the submatrix of the data containing the observations whose indices range from 1 to 1,000 , whereas typing
standardized.X[-test,] yields the submatrix containing the observations whose indices do not range from 1 to 1,000 . The KNN error rate on the 1,000 test observations is just under \(12 \%\). At first glance, this may appear to be fairly good. However, since only \(6 \%\) of customers purchased insurance, we could get the error rate down to \(6 \%\) by always predicting No regardless of the values of the predictors!

Suppose that there is some non-trivial cost to trying to sell insurance to a given individual. For instance, perhaps a salesperson must visit each potential customer. If the company tries to sell insurance to a random selection of customers, then the success rate will be only \(6 \%\), which may be far too low given the costs involved. Instead, the company would like to try to sell insurance only to customers who are likely to buy it. So the overall error rate is not of interest. Instead, the fraction of individuals that are correctly predicted to buy insurance is of interest.

It turns out that KNN with \(K=1\) does far better than random guessing among the customers that are predicted to buy insurance. Among 77 such customers, 9 , or \(11.7 \%\), actually do purchase insurance. This is double the rate that one would obtain from random guessing.
```

> table(knn.pred,test.Y)
test.Y
knn.pred No Yes
No 873 50
Yes 68 9
> 9/(68+9)
[1] 0.117

```

Using \(K=3\), the success rate increases to \(19 \%\), and with \(K=5\) the rate is \(26.7 \%\). This is over four times the rate that results from random guessing. It appears that KNN is finding some real patterns in a difficult data set!
```

> knn.pred=knn(train.X,test.X,train.Y,k=3)
> table(knn.pred,test.Y)
test.Y
knn.pred No Yes
No 920 54
Yes 21 5
> 5/26
[1] 0.192
> knn.pred=knn(train.X,test.X,train.Y,k=5)
> table(knn.pred,test.Y)
test.Y
knn.pred No Yes
No 930 55
Yes 11 4
> 4/15
[1] 0.267

```

As a comparison, we can also fit a logistic regression model to the data. If we use 0.5 as the predicted probability cut-off for the classifier, then we have a problem: only seven of the test observations are predicted to purchase insurance. Even worse, we are wrong about all of these! However, we are not required to use a cut-off of 0.5 . If we instead predict a purchase any time the predicted probability of purchase exceeds 0.25 , we get much better results: we predict that 33 people will purchase insurance, and we are correct for about \(33 \%\) of these people. This is over five times better than random guessing!
```

> glm.fits=glm(Purchase~.,data=Caravan, family=binomial,
subset=-test)
Warning message:
glm.fits: fitted probabilities numerically 0 or 1 occurred
> glm.probs=predict(glm.fits,Caravan[test,],type="response")
> glm.pred=rep("No",1000)
> glm.pred[glm.probs >.5]="Yes"
> table(glm.pred,test.Y)
test.Y
glm.pred No Yes
No 934 59
Yes 7 0
> glm.pred=rep("No",1000)
> glm.pred[glm.probs>.25]="Yes"
> table(glm.pred,test.Y)
test.Y
glm.pred No Yes
No 919 48
Yes 22 11
> 11/(22+11)
[1] 0.333

```

\subsection*{4.7 Exercises}

\section*{Conceptual}
1. Using a little bit of algebra, prove that (4.2) is equivalent to (4.3). In other words, the logistic function representation and logit representation for the logistic regression model are equivalent.
2. It was stated in the text that classifying an observation to the class for which (4.12) is largest is equivalent to classifying an observation to the class for which (4.13) is largest. Prove that this is the case. In other words, under the assumption that the observations in the \(k\) th class are drawn from a \(N\left(\mu_{k}, \sigma^{2}\right)\) distribution, the Bayes' classifier assigns an observation to the class for which the discriminant function is maximized.
3. This problem relates to the QDA model, in which the observations within each class are drawn from a normal distribution with a classspecific mean vector and a class specific covariance matrix. We consider the simple case where \(p=1\); i.e. there is only one feature.

