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Linear Regression

This chapter is about linear regression, a very simple approach for
supervised learning. In particular, linear regression is a useful tool for pre-
dicting a quantitative response. Linear regression has been around for a
long time and is the topic of innumerable textbooks. Though it may seem
somewhat dull compared to some of the more modern statistical learning
approaches described in later chapters of this book, linear regression is still
a useful and widely used statistical learning method. Moreover, it serves
as a good jumping-off point for newer approaches: as we will see in later
chapters, many fancy statistical learning approaches can be seen as gener-
alizations or extensions of linear regression. Consequently, the importance
of having a good understanding of linear regression before studying more
complex learning methods cannot be overstated. In this chapter, we review
some of the key ideas underlying the linear regression model, as well as the
least squares approach that is most commonly used to fit this model.

Recall the Advertising data from Chapter 2. Figure 2.1 displays sales
(in thousands of units) for a particular product as a function of advertis-
ing budgets (in thousands of dollars) for TV, radio, and newspaper media.
Suppose that in our role as statistical consultants we are asked to suggest,
on the basis of this data, a marketing plan for next year that will result in
high product sales. What information would be useful in order to provide
such a recommendation? Here are a few important questions that we might
seek to address:

1. Is there a relationship between advertising budget and sales?
Our first goal should be to determine whether the data provide
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evidence of an association between advertising expenditure and sales.
If the evidence is weak, then one might argue that no money should
be spent on advertising!

. How strong is the relationship between advertising budget and sales?

Assuming that there is a relationship between advertising and sales,
we would like to know the strength of this relationship. In other
words, given a certain advertising budget, can we predict sales with
a high level of accuracy? This would be a strong relationship. Or is
a prediction of sales based on advertising expenditure only slightly
better than a random guess? This would be a weak relationship.

. Which media contribute to sales?

Do all three media—TV, radio, and newspaper—contribute to sales,
or do just one or two of the media contribute? To answer this question,
we must find a way to separate out the individual effects of each
medium when we have spent money on all three media.

. How accurately can we estimate the effect of each medium on sales?

For every dollar spent on advertising in a particular medium, by
what amount will sales increase?” How accurately can we predict this
amount of increase?

. How accurately can we predict future sales?

For any given level of television, radio, or newspaper advertising, what
is our prediction for sales, and what is the accuracy of this prediction?

. Is the relationship linear?

If there is approximately a straight-line relationship between advertis-
ing expenditure in the various media and sales, then linear regression
is an appropriate tool. If not, then it may still be possible to trans-
form the predictor or the response so that linear regression can be
used.

. Is there synergy among the advertising media?

Perhaps spending $50,000 on television advertising and $50,000 on
radio advertising results in more sales than allocating $100,000 to
either television or radio individually. In marketing, this is known as
a synerqgy effect, while in statistics it is called an interaction effect.

It turns out that linear regression can be used to answer each of these
questions. We will first discuss all of these questions in a general context,
and then return to them in this specific context in Section 3.4.

synergy

interaction
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3.1 Simple Linear Regression

Simple linear regression lives up to its name: it is a very straightforward
approach for predicting a quantitative response Y on the basis of a sin-
gle predictor variable X. It assumes that there is approximately a linear
relationship between X and Y. Mathematically, we can write this linear
relationship as

You might read “~” as “is approximately modeled as”. We will sometimes
describe (3.1) by saying that we are regressing Y on X (or Y onto X).
For example, X may represent TV advertising and Y may represent sales.
Then we can regress sales onto TV by fitting the model

sales = 60 + 61 x TV.

In Equation 3.1, fy and (1 are two unknown constants that represent
the intercept and slope terms in the linear model. Together, Sy and [, are
known as the model coefficients or parameters. Once we have used our
training data to produce estimates 3y and £1 for the model coefficients, we
can predict future sales on the basis of a particular value of TV advertising
by computing

y = Po+ Pz, (3:2)

where ¢ indicates a prediction of Y on the basis of X = x. Here we use a
hat symbol, " | to denote the estimated value for an unknown parameter
or coefficient, or to denote the predicted value of the response.

3.1.1 FEstimating the Coefficients

In practice, Sy and (; are unknown. So before we can use (3.1) to make
predictions, we must use data to estimate the coefficients. Let

(x17y1)7 (*T27y2)7 ) (:Envy’n)

represent n observation pairs, each of which consists of a measurement
of X and a measurement of Y. In the Advertising example, this data
set consists of the TV advertising budget and product sales in n = 200
different markets. (Recall that the data are displayed in Figure 2.1.) Our
goal is to obtain coefficient estimates Bg and 61 such that the linear model
(3.1) fits the available data well—that is, so that y; =~ 50 + 51% for ¢ =
1,...,n. In other words, we want to find an intercept 3y and a slope 1 such
that the resulting line is as close as possible to the n = 200 data points.
There are a number of ways of measuring closeness. However, by far the
most common approach involves minimizing the least squares criterion,
and we take that approach in this chapter. Alternative approaches will be
considered in Chapter 6.

simple linear
regression

intercept
slope

coefficient

parameter

least squares
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FIGURE 3.1. For the Advertising data, the least squares fit for the regression
of sales onto TV s shown. The fit is found by minimizing the sum of squared
errors. Fach grey line segment represents an error, and the fit makes a compro-
mise by averaging their squares. In this case a linear fit captures the essence of
the relationship, although it is somewhat deficient in the left of the plot.

Let y; = Bo + Blwi be the prediction for Y based on the ith value of X.
Then e; = y; — y; represents the ith residual—this is the difference between
the ith observed response value and the ¢th response value that is predicted
by our linear model. We define the residual sum of squares (RSS) as

residual

residual sum
of squares

RSS =€l +e3+ - +e2,
or equivalently as
RSS = (11 —Bo—ﬁlxl)g-l- (y2 _BO —le2)2+. ot (yn —50—3130”)2. (3.3)

The least squares approach chooses 80 and Bl to minimize the RSS. Using
some calculus, one can show that the minimizers are

5 Tiale = D) =)
Si(xi—z)?2 (3.4)
BO - g - Blma

where § = L 3" | y; and £ = 2 3" | x; are the sample means. In other
words, (3.4) defines the least squares coefficient estimates for simple linear
regression.

Figure 3.1 displays the simple linear regression fit to the Advertising
data, where 60 = 7.03 and 61 = 0.0475. In other words, according to
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FIGURE 3.2. Contour and three-dimensional plots of the RSS on the
Advertising data, using sales as the response and TV as the predictor. The
red dots correspond to the least squares estimates Bo and (1, given by (3.4).

this approximation, an additional $1,000 spent on TV advertising is asso-
ciated with selling approximately 47.5 additional units of the product. In
Figure 3.2, we have computed RSS for a number of values of Sy and f,
using the advertising data with sales as the response and TV as the predic-
tor. In each plot, the red dot represents the pair of least squares estimates
(Bo, B1) given by (3.4). These values clearly minimize the RSS.

3.1.2  Assessing the Accuracy of the Coefficient Estimates

Recall from (2.1) that we assume that the true relationship between X and
Y takes the form Y = f(X) + € for some unknown function f, where €
is a mean-zero random error term. If f is to be approximated by a linear
function, then we can write this relationship as

Y =80+ /X +e (3.5)

Here [ is the intercept term—that is, the expected value of Y when X = 0,
and ;1 is the slope—the average increase in Y associated with a one-unit
increase in X. The error term is a catch-all for what we miss with this
simple model: the true relationship is probably not linear, there may be
other variables that cause variation in Y, and there may be measurement
error. We typically assume that the error term is independent of X.

The model given by (3.5) defines the population regression line, which
is the best linear approximation to the true relationship between X and
Y.! The least squares regression coefficient estimates (3.4) characterize the
least squares line (3.2). The left-hand panel of Figure 3.3 displays these

1The assumption of linearity is often a useful working model. However, despite what
many textbooks might tell us, we seldom believe that the true relationship is linear.

population
regression
line

least squares
line
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FIGURE 3.3. A simulated data set. Left: The red line represents the true rela-
tionship, f(X) =2+ 3X, which is known as the population regression line. The
blue line is the least squares line; it is the least squares estimate for f(X) based
on the observed data, shown in black. Right: The population regression line is
again shown in red, and the least squares line in dark blue. In light blue, ten least
squares lines are shown, each computed on the basis of a separate random set of
observations. Fach least squares line is different, but on average, the least squares
lines are quite close to the population regression line.

two lines in a simple simulated example. We created 100 random Xs, and
generated 100 corresponding Y's from the model

Y =2+43X +e (3.6)

where € was generated from a normal distribution with mean zero. The
red line in the left-hand panel of Figure 3.3 displays the true relationship,
f(X) = 2+ 3X, while the blue line is the least squares estimate based
on the observed data. The true relationship is generally not known for
real data, but the least squares line can always be computed using the
coefficient estimates given in (3.4). In other words, in real applications,
we have access to a set of observations from which we can compute the
least squares line; however, the population regression line is unobserved.
In the right-hand panel of Figure 3.3 we have generated ten different data
sets from the model given by (3.6) and plotted the corresponding ten least
squares lines. Notice that different data sets generated from the same true
model result in slightly different least squares lines, but the unobserved
population regression line does not change.

At first glance, the difference between the population regression line and
the least squares line may seem subtle and confusing. We only have one
data set, and so what does it mean that two different lines describe the
relationship between the predictor and the response? Fundamentally, the
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concept of these two lines is a natural extension of the standard statistical
approach of using information from a sample to estimate characteristics of a
large population. For example, suppose that we are interested in knowing
the population mean g of some random variable Y. Unfortunately, u is
unknown, but we do have access to n observations from Y, which we can
write as yi,...,yn, and which we can use to estimate p. A reasonable
estimate is i = y, where y = %Z?:l y; is the sample mean. The sample
mean and the population mean are different, but in general the sample
mean will provide a good estimate of the population mean. In the same
way, the unknown coefficients Sy and (1 in linear regression define the
population regression line. We seek to estimate these unknown coefficients
using fy and f3; given in (3.4). These coefficient estimates define the least
squares line.

The analogy between linear regression and estimation of the mean of a
random variable is an apt one based on the concept of bias. If we use the
sample mean i to estimate p, this estimate is unbiased, in the sense that
on average, we expect 1 to equal . What exactly does this mean? It means
that on the basis of one particular set of observations yi,...,y,, £t might
overestimate u, and on the basis of another set of observations, i might
underestimate p. But if we could average a huge number of estimates of
1 obtained from a huge number of sets of observations, then this average
would ezactly equal pu. Hence, an unbiased estimator does not systematically
over- or under-estimate the true parameter. The property of unbiasedness
holds for the least squares coefficient estimates given by (3.4) as well: if
we estimate By and p; on the basis of a particular data set, then our
estimates won’t be exactly equal to Sy and ;. But if we could average
the estimates obtained over a huge number of data sets, then the average
of these estimates would be spot on! In fact, we can see from the right-
hand panel of Figure 3.3 that the average of many least squares lines, each
estimated from a separate data set, is pretty close to the true population
regression line.

We continue the analogy with the estimation of the population mean
w1 of a random variable Y. A natural question is as follows: how accurate
is the sample mean /i as an estimate of u? We have established that the
average of [i’s over many data sets will be very close to u, but that a
single estimate ji may be a substantial underestimate or overestimate of p.
How far off will that single estimate of i be? In general, we answer this
question by computing the standard error of [i, written as SE(/1). We have
the well-known formula

o2

Var(ji) = SE(f1)* = —, (3.7)

bias

unbiased

standard
error
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where o is the standard deviation of each of the realizations y; of Y.2
Roughly speaking, the standard error tells us the average amount that this
estimate [i differs from the actual value of p. Equation 3.7 also tells us how
this deviation shrinks with n—the more observations we have, the smaller
the standard error of fi. In a similar vein, we can wonder how close [y
and ﬁl are to the true values By and ;. To compute the standard errors
associated with BO and Bl, we use the following formulas:

2 2

A2 5 (1 z o
) = S NCEE
where 02 = Var(e). For these formulas to be strictly valid, we need to as-
sume that the errors ¢; for each observation are uncorrelated with common
variance ¢2. This is clearly not true in Figure 3.1, but the formula still
turns out to be a good approximation. Notice in the formula that SE(Bl) is
smaller when the z; are more spread out; intuitively we have more leverage
to estimate a slope when this is the case. We also see that SE(BO) would be
the same as SE(j) if Z were zero (in which case Sy would be equal to 7). In
general, 02 is not known, but can be estimated from the data. The estimate

of o is known as the residual standard error, and is given by the formula
RSE = /RSS/(n — 2). Strictly speaking, when o2 is estimated from the

data we should write S/E(Bl) to indicate that an estimate has been made,
but for simplicity of notation we will drop this extra “hat”.

Standard errors can be used to compute confidence intervals. A 95%
confidence interval is defined as a range of values such that with 95 %
probability, the range will contain the true unknown value of the parameter.
The range is defined in terms of lower and upper limits computed from the
sample of data. For linear regression, the 95% confidence interval for (;
approximately takes the form

|, SE(B) =

3.8)

By £2-SE(f). (3.9)
That is, there is approximately a 95 % chance that the interval
[Bl —2-SE(B1), B1+2- SE(Bl)] (3.10)

will contain the true value of $8;.% Similarly, a confidence interval for By
approximately takes the form

Bo +2-SE(f). (3.11)

2This formula holds provided that the n observations are uncorrelated.

3 Approzimately for several reasons. Equation 3.10 relies on the assumption that the
errors are Gaussian. Also, the factor of 2 in front of the SE(Bl) term will vary slightly
depending on the number of observations n in the linear regression. To be precise, rather
than the number 2, (3.10) should contain the 97.5% quantile of a t-distribution with
n—2 degrees of freedom. Details of how to compute the 95 % confidence interval precisely
in R will be provided later in this chapter.

residual
standard
error

confidence
interval
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In the case of the advertising data, the 95% confidence interval for (5,
is [6.130,7.935] and the 95% confidence interval for 8y is [0.042,0.053].
Therefore, we can conclude that in the absence of any advertising, sales will,
on average, fall somewhere between 6,130 and 7,940 units. Furthermore,
for each $1,000 increase in television advertising, there will be an average
increase in sales of between 42 and 53 units.

Standard errors can also be used to perform hypothesis tests on the
coefficients. The most common hypothesis test involves testing the null
hypothesis of

Hy : There is no relationship between X and Y (3.12)
versus the alternative hypothesis
H, : There is some relationship between X and Y. (3.13)
Mathematically, this corresponds to testing
Hy:p1=0

VErsus
Ha : 51 7£ Oa

since if 81 = 0 then the model (3.5) reduces to Y = [y + ¢, and X is
not associated with Y. To test the null hypothesis, we need to determine
whether Bl, our estimate for (3, is sufficiently far from zero that we can
be confident that 3 is non-zero. How far is far enough7 This of course
depends on the accuracy of 31— that is, it depends on SE(Bl) If SE(Bl) is
small, then even relatively small values of Bl may provide strong evidence
that 81 # 0, and hence that there is a relationship between X and Y. In
contrast, if SE(Bl) is large, then Bl must be large in absolute value in order
for us to reject the null hypothesis. In practice, we compute a t-statistic,
given by X
_ B1—0
SE(f1)’

which measures the number of standard deviations that 3; is away from
0. If there really is no relationship between X and Y, then we expect
that (3.14) will have a t-distribution with n — 2 degrees of freedom. The t-
distribution has a bell shape and for values of n greater than approximately
30 it is quite similar to the normal distribution. Consequently, it is a simple
matter to compute the probability of observing any number equal to |¢| or
larger in absolute value, assuming 31 = 0. We call this probability the p-value.
Roughly speaking, we interpret the p-value as follows: a small p-value indicates
that it is unlikely to observe such a substantial association between the pre-
dictor and the response due to chance, in the absence of any real association
between the predictor and the response. Hence, if we see a small p-value,

(3.14)

hypothesis
test

null
hypothesis

alternative
hypothesis

t-statistic

p-value
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then we can infer that there is an association between the predictor and the
response. We reject the null hypothesis—that is, we declare a relationship
to exist between X and Y—if the p-value is small enough. Typical p-value
cutoffs for rejecting the null hypothesis are 5 or 1%. When n = 30, these
correspond to t-statistics (3.14) of around 2 and 2.75, respectively.

Coefficient  Std. error t-statistic p-value
Intercept 7.0325 0.4578 15.36 < 0.0001
TV 0.0475 0.0027 17.67 < 0.0001

TABLE 3.1. For the Advertising data, coefficients of the least squares model
for the regression of number of units sold on TV advertising budget. An increase
of $1,000 in the TV advertising budget is associated with an increase in sales by
around 50 units (Recall that the sales variable is in thousands of units, and the
TV wariable is in thousands of dollars).

Table 3.1 provides details of the least squares model for the regression of
number of units sold on TV advertising budget for the Advertising data.
Notice that the coefficients for 3y and f; are very large relative to their
standard errors, so the t-statistics are also large; the probabilities of seeing
such values if Hy is true are virtually zero. Hence we can conclude that

Bo#0and B #0.4

3.1.8 Assessing the Accuracy of the Model

Once we have rejected the null hypothesis (3.12) in favor of the alternative
hypothesis (3.13), it is natural to want to quantify the extent to which the
model fits the data. The quality of a linear regression fit is typically assessed
using two related quantities: the residual standard error (RSE) and the R?
statistic.

Table 3.2 displays the RSE, the R? statistic, and the F-statistic (to be
described in Section 3.2.2) for the linear regression of number of units sold
on TV advertising budget.

Residual Standard Error

Recall from the model (3.5) that associated with each observation is an
error term €. Due to the presence of these error terms, even if we knew the
true regression line (i.e. even if 5y and B; were known), we would not be
able to perfectly predict Y from X. The RSE is an estimate of the standard

4In Table 3.1, a small p-value for the intercept indicates that we can reject the null
hypothesis that 8o = 0, and a small p-value for TV indicates that we can reject the null
hypothesis that 81 = 0. Rejecting the latter null hypothesis allows us to conclude that
there is a relationship between TV and sales. Rejecting the former allows us to conclude
that in the absence of TV expenditure, sales are non-zero.
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Quantity Value
Residual standard error | 3.26

R? 0.612
F-statistic 312.1

TABLE 3.2. For the Advertising data, more information about the least squares
model for the regression of number of units sold on TV advertising budget.

deviation of €. Roughly speaking, it is the average amount that the response
will deviate from the true regression line. It is computed using the formula

[ 1 [
— — - )2
RSE p— 2RSS — E (yi — Ui)2. (3.15)

=1

Note that RSS was defined in Section 3.1.1, and is given by the formula
RSS = Z(yi — 9:)°. (3.16)
i=1

In the case of the advertising data, we see from the linear regression
output in Table 3.2 that the RSE is 3.26. In other words, actual sales in
each market deviate from the true regression line by approximately 3,260
units, on average. Another way to think about this is that even if the
model were correct and the true values of the unknown coefficients [y
and 1 were known exactly, any prediction of sales on the basis of TV
advertising would still be off by about 3,260 units on average. Of course,
whether or not 3,260 units is an acceptable prediction error depends on the
problem context. In the advertising data set, the mean value of sales over
all markets is approximately 14,000 units, and so the percentage error is
3,260/14,000 = 23 %.

The RSE is considered a measure of the lack of fit of the model (3.5) to
the data. If the predictions obtained using the model are very close to the
true outcome values—that is, if §; ~ y; for i = 1,...,n—then (3.15) will
be small, and we can conclude that the model fits the data very well. On
the other hand, if ¢; is very far from y; for one or more observations, then
the RSE may be quite large, indicating that the model doesn’t fit the data
well.