Suppose that we have \(K\) classes, and that if an observation belongs to the \(k\) th class then \(X\) comes from a one-dimensional normal distribution, \(X \sim N\left(\mu_{k}, \sigma_{k}^{2}\right)\). Recall that the density function for the one-dimensional normal distribution is given in (4.11). Prove that in this case, the Bayes' classifier is not linear. Argue that it is in fact quadratic.

Hint: For this problem, you should follow the arguments laid out in Section 4.4.2, but without making the assumption that \(\sigma_{1}^{2}=\ldots=\sigma_{K}^{2}\).
4. When the number of features \(p\) is large, there tends to be a deterioration in the performance of KNN and other local approaches that perform prediction using only observations that are near the test observation for which a prediction must be made. This phenomenon is known as the curse of dimensionality, and it ties into the fact that non-parametric approaches often perform poorly when \(p\) is large. We will now investigate this curse.
(a) Suppose that we have a set of observations, each with measurements on \(p=1\) feature, \(X\). We assume that \(X\) is uniformly (evenly) distributed on \([0,1]\). Associated with each observation is a response value. Suppose that we wish to predict a test observation's response using only observations that are within \(10 \%\) of the range of \(X\) closest to that test observation. For instance, in order to predict the response for a test observation with \(X=0.6\),
we will use observations in the range \([0.55,0.65]\). On average, what fraction of the available observations will we use to make the prediction?
(b) Now suppose that we have a set of observations, each with measurements on \(p=2\) features, \(X_{1}\) and \(X_{2}\). We assume that \(\left(X_{1}, X_{2}\right)\) are uniformly distributed on \([0,1] \times[0,1]\). We wish to predict a test observation's response using only observations that are within \(10 \%\) of the range of \(X_{1}\) and within \(10 \%\) of the range of \(X_{2}\) closest to that test observation. For instance, in order to predict the response for a test observation with \(X_{1}=0.6\) and \(X_{2}=0.35\), we will use observations in the range [0.55, 0.65] for \(X_{1}\) and in the range \([0.3,0.4]\) for \(X_{2}\). On average, what fraction of the available observations will we use to make the prediction?
(c) Now suppose that we have a set of observations on \(p=100\) features. Again the observations are uniformly distributed on each feature, and again each feature ranges in value from 0 to 1 . We wish to predict a test observation's response using observations within the \(10 \%\) of each feature's range that is closest to that test observation. What fraction of the available observations will we use to make the prediction?
(d) Using your answers to parts (a)-(c), argue that a drawback of KNN when \(p\) is large is that there are very few training observations "near" any given test observation.
(e) Now suppose that we wish to make a prediction for a test observation by creating a \(p\)-dimensional hypercube centered around the test observation that contains, on average, \(10 \%\) of the training observations. For \(p=1,2\), and 100 , what is the length of each side of the hypercube? Comment on your answer.

Note: A hypercube is a generalization of a cube to an arbitrary number of dimensions. When \(p=1\), a hypercube is simply a line segment, when \(p=2\) it is a square, and when \(p=100\) it is a 100-dimensional cube.
5. We now examine the differences between LDA and QDA.
(a) If the Bayes decision boundary is linear, do we expect LDA or QDA to perform better on the training set? On the test set?
(b) If the Bayes decision boundary is non-linear, do we expect LDA or QDA to perform better on the training set? On the test set?
(c) In general, as the sample size \(n\) increases, do we expect the test prediction accuracy of QDA relative to LDA to improve, decline, or be unchanged? Why?
(d) True or False: Even if the Bayes decision boundary for a given problem is linear, we will probably achieve a superior test error rate using QDA rather than LDA because QDA is flexible enough to model a linear decision boundary. Justify your answer.
6. Suppose we collect data for a group of students in a statistics class with variables \(X_{1}=\) hours studied, \(X_{2}=\) undergrad GPA, and \(Y=\) receive an A . We fit a logistic regression and produce estimated coefficient, \(\hat{\beta}_{0}=-6, \hat{\beta}_{1}=0.05, \hat{\beta}_{2}=1\).
(a) Estimate the probability that a student who studies for 40 h and has an undergrad GPA of 3.5 gets an A in the class.
(b) How many hours would the student in part (a) need to study to have a \(50 \%\) chance of getting an A in the class?
7. Suppose that we wish to predict whether a given stock will issue a dividend this year ("Yes" or "No") based on \(X\), last year's percent profit. We examine a large number of companies and discover that the mean value of \(X\) for companies that issued a dividend was \(\bar{X}=10\), while the mean for those that didn't was \(\bar{X}=0\). In addition, the variance of \(X\) for these two sets of companies was \(\hat{\sigma}^{2}=36\). Finally, \(80 \%\) of companies issued dividends. Assuming that \(X\) follows a normal distribution, predict the probability that a company will issue a dividend this year given that its percentage profit was \(X=4\) last year.