R? Statistic

The RSE provides an absolute measure of lack of fit of the model (3.5)
to the data. But since it is measured in the units of Y, it is not always
clear what constitutes a good RSE. The R? statistic provides an alternative
measure of fit. It takes the form of a proportion—the proportion of variance
explained—and so it always takes on a value between 0 and 1, and is
independent of the scale of Y.
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To calculate R?, we use the formula

RQ_TSS—RSS_l_RSS
- TSS - TSS

where TSS = > (y; — )? is the total sum of squares, and RSS is defined
in (3.16). TSS measures the total variance in the response Y, and can be
thought of as the amount of variability inherent in the response before the
regression is performed. In contrast, RSS measures the amount of variability
that is left unexplained after performing the regression. Hence, T'SS — RSS
measures the amount of variability in the response that is explained (or
removed) by performing the regression, and R? measures the proportion
of variability in Y that can be explained using X. An R? statistic that is
close to 1 indicates that a large proportion of the variability in the response
has been explained by the regression. A number near 0 indicates that the
regression did not explain much of the variability in the response; this might
occur because the linear model is wrong, or the inherent error o2 is high,
or both. In Table 3.2, the R? was 0.61, and so just under two-thirds of the
variability in sales is explained by a linear regression on TV.

The R? statistic (3.17) has an interpretational advantage over the RSE
(3.15), since unlike the RSE, it always lies between 0 and 1. However, it can
still be challenging to determine what is a good R? value, and in general,
this will depend on the application. For instance, in certain problems in
physics, we may know that the data truly comes from a linear model with
a small residual error. In this case, we would expect to see an R? value that
is extremely close to 1, and a substantially smaller R? value might indicate a
serious problem with the experiment in which the data were generated. On
the other hand, in typical applications in biology, psychology, marketing,
and other domains, the linear model (3.5) is at best an extremely rough
approximation to the data, and residual errors due to other unmeasured
factors are often very large. In this setting, we would expect only a very
small proportion of the variance in the response to be explained by the
predictor, and an R? value well below 0.1 might be more realistic!

The R? statistic is a measure of the linear relationship between X and
Y. Recall that correlation, defined as

n — -
COI‘(X, Y) — nZi:l(xl_ J)‘)(y; y) —, (318)
Vi (@ =723 (i — 1)?

is also a measure of the linear relationship between X and Y.®> This sug-
gests that we might be able to use r = Cor(X,Y) instead of R? in order to
assess the fit of the linear model. In fact, it can be shown that in the simple
linear regression setting, R? = r2. In other words, the squared correlation

(3.17)

5We note that in fact, the right-hand side of (3.18) is the sample correlation; thus,

it would be more correct to write Cor(X,Y); however, we omit the “hat” for ease of
notation.

total sum of
squares

correlation
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and the R? statistic are identical. However, in the next section we will
discuss the multiple linear regression problem, in which we use several pre-
dictors simultaneously to predict the response. The concept of correlation
between the predictors and the response does not extend automatically to
this setting, since correlation quantifies the association between a single
pair of variables rather than between a larger number of variables. We will
see that R? fills this role.

3.2 Multiple Linear Regression

Simple linear regression is a useful approach for predicting a response on the
basis of a single predictor variable. However, in practice we often have more
than one predictor. For example, in the Advertising data, we have examined
the relationship between sales and TV advertising. We also have data for
the amount of money spent advertising on the radio and in newspapers,
and we may want to know whether either of these two media is associated
with sales. How can we extend our analysis of the advertising data in order
to accommodate these two additional predictors?

One option is to run three separate simple linear regressions, each of
which uses a different advertising medium as a predictor. For instance,
we can fit a simple linear regression to predict sales on the basis of the
amount spent on radio advertisements. Results are shown in Table 3.3 (top
table). We find that a $1,000 increase in spending on radio advertising is
associated with an increase in sales by around 203 units. Table 3.3 (bottom
table) contains the least squares coefficients for a simple linear regression of
sales onto newspaper advertising budget. A $1,000 increase in newspaper
advertising budget is associated with an increase in sales by approximately
55 units.

However, the approach of fitting a separate simple linear regression model
for each predictor is not entirely satisfactory. First of all, it is unclear how to
make a single prediction of sales given levels of the three advertising media
budgets, since each of the budgets is associated with a separate regression
equation. Second, each of the three regression equations ignores the other
two media in forming estimates for the regression coefficients. We will see
shortly that if the media budgets are correlated with each other in the 200
markets that constitute our data set, then this can lead to very misleading
estimates of the individual media effects on sales.

Instead of fitting a separate simple linear regression model for each pre-
dictor, a better approach is to extend the simple linear regression model
(3.5) so that it can directly accommodate multiple predictors. We can do
this by giving each predictor a separate slope coefficient in a single model.
In general, suppose that we have p distinct predictors. Then the multiple
linear regression model takes the form

Y =00+ X1+ BeXo+ -+ Bp Xy + €, (3.19)
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Simple regression of sales on radio

Coefficient  Std. error t-statistic p-value
Intercept 9.312 0.563 16.54 < 0.0001
radio 0.203 0.020 9.92 < 0.0001

Simple regression of sales on newspaper

Coefficient ~ Std. error t-statistic p-value
Intercept 12.351 0.621 19.88 < 0.0001
newspaper 0.055 0.017 3.30 0.00115

TABLE 3.3. More simple linear regression models for the Advertising data. Co-
efficients of the simple linear regression model for number of units sold on Top:
radio advertising budget and Bottom: newspaper advertising budget. A $1,000 in-
crease in spending on radio advertising is associated with an average increase in
sales by around 203 units, while the same increase in spending on newspaper ad-
vertising is associated with an average increase in sales by around 55 units (Note
that the sales wvariable is in thousands of units, and the radio and newspaper
variables are in thousands of dollars).

where X represents the jth predictor and 3; quantifies the association
between that variable and the response. We interpret §; as the average
effect on Y of a one unit increase in X, holding all other predictors fized.
In the advertising example, (3.19) becomes

sales = By + 1 X TV + B2 X radio 4+ (3 X newspaper + €. (3.20)

3.2.1 FEstimating the Regression Coefficients

As was the case in the simple linear regression setting, the regression coef-

ficients fo, 81, ..., Bp in (3.19) are unknown, and must be estimated. Given
estimates (3, 81, ..., Bp, we can make predictions using the formula
Y= Bo + 511‘1 + 52962 + e+ Bpxp. (3.21)

The parameters are estimated using the same least squares approach that
we saw in the context of simple linear regression. We choose [y, f1, ..., 5p
to minimize the sum of squared residuals

RSS = (yi — 9:)°

NE

1

.
I

(yi — Bo — Brin — Pamiz — -+ — Bp:cip)Q. (3.22)

I
NE

1

.
I
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X1

FIGURE 3.4. In a three-dimensional setting, with two predictors and one re-
sponse, the least squares regression line becomes a plane. The plane is chosen
to minimize the sum of the squared vertical distances between each observation
(shown in red) and the plane.

The values 8o, 31, .. ., Bp that minimize (3.22) are the multiple least squares
regression coefficient estimates. Unlike the simple linear regression
estimates given in (3.4), the multiple regression coefficient estimates have
somewhat complicated forms that are most easily represented using ma-
trix algebra. For this reason, we do not provide them here. Any statistical
software package can be used to compute these coefficient estimates, and
later in this chapter we will show how this can be done in R. Figure 3.4
illustrates an example of the least squares fit to a toy data set with p = 2
predictors.

Table 3.4 displays the multiple regression coefficient estimates when TV,
radio, and newspaper advertising budgets are used to predict product sales
using the Advertising data. We interpret these results as follows: for a given
amount of TV and newspaper advertising, spending an additional $1,000
on radio advertising leads to an increase in sales by approximately 189
units. Comparing these coefficient estimates to those displayed in Tables 3.1
and 3.3, we notice that the multiple regression coefficient estimates for
TV and radio are pretty similar to the simple linear regression coefficient
estimates. However, while the newspaper regression coefficient estimate in
Table 3.3 was significantly non-zero, the coefficient estimate for newspaper
in the multiple regression model is close to zero, and the corresponding
p-value is no longer significant, with a value around 0.86. This illustrates
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Coefficient  Std. error t-statistic p-value
Intercept 2.939 0.3119 9.42 < 0.0001
TV 0.046 0.0014 32.81 < 0.0001
radio 0.189 0.0086 21.89 < 0.0001
newspaper —0.001 0.0059 —-0.18 0.8599

TABLE 3.4. For the Advertising data, least squares coefficient estimates of the
multiple linear regression of number of units sold on radio, TV, and newspaper
advertising budgets.

that the simple and multiple regression coefficients can be quite different.
This difference stems from the fact that in the simple regression case, the
slope term represents the average effect of a $1,000 increase in newspaper
advertising, ignoring other predictors such as TV and radio. In contrast, in
the multiple regression setting, the coefficient for newspaper represents the
average effect of increasing newspaper spending by $1,000 while holding TV
and radio fixed.

Does it make sense for the multiple regression to suggest no relationship
between sales and newspaper while the simple linear regression implies the
opposite? In fact it does. Consider the correlation matrix for the three
predictor variables and response variable, displayed in Table 3.5. Notice
that the correlation between radio and newspaper is 0.35. This reveals a
tendency to spend more on newspaper advertising in markets where more
is spent on radio advertising. Now suppose that the multiple regression is
correct and newspaper advertising has no direct impact on sales, but radio
advertising does increase sales. Then in markets where we spend more
on radio our sales will tend to be higher, and as our correlation matrix
shows, we also tend to spend more on newspaper advertising in those same
markets. Hence, in a simple linear regression which only examines sales
versus newspaper, we will observe that higher values of newspaper tend to be
associated with higher values of sales, even though newspaper advertising
does not actually affect sales. So newspaper sales are a surrogate for radio
advertising; newspaper gets “credit” for the effect of radio on sales.

This slightly counterintuitive result is very common in many real life
situations. Consider an absurd example to illustrate the point. Running
a regression of shark attacks versus ice cream sales for data collected at
a given beach community over a period of time would show a positive
relationship, similar to that seen between sales and newspaper. Of course
no one (yet) has suggested that ice creams should be banned at beaches
to reduce shark attacks. In reality, higher temperatures cause more people
to visit the beach, which in turn results in more ice cream sales and more
shark attacks. A multiple regression of attacks versus ice cream sales and
temperature reveals that, as intuition implies, the former predictor is no
longer significant after adjusting for temperature.
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| TV radio  newspaper sales
TV 1.0000 0.0548 0.0567 0.7822
radio 1.0000 0.3541 0.5762
newspaper 1.0000 0.2283
sales 1.0000

TABLE 3.5. Correlation matriz for TV, radio, newspaper, and sales for the
Advertising data.

3.2.2  Some Important Questions

When we perform multiple linear regression, we usually are interested in
answering a few important questions.

1. Is at least one of the predictors X1, Xs, ..., X, useful in predicting
the response?

2. Do all the predictors help to explain Y, or is only a subset of the
predictors useful?

3. How well does the model fit the data?

4. Given a set of predictor values, what response value should we predict,
and how accurate is our prediction?

We now address each of these questions in turn.

One: Is There a Relationship Between the Response and Predictors?

Recall that in the simple linear regression setting, in order to determine
whether there is a relationship between the response and the predictor we
can simply check whether $; = 0. In the multiple regression setting with p
predictors, we need to ask whether all of the regression coefficients are zero,
i.e. whether 8y = B2 = -+ = B, = 0. As in the simple linear regression
setting, we use a hypothesis test to answer this question. We test the null
hypothesis,

Hy:B1=p2=--=0,=0
versus the alternative

H, : at least one 3; is non-zero.

This hypothesis test is performed by computing the F-statistic,

4 (TSS—RSS)/p
T RSS/(n—p—1)’

(3.23)

F-statistic
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Quantity Value
Residual standard error | 1.69
R? 0.897
F-statistic 570

TABLE 3.6. More information about the least squares model for the regression
of number of units sold on TV, newspaper, and radio advertising budgets in the
Advertising data. Other information about this model was displayed in Table 3.4.

where, as with simple linear regression, TSS = > (y; — #)? and RSS =
S (yi — 9:)%. If the linear model assumptions are correct, one can show that

E{RSS/(n —p—1)} =o?
and that, provided Hj is true,
E{(TSS — RSS)/p} = o*.

Hence, when there is no relationship between the response and predictors,
one would expect the F-statistic to take on a value close to 1. On the other
hand, if H, is true, then E{(TSS — RSS)/p} > 02, so we expect F to be
greater than 1.

The F-statistic for the multiple linear regression model obtained by re-
gressing sales onto radio, TV, and newspaper is shown in Table 3.6. In this
example the F-statistic is 570. Since this is far larger than 1, it provides
compelling evidence against the null hypothesis Hy. In other words, the
large F-statistic suggests that at least one of the advertising media must
be related to sales. However, what if the F-statistic had been closer to
1?7 How large does the F-statistic need to be before we can reject Hy and
conclude that there is a relationship? It turns out that the answer depends
on the values of n and p. When n is large, an F-statistic that is just a
little larger than 1 might still provide evidence against Hy. In contrast,
a larger F-statistic is needed to reject Hy if n is small. When Hj is true
and the errors ¢; have a normal distribution, the F-statistic follows an
F-distribution.® For any given value of n and p, any statistical software
package can be used to compute the p-value associated with the F-statistic
using this distribution. Based on this p-value, we can determine whether
or not to reject Hy. For the advertising data, the p-value associated with
the F-statistic in Table 3.6 is essentially zero, so we have extremely strong
evidence that at least one of the media is associated with increased sales.

In (3.23) we are testing H that all the coefficients are zero. Sometimes
we want to test that a particular subset of ¢ of the coefficients are zero.
This corresponds to a null hypothesis

HO : ﬁpfq+1 = Bpfq+2 = ... = Bp = 07

6Even if the errors are not normally-distributed, the F-statistic approximately follows
an F-distribution provided that the sample size n is large.
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where for convenience we have put the variables chosen for omission at the
end of the list. In this case we fit a second model that uses all the variables
except those last ¢. Suppose that the residual sum of squares for that model
is RSSp. Then the appropriate F-statistic is

1 _ (RSSo —RSS)/q

~ RSS/(n—p—1) (3:24)

Notice that in Table 3.4, for each individual predictor a t-statistic and
a p-value were reported. These provide information about whether each
individual predictor is related to the response, after adjusting for the other
predictors. It turns out that each of these are exactly equivalent” to the
F-test that omits that single variable from the model, leaving all the others
in—i.e. ¢g=11n (3.24). So it reports the partial effect of adding that variable
to the model. For instance, as we discussed earlier, these p-values indicate
that TV and radio are related to sales, but that there is no evidence that
newspaper is associated with sales, in the presence of these two.

Given these individual p-values for each variable, why do we need to look
at the overall F-statistic? After all, it seems likely that if any one of the
p-values for the individual variables is very small, then at least one of the
predictors is related to the response. However, this logic is flawed, especially
when the number of predictors p is large.

For instance, consider an example in which p = 100 and Hy : 1 = B2 =
... = By = 0 is true, so no variable is truly associated with the response. In
this situation, about 5% of the p-values associated with each variable (of
the type shown in Table 3.4) will be below 0.05 by chance. In other words,
we expect to see approximately five small p-values even in the absence of
any true association between the predictors and the response. In fact, we
are almost guaranteed that we will observe at least one p-value below 0.05
by chance! Hence, if we use the individual t-statistics and associated p-
values in order to decide whether or not there is any association between
the variables and the response, there is a very high chance that we will
incorrectly conclude that there is a relationship. However, the F-statistic
does not suffer from this problem because it adjusts for the number of
predictors. Hence, if Hy is true, there is only a 5% chance that the F-
statistic will result in a p-value below 0.05, regardless of the number of
predictors or the number of observations.

The approach of using an F-statistic to test for any association between
the predictors and the response works when p is relatively small, and cer-
tainly small compared to n. However, sometimes we have a very large num-
ber of variables. If p > n then there are more coefficients 3; to estimate
than observations from which to estimate them. In this case we cannot
even fit the multiple linear regression model using least squares, so the

"The square of each t-statistic is the corresponding F-statistic.
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F-statistic cannot be used, and neither can most of the other concepts that
we have seen so far in this chapter. When p is large, some of the approaches
discussed in the next section, such as forward selection, can be used. This
high-dimensional setting is discussed in greater detail in Chapter 6.

Two: Deciding on Important Variables

As discussed in the previous section, the first step in a multiple regression
analysis is to compute the F-statistic and to examine the associated p-
value. If we conclude on the basis of that p-value that at least one of the
predictors is related to the response, then it is natural to wonder which are
the guilty ones! We could look at the individual p-values as in Table 3.4,
but as discussed, if p is large we are likely to make some false discoveries.

It is possible that all of the predictors are associated with the response,
but it is more often the case that the response is only related to a subset of
the predictors. The task of determining which predictors are associated with
the response, in order to fit a single model involving only those predictors,
is referred to as variable selection. The variable selection problem is studied
extensively in Chapter 6, and so here we will provide only a brief outline
of some classical approaches.

Ideally, we would like to perform variable selection by trying out a lot of
different models, each containing a different subset of the predictors. For
instance, if p = 2, then we can consider four models: (1) a model contain-
ing no variables, (2) a model containing X; only, (3) a model containing
Xo only, and (4) a model containing both X; and X5. We can then se-
lect the best model out of all of the models that we have considered. How
do we determine which model is best? Various statistics can be used to
judge the quality of a model. These include Mallow’s C,,, Akaike informa-
tion criterion (AIC), Bayesian information criterion (BIC), and adjusted
R?. These are discussed in more detail in Chapter 6. We can also deter-
mine which model is best by plotting various model outputs, such as the
residuals, in order to search for patterns.

Unfortunately, there are a total of 2P models that contain subsets of p
variables. This means that even for moderate p, trying out every possible
subset of the predictors is infeasible. For instance, we saw that if p = 2, then
there are 22 = 4 models to consider. But if p = 30, then we must consider
230 = 1,073,741,824 models! This is not practical. Therefore, unless p is very
small, we cannot consider all 2P models, and instead we need an automated
and efficient approach to choose a smaller set of models to consider. There
are three classical approaches for this task:

o Forward selection. We begin with the null model—a model that con-
tains an intercept but no predictors. We then fit p simple linear re-
gressions and add to the null model the variable that results in the
lowest RSS. We then add to that model the variable that results

high-

dimensional

variable
selection

Mallow’s Cp,
Akaike

information
criterion
Bayesian
information
criterion

adjusted R?

forward
selection

null model
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in the lowest RSS for the new two-variable model. This approach is
continued until some stopping rule is satisfied.

e Backward selection. We start with all variables in the model, and
remove the variable with the largest p-value—that is, the variable
that is the least statistically significant. The new (p — 1)-variable
model is fit, and the variable with the largest p-value is removed. This
procedure continues until a stopping rule is reached. For instance, we
may stop when all remaining variables have a p-value below some
threshold.

e Mized selection. This is a combination of forward and backward se-
lection. We start with no variables in the model, and as with forward
selection, we add the variable that provides the best fit. We con-
tinue to add variables one-by-one. Of course, as we noted with the
Advertising example, the p-values for variables can become larger as
new predictors are added to the model. Hence, if at any point the
p-value for one of the variables in the model rises above a certain
threshold, then we remove that variable from the model. We con-
tinue to perform these forward and backward steps until all variables
in the model have a sufficiently low p-value, and all variables outside
the model would have a large p-value if added to the model.

Backward selection cannot be used if p > n, while forward selection can
always be used. Forward selection is a greedy approach, and might include
variables early that later become redundant. Mixed selection can remedy
this.