Hint: Recall that the density function for a normal random variable is \(f(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-(x-\mu)^{2} / 2 \sigma^{2}}\). You will need to use Bayes' theorem.
8. Suppose that we take a data set, divide it into equally-sized training and test sets, and then try out two different classification procedures. First we use logistic regression and get an error rate of \(20 \%\) on the training data and \(30 \%\) on the test data. Next we use 1-nearest neighbors (i.e. \(K=1\) ) and get an average error rate (averaged over both test and training data sets) of \(18 \%\). Based on these results, which method should we prefer to use for classification of new observations? Why?
9. This problem has to do with odds.
(a) On average, what fraction of people with an odds of 0.37 of defaulting on their credit card payment will in fact default?
(b) Suppose that an individual has a \(16 \%\) chance of defaulting on her credit card payment. What are the odds that she will default?

\section*{Applied}
10. This question should be answered using the Weekly data set, which is part of the ISLR package. This data is similar in nature to the Smarket data from this chapter's lab, except that it contains 1,089 weekly returns for 21 years, from the beginning of 1990 to the end of 2010.
(a) Produce some numerical and graphical summaries of the Weekly data. Do there appear to be any patterns?
(b) Use the full data set to perform a logistic regression with Direction as the response and the five lag variables plus volume as predictors. Use the summary function to print the results. Do any of the predictors appear to be statistically significant? If so, which ones?
(c) Compute the confusion matrix and overall fraction of correct predictions. Explain what the confusion matrix is telling you about the types of mistakes made by logistic regression.
(d) Now fit the logistic regression model using a training data period from 1990 to 2008, with Lag2 as the only predictor. Compute the confusion matrix and the overall fraction of correct predictions for the held out data (that is, the data from 2009 and 2010).
(e) Repeat (d) using LDA.
(f) Repeat (d) using QDA.
(g) Repeat (d) using KNN with \(K=1\).
(h) Which of these methods appears to provide the best results on this data?
(i) Experiment with different combinations of predictors, including possible transformations and interactions, for each of the methods. Report the variables, method, and associated confusion matrix that appears to provide the best results on the held out data. Note that you should also experiment with values for \(K\) in the KNN classifier.
11. In this problem, you will develop a model to predict whether a given car gets high or low gas mileage based on the Auto data set.
(a) Create a binary variable, mpg01, that contains a 1 if mpg contains a value above its median, and a 0 if mpg contains a value below its median. You can compute the median using the median() function. Note you may find it helpful to use the data.frame() function to create a single data set containing both mpg01 and the other Auto variables.
(b) Explore the data graphically in order to investigate the association between mpg01 and the other features. Which of the other features seem most likely to be useful in predicting mpg01? Scatterplots and boxplots may be useful tools to answer this question. Describe your findings.
(c) Split the data into a training set and a test set.
(d) Perform LDA on the training data in order to predict mpg01 using the variables that seemed most associated with mpg01 in (b). What is the test error of the model obtained?
(e) Perform QDA on the training data in order to predict mpg01 using the variables that seemed most associated with mpg01 in (b). What is the test error of the model obtained?
(f) Perform logistic regression on the training data in order to predict mpg01 using the variables that seemed most associated with mpg01 in (b). What is the test error of the model obtained?
(g) Perform KNN on the training data, with several values of \(K\), in order to predict mpg01. Use only the variables that seemed most associated with mpg01 in (b). What test errors do you obtain? Which value of \(K\) seems to perform the best on this data set?
12. This problem involves writing functions.
(a) Write a function, Power (), that prints out the result of raising 2 to the 3 rd power. In other words, your function should compute \(2^{3}\) and print out the results.
Hint: Recall that \(\times\) ^a raises x to the power a. Use the print() function to output the result.
(b) Create a new function, Power2(), that allows you to pass any two numbers, \(x\) and \(a\), and prints out the value of \(x^{\wedge} a\). You can do this by beginning your function with the line
> Power2 \(=\) function ( \(x, a)\{\)
You should be able to call your function by entering, for instance,
```

> Power2(3,8)