Three: Model Fit

Two of the most common numerical measures of model fit are the RSE and
R?, the fraction of variance explained. These quantities are computed and
interpreted in the same fashion as for simple linear regression.

Recall that in simple regression, R? is the square of the correlation of the
response and the variable. In multiple linear regression, it turns out that it
equals Cor(Y, Y)2, the square of the correlation between the response and
the fitted linear model; in fact one property of the fitted linear model is
that it maximizes this correlation among all possible linear models.

An R? value close to 1 indicates that the model explains a large portion
of the variance in the response variable. As an example, we saw in Table 3.6
that for the Advertising data, the model that uses all three advertising me-
dia to predict sales has an R? of 0.8972. On the other hand, the model that
uses only TV and radio to predict sales has an R? value of 0.89719. In other
words, there is a small increase in R? if we include newspaper advertising
in the model that already contains TV and radio advertising, even though
we saw earlier that the p-value for newspaper advertising in Table 3.4 is not
significant. It turns out that R? will always increase when more variables

backward
selection

mixed
selection
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are added to the model, even if those variables are only weakly associated
with the response. This is due to the fact that adding another variable to
the least squares equations must allow us to fit the training data (though
not necessarily the testing data) more accurately. Thus, the R? statistic,
which is also computed on the training data, must increase. The fact that
adding newspaper advertising to the model containing only TV and radio
advertising leads to just a tiny increase in R? provides additional evidence
that newspaper can be dropped from the model. Essentially, newspaper pro-
vides no real improvement in the model fit to the training samples, and its
inclusion will likely lead to poor results on independent test samples due
to overfitting.

In contrast, the model containing only TV as a predictor had an R? of 0.61
(Table 3.2). Adding radio to the model leads to a substantial improvement
in R2. This implies that a model that uses TV and radio expenditures to
predict sales is substantially better than one that uses only TV advertis-
ing. We could further quantify this improvement by looking at the p-value
for the radio coefficient in a model that contains only TV and radio as
predictors.

The model that contains only TV and radio as predictors has an RSE
of 1.681, and the model that also contains newspaper as a predictor has
an RSE of 1.686 (Table 3.6). In contrast, the model that contains only TV
has an RSE of 3.26 (Table 3.2). This corroborates our previous conclusion
that a model that uses TV and radio expenditures to predict sales is much
more accurate (on the training data) than one that only uses TV spending.
Furthermore, given that TV and radio expenditures are used as predictors,
there is no point in also using newspaper spending as a predictor in the
model. The observant reader may wonder how RSE can increase when
newspaper is added to the model given that RSS must decrease. In general
RSE is defined as

RSE = ,/— RS, (3.25)
n—p—1
which simplifies to (3.15) for a simple linear regression. Thus, models with
more variables can have higher RSE if the decrease in RSS is small relative
to the increase in p.

In addition to looking at the RSE and R? statistics just discussed, it
can be useful to plot the data. Graphical summaries can reveal problems
with a model that are not visible from numerical statistics. For example,
Figure 3.5 displays a three-dimensional plot of TV and radio versus sales.
We see that some observations lie above and some observations lie below
the least squares regression plane. In particular, the linear model seems to
overestimate sales for instances in which most of the advertising money
was spent exclusively on either TV or radio. It underestimates sales for
instances where the budget was split between the two media. This pro-
nounced non-linear pattern cannot be modeled accurately using linear re-
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Sales

TV

J ~’Radio

FIGURE 3.5. For the Advertising data, a linear regression fit to sales using
TV and radio as predictors. From the pattern of the residuals, we can see that
there is a pronounced non-linear relationship in the data. The positive residuals
(those wvisible above the surface), tend to lie along the 45-degree line, where TV
and Radio budgets are split evenly. The negative residuals (most not visible), tend
to lie away from this line, where budgets are more lopsided.

gression. It suggests a synergy or interaction effect between the advertising
media, whereby combining the media together results in a bigger boost to
sales than using any single medium. In Section 3.3.2, we will discuss ex-
tending the linear model to accommodate such synergistic effects through
the use of interaction terms.

Four: Predictions

Once we have fit the multiple regression model, it is straightforward to
apply (3.21) in order to predict the response Y on the basis of a set of
values for the predictors X7, Xs,..., X,. However, there are three sorts of
uncertainty associated with this prediction.

1. The coefficient estimates /3’0, Bl, e ,Bp are estimates for fg, 81, ..., Bp.
That is, the least squares plane

Y230+B1X1+"'+Bpo
is only an estimate for the true population regression plane
f(X)=Bo+ B X1+ + BpXp.
The inaccuracy in the coefficient estimates is related to the reducible

error from Chapter 2. We can compute a confidence interval in order
to determine how close Y will be to f(X).
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2. Of course, in practice assuming a linear model for f(X) is almost
always an approximation of reality, so there is an additional source of
potentially reducible error which we call model bias. So when we use a
linear model, we are in fact estimating the best linear approximation
to the true surface. However, here we will ignore this discrepancy,
and operate as if the linear model were correct.

3. Even if we knew f(X)—that is, even if we knew the true values
for By, B1,. .., Bp—the response value cannot be predicted perfectly
because of the random error € in the model (3.21). In Chapter 2, we
referred to this as the irreducible error. How much will Y vary from
Y? We use prediction intervals to answer this question. Prediction
intervals are always wider than confidence intervals, because they
incorporate both the error in the estimate for f(X) (the reducible
error) and the uncertainty as to how much an individual point will
differ from the population regression plane (the irreducible error).

We use a confidence interval to quantify the uncertainty surrounding
the average sales over a large number of cities. For example, given that
$100,000 is spent on TV advertising and $20,000 is spent on radio advertising
in each city, the 95% confidence interval is [10,985, 11,528]. We interpret
this to mean that 95 % of intervals of this form will contain the true value of
f(X).8 On the other hand, a prediction interval can be used to quantify the
uncertainty surrounding sales for a particular city. Given that $100,000 is
spent on TV advertising and $20,000 is spent on radio advertising in that city
the 95 % prediction interval is [7,930, 14,580]. We interpret this to mean
that 95 % of intervals of this form will contain the true value of Y for this
city. Note that both intervals are centered at 11,256, but that the prediction
interval is substantially wider than the confidence interval, reflecting the
increased uncertainty about sales for a given city in comparison to the
average sales over many locations.

3.3 Other Considerations in the Regression Model

3.3.1 Qualitative Predictors

In our discussion so far, we have assumed that all variables in our linear
regression model are quantitative. But in practice, this is not necessarily
the case; often some predictors are qualitative.

8In other words, if we collect a large number of data sets like the Advertising data
set, and we construct a confidence interval for the average sales on the basis of each
data set (given $100,000 in TV and $20,000 in radio advertising), then 95 % of these
confidence intervals will contain the true value of average sales.

confidence
interval

prediction
interval
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For example, the Credit data set displayed in Figure 3.6 records balance
(average credit card debt for a number of individuals) as well as several
quantitative predictors: age, cards (number of credit cards), education
(years of education), income (in thousands of dollars), 1imit (credit limit),
and rating (credit rating). Each panel of Figure 3.6 is a scatterplot for a
pair of variables whose identities are given by the corresponding row and
column labels. For example, the scatterplot directly to the right of the word
“Balance” depicts balance versus age, while the plot directly to the right
of “Age” corresponds to age versus cards. In addition to these quantitative
variables, we also have four qualitative variables: gender, student (student
status), status (marital status), and ethnicity (Caucasian, African Amer-
ican or Asian).
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FIGURE 3.6. The Credit data set contains information about balance, age,
cards, education, income, limit, and rating for a number of potential cus-

tomers.
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Coefficient  Std. error t-statistic p-value
Intercept 509.80 33.13 15.389 < 0.0001
gender [Female] 19.73 46.05 0.429 0.6690

TABLE 3.7. Least squares coefficient estimates associated with the regression of
balance onto gender in the Credit data set. The linear model is given in (3.27).
That is, gender is encoded as a dummy variable, as in (3.26).

Predictors with Only Two Levels

Suppose that we wish to investigate differences in credit card balance be-
tween males and females, ignoring the other variables for the moment. If a
qualitative predictor (also known as a factor) only has two levels, or possi-
ble values, then incorporating it into a regression model is very simple. We
simply create an indicator or dummy variable that takes on two possible
numerical values. For example, based on the gender variable, we can create
a new variable that takes the form

- {1 if 7th person is female (3.26)

0 if 7th person is male,

and use this variable as a predictor in the regression equation. This results
in the model

Bo+ P11+ € if ith person is female

Yi = Po+ Bz + € = { (3.27)

Bo + €; if ith person is male.

Now [y can be interpreted as the average credit card balance among males,
Bo + (1 as the average credit card balance among females, and [, as the
average difference in credit card balance between females and males.

Table 3.7 displays the coefficient estimates and other information asso-
ciated with the model (3.27). The average credit card debt for males is
estimated to be $509.80, whereas females are estimated to carry $19.73 in
additional debt for a total of $509.80 + $19.73 = $529.53. However, we
notice that the p-value for the dummy variable is very high. This indicates
that there is no statistical evidence of a difference in average credit card
balance between the genders.

The decision to code females as 1 and males as 0 in (3.27) is arbitrary, and
has no effect on the regression fit, but does alter the interpretation of the
coefficients. If we had coded males as 1 and females as 0, then the estimates
for By and 1 would have been 529.53 and —19.73, respectively, leading once
again to a prediction of credit card debt of $529.53 — $19.73 = $509.80 for
males and a prediction of $529.53 for females. Alternatively, instead of a
0/1 coding scheme, we could create a dummy variable

factor

level

dummy
variable
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{1 if ith person is female
€T, =

-1 if ith person is male

and use this variable in the regression equation. This results in the model

Bo+ P11+ € if ith person is female

; = Po + Prx; + € =
vi = Po+ frai te {50—514-61‘ if 4th person is male.

Now [y can be interpreted as the overall average credit card balance (ig-
noring the gender effect), and /3, is the amount that females are above the
average and males are below the average. In this example, the estimate for
Bo would be $519.665, halfway between the male and female averages of
$509.80 and $529.53. The estimate for 3; would be $9.865, which is half of
$19.73, the average difference between females and males. It is important to
note that the final predictions for the credit balances of males and females
will be identical regardless of the coding scheme used. The only difference
is in the way that the coefficients are interpreted.

Qualitative Predictors with More than Two Levels

When a qualitative predictor has more than two levels, a single dummy
variable cannot represent all possible values. In this situation, we can create
additional dummy variables. For example, for the ethnicity variable we
create two dummy variables. The first could be

1 if 4th person is Asian
Ti1 = e . . (3.28)
0 if ith person is not Asian,
and the second could be
i — 1 ?f z:th person ?s Caucasian . (3.29)
0 if 7th person is not Caucasian.

Then both of these variables can be used in the regression equation, in
order to obtain the model

Bo+pP1+e; if ith person is Asian
yi = Bo+Lixi1+P2xio+e; = § Bo+P2+e; if ith person is Caucasian
Bo+e€; if ith person is African American.
(3.30)
Now fy can be interpreted as the average credit card balance for African
Americans, 8, can be interpreted as the difference in the average balance
between the Asian and African American categories, and (5 can be inter-
preted as the difference in the average balance between the Caucasian and
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Coefficient ~ Std. error t-statistic p-value
Intercept 531.00 46.32 11.464 < 0.0001
ethnicity[Asian] —18.69 65.02 —0.287 0.7740
ethnicity[Caucasian] —12.50 56.68 —0.221 0.8260

TABLE 3.8. Least squares coefficient estimates associated with the regression
of balance onto ethnicity in the Credit data set. The linear model is given in
(3.30). That is, ethnicity is encoded via two dummy variables (3.28) and (3.29).

African American categories. There will always be one fewer dummy vari-
able than the number of levels. The level with no dummy variable—African
American in this example—is known as the baseline.

From Table 3.8, we see that the estimated balance for the baseline,
African American, is $531.00. It is estimated that the Asian category will
have $18.69 less debt than the African American category, and that the
Caucasian category will have $12.50 less debt than the African American
category. However, the p-values associated with the coefficient estimates for
the two dummy variables are very large, suggesting no statistical evidence
of a real difference in credit card balance between the ethnicities. Once
again, the level selected as the baseline category is arbitrary, and the final
predictions for each group will be the same regardless of this choice. How-
ever, the coefficients and their p-values do depend on the choice of dummy
variable coding. Rather than rely on the individual coefficients, we can use
an F-test to test Hy : f1 = [2 = 0; this does not depend on the coding.
This F-test has a p-value of 0.96, indicating that we cannot reject the null
hypothesis that there is no relationship between balance and ethnicity.

Using this dummy variable approach presents no difficulties when in-
corporating both quantitative and qualitative predictors. For example, to
regress balance on both a quantitative variable such as income and a qual-
itative variable such as student, we must simply create a dummy variable
for student and then fit a multiple regression model using income and the
dummy variable as predictors for credit card balance.

There are many different ways of coding qualitative variables besides
the dummy variable approach taken here. All of these approaches lead to
equivalent model fits, but the coefficients are different and have different
interpretations, and are designed to measure particular contrasts. This topic
is beyond the scope of the book, and so we will not pursue it further.

3.3.2  FEatensions of the Linear Model

The standard linear regression model (3.19) provides interpretable results
and works quite well on many real-world problems. However, it makes sev-
eral highly restrictive assumptions that are often violated in practice. Two
of the most important assumptions state that the relationship between the
predictors and response are additive and linear. The additive assumption

baseline

contrast

additive

linear
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means that the effect of changes in a predictor X; on the response Y is
independent of the values of the other predictors. The linear assumption
states that the change in the response Y due to a one-unit change in Xj is
constant, regardless of the value of X;. In this book, we examine a number
of sophisticated methods that relax these two assumptions. Here, we briefly
examine some common classical approaches for extending the linear model.

Removing the Additive Assumption

In our previous analysis of the Advertising data, we concluded that both Tv
and radio seem to be associated with sales. The linear models that formed
the basis for this conclusion assumed that the effect on sales of increasing
one advertising medium is independent of the amount spent on the other
media. For example, the linear model (3.20) states that the average effect
on sales of a one-unit increase in TV is always (31, regardless of the amount
spent on radio.

However, this simple model may be incorrect. Suppose that spending
money on radio advertising actually increases the effectiveness of TV ad-
vertising, so that the slope term for TV should increase as radio increases.
In this situation, given a fixed budget of $100,000, spending half on radio
and half on TV may increase sales more than allocating the entire amount
to either TV or to radio. In marketing, this is known as a synergy effect,
and in statistics it is referred to as an interaction effect. Figure 3.5 sug-
gests that such an effect may be present in the advertising data. Notice
that when levels of either TV or radio are low, then the true sales are lower
than predicted by the linear model. But when advertising is split between
the two media, then the model tends to underestimate sales.

Consider the standard linear regression model with two variables,

Y = Bo + B1X1 + fo X2 +e.

According to this model, if we increase X7 by one unit, then Y will increase
by an average of 7 units. Notice that the presence of X5 does not alter
this statement—that is, regardless of the value of X5, a one-unit increase
in X7 will lead to a 81-unit increase in Y. One way of extending this model
to allow for interaction effects is to include a third predictor, called an
interaction term, which is constructed by computing the product of X3
and Xs. This results in the model

Y = [o+ 01X+ 5o Xo + B3 X1 Xo + € (3.31)

How does inclusion of this interaction term relax the additive assumption?
Notice that (3.31) can be rewritten as

Y = [o+(Bi+ Bs3X2) X1+ faXo+e (3.32)
= Bo+ (X1 + PaXo+e
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Coefficient  Std. error t-statistic p-value
Intercept 6.7502 0.248 27.23 < 0.0001
TV 0.0191 0.002 12.70 < 0.0001
radio 0.0289 0.009 3.24 0.0014
TVXradio 0.0011 0.000 20.73 < 0.0001

TABLE 3.9. For the Advertising data, least squares coefficient estimates asso-
ciated with the regression of sales onto TV and radio, with an interaction term,
as in (3.33).

where 51 = (1 + B3X5. Since Bl changes with X5, the effect of X; on Y is
no longer constant: adjusting Xo will change the impact of X; on Y.

For example, suppose that we are interested in studying the productiv-
ity of a factory. We wish to predict the number of units produced on the
basis of the number of production lines and the total number of workers.
It seems likely that the effect of increasing the number of production lines
will depend on the number of workers, since if no workers are available
to operate the lines, then increasing the number of lines will not increase
production. This suggests that it would be appropriate to include an inter-
action term between lines and workers in a linear model to predict units.
Suppose that when we fit the model, we obtain

units =~ 1.2+ 3.4 X lines + 0.22 X workers + 1.4 X (lines X Workers)
1.2 + (3.4 +14 x workers) X lines + 0.22 X workers.

In other words, adding an additional line will increase the number of units
produced by 3.4 4+ 1.4 X workers. Hence the more workers we have, the
stronger will be the effect of lines.

We now return to the Advertising example. A linear model that uses
radio, TV, and an interaction between the two to predict sales takes the
form

sales = g+ 01 X TV+ B3 X radio + f3 X (radio X TV) + €
= Po+ (B1+ P3 X radio) X TV+ 2 X radio + €. (3.33)

We can interpret (3 as the increase in the effectiveness of TV advertising
for a one unit increase in radio advertising (or vice-versa). The coefficients
that result from fitting the model (3.33) are given in Table 3.9.

The results in Table 3.9 strongly suggest that the model that includes the
interaction term is superior to the model that contains only main effects.
The p-value for the interaction term, TVXradio, is extremely low, indicating
that there is strong evidence for H, : B3 # 0. In other words, it is clear that
the true relationship is not additive. The R? for the model (3.33) is 96.8 %,
compared to only 89.7% for the model that predicts sales using TV and
radio without an interaction term. This means that (96.8 — 89.7)/(100 —
89.7) = 69 % of the variability in sales that remains after fitting the ad-
ditive model has been explained by the interaction term. The coefficient

main effect
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estimates in Table 3.9 suggest that an increase in TV advertising of $1,000 is
associated with increased sales of (Bl + B35 x radio) x 1,000 = 19+41.1 X radio
units. And an increase in radio advertising of $1,000 will be associated with
an increase in sales of (Bg + 33 X TV) x 1,000 = 29 + 1.1 X TV units.

In this example, the p-values associated with TV, radio, and the interac-
tion term all are statistically significant (Table 3.9), and so it is obvious
that all three variables should be included in the model. However, it is
sometimes the case that an interaction term has a very small p-value, but
the associated main effects (in this case, TV and radio) do not. The hier-
archical principle states that if we include an interaction in a model, we
should also include the main effects, even if the p-values associated with
their coefficients are not significant. In other words, if the interaction be-
tween X7 and X, seems important, then we should include both X; and
X5 in the model even if their coefficient estimates have large p-values. The
rationale for this principle is that if X; x X5 is related to the response,
then whether or not the coefficients of X; or X5 are exactly zero is of lit-
tle interest. Also X7 x X5 is typically correlated with X; and X5, and so
leaving them out tends to alter the meaning of the interaction.