```
on the command line. This should output the value of \(3^{8}\), namely, 6,561 .
(c) Using the Power2() function that you just wrote, compute \(10^{3}\), \(8^{17}\), and \(131^{3}\).
(d) Now create a new function, Power3(), that actually returns the result \(x \wedge a\) as an \(R\) object, rather than simply printing it to the screen. That is, if you store the value \(x^{\wedge}\) a in an object called result within your function, then you can simply return() this result, using the following line:
return (result)
The line above should be the last line in your function, before the \(\}\) symbol.
(e) Now using the Power3() function, create a plot of \(f(x)=x^{2}\). The \(x\)-axis should display a range of integers from 1 to 10 , and the \(y\)-axis should display \(x^{2}\). Label the axes appropriately, and use an appropriate title for the figure. Consider displaying either the \(x\)-axis, the \(y\)-axis, or both on the log-scale. You can do this by using \(\log =\) ' ' \(x\) '), \(\log =\) ' \(y\) '', or \(\log =\) '' \(x y\) ') as arguments to the plot() function.
(f) Create a function, PlotPower(), that allows you to create a plot of \(x\) against \(x^{\wedge}\) a for a fixed a and for a range of values of \(x\). For instance, if you call
> PlotPower (1:10,3)
then a plot should be created with an \(x\)-axis taking on values \(1,2, \ldots, 10\), and a \(y\)-axis taking on values \(1^{3}, 2^{3}, \ldots, 10^{3}\).
13. Using the Boston data set, fit classification models in order to predict whether a given suburb has a crime rate above or below the median. Explore logistic regression, LDA, and KNN models using various subsets of the predictors. Describe your findings.```


[^0]:    $\qquad$

[^1]:    ${ }^{1}$ The assumption of linearity is often a useful working model. However, despite what many textbooks might tell us, we seldom believe that the true relationship is linear.

[^2]:    ${ }^{2}$ This formula holds provided that the $n$ observations are uncorrelated.
    ${ }^{3}$ Approximately for several reasons. Equation 3.10 relies on the assumption that the errors are Gaussian. Also, the factor of 2 in front of the $\operatorname{SE}\left(\hat{\beta}_{1}\right)$ term will vary slightly depending on the number of observations $n$ in the linear regression. To be precise, rather than the number 2 , (3.10) should contain the $97.5 \%$ quantile of a $t$-distribution with $n-2$ degrees of freedom. Details of how to compute the $95 \%$ confidence interval precisely in $R$ will be provided later in this chapter.

[^3]:    ${ }^{4}$ In Table 3.1, a small p-value for the intercept indicates that we can reject the null hypothesis that $\beta_{0}=0$, and a small p -value for TV indicates that we can reject the null hypothesis that $\beta_{1}=0$. Rejecting the latter null hypothesis allows us to conclude that there is a relationship between TV and sales. Rejecting the former allows us to conclude that in the absence of TV expenditure, sales are non-zero.

[^4]:    ${ }^{5}$ We note that in fact, the right-hand side of (3.18) is the sample correlation; thus, it would be more correct to write $\operatorname{Cor} \widehat{(X, Y})$; however, we omit the "hat" for ease of notation.

[^5]:    ${ }^{6}$ Even if the errors are not normally-distributed, the F-statistic approximately follows an F -distribution provided that the sample size $n$ is large.

[^6]:    ${ }^{7}$ The square of each t-statistic is the corresponding F-statistic.

[^7]:    ${ }^{8}$ In other words, if we collect a large number of data sets like the Advertising data set, and we construct a confidence interval for the average sales on the basis of each data set (given $\$ 100,000$ in TV and $\$ 20,000$ in radio advertising), then $95 \%$ of these confidence intervals will contain the true value of average sales.