In the previous example, we considered an interaction between TV and
radio, both of which are quantitative variables. However, the concept of
interactions applies just as well to qualitative variables, or to a combination
of quantitative and qualitative variables. In fact, an interaction between
a qualitative variable and a quantitative variable has a particularly nice
interpretation. Consider the Credit data set from Section 3.3.1, and suppose
that we wish to predict balance using the income (quantitative) and student
(qualitative) variables. In the absence of an interaction term, the model
takes the form

bl Bo + B1 X i i Ba if 4th person is a student
alance; ~ 0 1 X income; o .
' ’ 0 if ith person is not a student

Bo + B2 if ith person is a student

Bo if ith person is not a student.
(3.34)

Notice that this amounts to fitting two parallel lines to the data, one for
students and one for non-students. The lines for students and non-students
have different intercepts, Sy + B2 versus [y, but the same slope, 1. This
is illustrated in the left-hand panel of Figure 3.7. The fact that the lines
are parallel means that the average effect on balance of a one-unit increase
in income does not depend on whether or not the individual is a student.
This represents a potentially serious limitation of the model, since in fact a
change in income may have a very different effect on the credit card balance
of a student versus a non-student.

This limitation can be addressed by adding an interaction variable, cre-
ated by multiplying income with the dummy variable for student. Our

= [}1 X income; + {

hierarchical
principle
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FIGURE 3.7. For the Credit data, the least squares lines are shown for pre-
diction of balance from income for students and non-students. Left: The model
(3.34) was fit. There is no interaction between income and student. Right: The
model (3.35) was fit. There is an interaction term between income and student.

model now becomes

+ X i ; 1f student
balance; = [y + 1 X income; + B2 + B3 X income; .
0 if not student

(Bo + B2) + (B1 + P3) X income; if student
Bo + B1 X income; if not student

(3.35)

Once again, we have two different regression lines for the students and
the non-students. But now those regression lines have different intercepts,
Bo+ P2 versus [y, as well as different slopes, 31+ 3 versus (1. This allows for
the possibility that changes in income may affect the credit card balances
of students and non-students differently. The right-hand panel of Figure 3.7
shows the estimated relationships between income and balance for students
and non-students in the model (3.35). We note that the slope for students
is lower than the slope for non-students. This suggests that increases in
income are associated with smaller increases in credit card balance among
students as compared to non-students.

Non-linear Relationships

As discussed previously, the linear regression model (3.19) assumes a linear
relationship between the response and predictors. But in some cases, the
true relationship between the response and the predictors may be non-
linear. Here we present a very simple way to directly extend the linear model
to accommodate non-linear relationships, using polynomial regression. In
later chapters, we will present more complex approaches for performing
non-linear fits in more general settings.

Consider Figure 3.8, in which the mpg (gas mileage in miles per gallon)
versus horsepower is shown for a number of cars in the Auto data set. The

polynomial
regression
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FIGURE 3.8. The Auto data set. For a number of cars, mpg and horsepower are
shown. The linear regression fit is shown in orange. The linear regression fit for a
model that includes horsepower?® is shown as a blue curve. The linear regression
fit for a model that includes all polynomials of horsepower up to fifth-degree is
shown in green.

orange line represents the linear regression fit. There is a pronounced rela-
tionship between mpg and horsepower, but it seems clear that this relation-
ship is in fact non-linear: the data suggest a curved relationship. A simple
approach for incorporating non-linear associations in a linear model is to
include transformed versions of the predictors in the model. For example,
the points in Figure 3.8 seem to have a quadratic shape, suggesting that a
model of the form

mpg = Bg + B1 X horsepower + 33 X horsepower” + € (3.36)

may provide a better fit. Equation 3.36 involves predicting mpg using a
non-linear function of horsepower. But it is still a linear model! That is,
(3.36) is simply a multiple linear regression model with X; = horsepower
and X5 = horsepower”. So we can use standard linear regression software to
estimate Sy, 81, and (2 in order to produce a non-linear fit. The blue curve
in Figure 3.8 shows the resulting quadratic fit to the data. The quadratic
fit appears to be substantially better than the fit obtained when just the
linear term is included. The R? of the quadratic fit is 0.688, compared to
0.606 for the linear fit, and the p-value in Table 3.10 for the quadratic term
is highly significant.

If including horsepower? led to such a big improvement in the model, why
not include horsepower®, horsepower®, or even horsepower”? The green curve

quadratic
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Coefficient  Std. error t-statistic p-value
Intercept 56.9001 1.8004 31.6 < 0.0001
horsepower —0.4662 0.0311 —15.0 < 0.0001
horsepower? 0.0012 0.0001 10.1 < 0.0001

TABLE 3.10. For the Auto data set, least squares coefficient estimates associated
with the regression of mpg onto horsepower and horsepowerz.

in Figure 3.8 displays the fit that results from including all polynomials up
to fifth degree in the model (3.36). The resulting fit seems unnecessarily
wiggly—that is, it is unclear that including the additional terms really has
led to a better fit to the data.

The approach that we have just described for extending the linear model
to accommodate non-linear relationships is known as polynomial regres-
ston, since we have included polynomial functions of the predictors in the
regression model. We further explore this approach and other non-linear
extensions of the linear model in Chapter 7.

3.8.8 Potential Problems

When we fit a linear regression model to a particular data set, many prob-
lems may occur. Most common among these are the following:

1. Non-linearity of the response-predictor relationships.
2. Correlation of error terms.

Non-constant variance of error terms.

Outliers.

High-leverage points.

A

Collinearity.

In practice, identifying and overcoming these problems is as much an
art as a science. Many pages in countless books have been written on this
topic. Since the linear regression model is not our primary focus here, we
will provide only a brief summary of some key points.

1. Non-linearity of the Data

The linear regression model assumes that there is a straight-line relation-
ship between the predictors and the response. If the true relationship is
far from linear, then virtually all of the conclusions that we draw from the
fit are suspect. In addition, the prediction accuracy of the model can be
significantly reduced.

Residual plots are a useful graphical tool for identifying non-linearity.
Given a simple linear regression model, we can plot the residuals, e; =
Y; — Ui, versus the predictor z;. In the case of a multiple regression model,

residual plot
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FIGURE 3.9. Plots of residuals versus predicted (or fitted) values for the Auto
data set. In each plot, the red line is a smooth fit to the residuals, intended to make
it easier to identify a trend. Left: A linear regression of mpg on horsepower. A
strong pattern in the residuals indicates non-linearity in the data. Right: A linear
regression of mpg on horsepower and horsepower®. There is little pattern in the
residuals.

since there are multiple predictors, we instead plot the residuals versus
the predicted (or fitted) values ¢;. Ideally, the residual plot will show no
discernible pattern. The presence of a pattern may indicate a problem with
some aspect of the linear model.

The left panel of Figure 3.9 displays a residual plot from the linear
regression of mpg onto horsepower on the Auto data set that was illustrated
in Figure 3.8. The red line is a smooth fit to the residuals, which is displayed
in order to make it easier to identify any trends. The residuals exhibit a
clear U-shape, which provides a strong indication of non-linearity in the
data. In contrast, the right-hand panel of Figure 3.9 displays the residual
plot that results from the model (3.36), which contains a quadratic term.
There appears to be little pattern in the residuals, suggesting that the
quadratic term improves the fit to the data.

If the residual plot indicates that there are non-linear associations in the
data, then a simple approach is to use non-linear transformations of the
predictors, such as log X, VX, and X2, in the regression model. In the
later chapters of this book, we will discuss other more advanced non-linear
approaches for addressing this issue.

fitted

2. Correlation of Error Terms

An important assumption of the linear regression model is that the error
terms, €1, €s,..., €,, are uncorrelated. What does this mean? For instance,
if the errors are uncorrelated, then the fact that ¢; is positive provides
little or no information about the sign of €¢;1.1. The standard errors that
are computed for the estimated regression coefficients or the fitted values
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are based on the assumption of uncorrelated error terms. If in fact there
is correlation among the error terms, then the estimated standard errors
will tend to underestimate the true standard errors. As a result, confi-
dence and prediction intervals will be narrower than they should be. For
example, a 95 % confidence interval may in reality have a much lower prob-
ability than 0.95 of containing the true value of the parameter. In addition,
p-values associated with the model will be lower than they should be; this
could cause us to erroneously conclude that a parameter is statistically
significant. In short, if the error terms are correlated, we may have an
unwarranted sense of confidence in our model.

As an extreme example, suppose we accidentally doubled our data, lead-
ing to observations and error terms identical in pairs. If we ignored this, our
standard error calculations would be as if we had a sample of size 2n, when
in fact we have only n samples. Our estimated parameters would be the
same for the 2n samples as for the n samples, but the confidence intervals
would be narrower by a factor of V2!

Why might correlations among the error terms occur? Such correlations
frequently occur in the context of time series data, which consists of ob-
servations for which measurements are obtained at discrete points in time.
In many cases, observations that are obtained at adjacent time points will
have positively correlated errors. In order to determine if this is the case for
a given data set, we can plot the residuals from our model as a function of
time. If the errors are uncorrelated, then there should be no discernible pat-
tern. On the other hand, if the error terms are positively correlated, then
we may see tracking in the residuals—that is, adjacent residuals may have
similar values. Figure 3.10 provides an illustration. In the top panel, we see
the residuals from a linear regression fit to data generated with uncorre-
lated errors. There is no evidence of a time-related trend in the residuals.
In contrast, the residuals in the bottom panel are from a data set in which
adjacent errors had a correlation of 0.9. Now there is a clear pattern in the
residuals—adjacent residuals tend to take on similar values. Finally, the
center panel illustrates a more moderate case in which the residuals had a
correlation of 0.5. There is still evidence of tracking, but the pattern is less
clear.

Many methods have been developed to properly take account of corre-
lations in the error terms in time series data. Correlation among the error
terms can also occur outside of time series data. For instance, consider a
study in which individuals’ heights are predicted from their weights. The
assumption of uncorrelated errors could be violated if some of the individ-
uals in the study are members of the same family, or eat the same diet,
or have been exposed to the same environmental factors. In general, the
assumption of uncorrelated errors is extremely important for linear regres-
sion as well as for other statistical methods, and good experimental design
is crucial in order to mitigate the risk of such correlations.

time series

tracking
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FIGURE 3.10. Plots of residuals from simulated time series data sets generated
with differing levels of correlation p between error terms for adjacent time points.

3. Non-constant Variance of Error Terms

Another important assumption of the linear regression model is that the
error terms have a constant variance, Var(e;) = o2. The standard errors,
confidence intervals, and hypothesis tests associated with the linear model
rely upon this assumption.

Unfortunately, it is often the case that the variances of the error terms are
non-constant. For instance, the variances of the error terms may increase
with the value of the response. One can identify non-constant variances in
the errors, or heteroscedasticity, from the presence of a funnel shape in
the residual plot. An example is shown in the left-hand panel of Figure 3.11,
in which the magnitude of the residuals tends to increase with the fitted
values. When faced with this problem, one possible solution is to trans-
form the response Y using a concave function such as logY or v/Y. Such
a transformation results in a greater amount of shrinkage of the larger re-
sponses, leading to a reduction in heteroscedasticity. The right-hand panel
of Figure 3.11 displays the residual plot after transforming the response

heterosceda-
sticity
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FIGURE 3.11. Residual plots. In each plot, the red line is a smooth fit to the
residuals, intended to make it easier to identify a trend. The blue lines track the
outer quantiles of the residuals, and emphasize patterns. Left: The funnel shape
indicates heteroscedasticity. Right: The response has been log transformed, and
there is now no evidence of heteroscedasticity.

using log Y. The residuals now appear to have constant variance, though
there is some evidence of a slight non-linear relationship in the data.

Sometimes we have a good idea of the variance of each response. For
example, the ith response could be an average of n; raw observations. If
each of these raw observations is uncorrelated with variance o2, then their
average has variance 02 = 02 /n;. In this case a simple remedy is to fit our
model by weighted least squares, with weights proportional to the inverse
variances—i.e. w; = n; in this case. Most linear regression software allows
for observation weights.

4. Outliers

An outlier is a point for which y; is far from the value predicted by the
model. Outliers can arise for a variety of reasons, such as incorrect recording
of an observation during data collection.

The red point (observation 20) in the left-hand panel of Figure 3.12
illustrates a typical outlier. The red solid line is the least squares regression
fit, while the blue dashed line is the least squares fit after removal of the
outlier. In this case, removing the outlier has little effect on the least squares
line: it leads to almost no change in the slope, and a miniscule reduction
in the intercept. It is typical for an outlier that does not have an unusual
predictor value to have little effect on the least squares fit. However, even
if an outlier does not have much effect on the least squares fit, it can cause
other problems. For instance, in this example, the RSE is 1.09 when the
outlier is included in the regression, but it is only 0.77 when the outlier
is removed. Since the RSE is used to compute all confidence intervals and

weighted
least squares

outlier
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FIGURE 3.12. Left: The least squares regression line is shown in red, and the
regression line after removing the outlier is shown in blue. Center: The residual
plot clearly identifies the outlier. Right: The outlier has a studentized residual of
6; typically we expect values between —3 and 3.

p-values, such a dramatic increase caused by a single data point can have
implications for the interpretation of the fit. Similarly, inclusion of the
outlier causes the R? to decline from 0.892 to 0.805.

Residual plots can be used to identify outliers. In this example, the out-
lier is clearly visible in the residual plot illustrated in the center panel of
Figure 3.12. But in practice, it can be difficult to decide how large a resid-
ual needs to be before we consider the point to be an outlier. To address
this problem, instead of plotting the residuals, we can plot the studentized
resitduals, computed by dividing each residual e; by its estimated standard
error. Observations whose studentized residuals are greater than 3 in abso-
lute value are possible outliers. In the right-hand panel of Figure 3.12, the
outlier’s studentized residual exceeds 6, while all other observations have
studentized residuals between —2 and 2.

If we believe that an outlier has occurred due to an error in data collec-
tion or recording, then one solution is to simply remove the observation.
However, care should be taken, since an outlier may instead indicate a
deficiency with the model, such as a missing predictor.

5. High Leverage Points

We just saw that outliers are observations for which the response y; is
unusual given the predictor z;. In contrast, observations with high leverage
have an unusual value for x;. For example, observation 41 in the left-hand
panel of Figure 3.13 has high leverage, in that the predictor value for this
observation is large relative to the other observations. (Note that the data
displayed in Figure 3.13 are the same as the data displayed in Figure 3.12,
but with the addition of a single high leverage observation.) The red solid
line is the least squares fit to the data, while the blue dashed line is the
fit produced when observation 41 is removed. Comparing the left-hand
panels of Figures 3.12 and 3.13, we observe that removing the high leverage
observation has a much more substantial impact on the least squares line

studentized
residual

high leverage
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FIGURE 3.13. Left: Observation 41 is a high leverage point, while 20 is not.
The red line is the fit to all the data, and the blue line is the fit with observation
41 removed. Center: The red observation is not unusual in terms of its X1 value
or its Xao walue, but still falls outside the bulk of the data, and hence has high
leverage. Right: Observation 41 has a high leverage and a high residual.

than removing the outlier. In fact, high leverage observations tend to have
a sizable impact on the estimated regression line. It is cause for concern if
the least squares line is heavily affected by just a couple of observations,
because any problems with these points may invalidate the entire fit. For
this reason, it is important to identify high leverage observations.

In a simple linear regression, high leverage observations are fairly easy to
identify, since we can simply look for observations for which the predictor
value is outside of the normal range of the observations. But in a multiple
linear regression with many predictors, it is possible to have an observation
that is well within the range of each individual predictor’s values, but that
is unusual in terms of the full set of predictors. An example is shown in
the center panel of Figure 3.13, for a data set with two predictors, X; and
X5. Most of the observations’ predictor values fall within the blue dashed
ellipse, but the red observation is well outside of this range. But neither its
value for X; nor its value for X5 is unusual. So if we examine just X; or
just X5, we will fail to notice this high leverage point. This problem is more
pronounced in multiple regression settings with more than two predictors,
because then there is no simple way to plot all dimensions of the data
simultaneously.

In order to quantify an observation’s leverage, we compute the leverage
statistic. A large value of this statistic indicates an observation with high
leverage. For a simple linear regression,

hZ:l—i— n(l'i—j-)Q_ .
no g (wy — %)

It is clear from this equation that h; increases with the distance of z; from Z.
There is a simple extension of h; to the case of multiple predictors, though
we do not provide the formula here. The leverage statistic h; is always
between 1/n and 1, and the average leverage for all the observations is
always equal to (p+ 1)/n. So if a given observation has a leverage statistic

(3.37)

leverage
statistic



3.3 Other Considerations in the Regression Model 99

o o
& o) OoO °o
o ° o Q o
RO 8 7
o _| ° o 9o
~ 8 o ©
o © @9 o &
o ° s ° 8 o
4 o -
o B 350 o5 g 8 #
< o T
o | o ) o
s} ) °8 0%
00 0 700 o S |
Lo o 8 <
o | o o o o
= o ° o
° o
o o
L o o ©o° o 8
@ S ® o «
o 6o ©p
T T T T T T T T T T T T
2000 4000 6000 8000 12000 2000 4000 6000 8000 12000
Limit Limit

FIGURE 3.14. Scatterplots of the observations from the Credit data set. Left:
A plot of age versus limit. These two variables are not collinear. Right: A plot
of rating versus limit. There is high collinearity.

that greatly exceeds (p+1)/n, then we may suspect that the corresponding
point has high leverage.

The right-hand panel of Figure 3.13 provides a plot of the studentized
residuals versus h; for the data in the left-hand panel of Figure 3.13. Ob-
servation 41 stands out as having a very high leverage statistic as well as a
high studentized residual. In other words, it is an outlier as well as a high
leverage observation. This is a particularly dangerous combination! This
plot also reveals the reason that observation 20 had relatively little effect
on the least squares fit in Figure 3.12: it has low leverage.

6. Collinearity

Collinearity refers to the situation in which two or more predictor variables
are closely related to one another. The concept of collinearity is illustrated
in Figure 3.14 using the Credit data set. In the left-hand panel of Fig-
ure 3.14, the two predictors 1limit and age appear to have no obvious rela-
tionship. In contrast, in the right-hand panel of Figure 3.14, the predictors
limit and rating are very highly correlated with each other, and we say
that they are collinear. The presence of collinearity can pose problems in
the regression context, since it can be difficult to separate out the indi-
vidual effects of collinear variables on the response. In other words, since
limit and rating tend to increase or decrease together, it can be difficult to
determine how each one separately is associated with the response, balance.
Figure 3.15 illustrates some of the difficulties that can result from collinear-
ity. The left-hand panel of Figure 3.15 is a contour plot of the RSS (3.22)
associated with different possible coefficient estimates for the regression
of balance on limit and age. Each ellipse represents a set of coefficients
that correspond to the same RSS, with ellipses nearest to the center tak-
ing on the lowest values of RSS. The black dots and associated dashed

collinearity
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FIGURE 3.15. Contour plots for the RSS values as a function of the parameters
B for various regressions involving the Credit data set. In each plot, the black
dots represent the coefficient values corresponding to the minimum RSS. Left:
A contour plot of RSS for the regression of balance onto age and limit. The
minimum value is well defined. Right: A contour plot of RSS for the regression
of balance onto rating and limit. Because of the collinearity, there are many
pairs (Blimit, Prating) With a similar value for RSS.

lines represent the coefficient estimates that result in the smallest possible
RSS—in other words, these are the least squares estimates. The axes for
limit and age have been scaled so that the plot includes possible coeffi-
cient estimates that are up to four standard errors on either side of the
least squares estimates. Thus the plot includes all plausible values for the
coefficients. For example, we see that the true limit coefficient is almost
certainly somewhere between 0.15 and 0.20.

In contrast, the right-hand panel of Figure 3.15 displays contour plots
of the RSS associated with possible coefficient estimates for the regression
of balance onto limit and rating, which we know to be highly collinear.
Now the contours run along a narrow valley; there is a broad range of
values for the coefficient estimates that result in equal values for RSS.
Hence a small change in the data could cause the pair of coefficient values
that yield the smallest RSS—that is, the least squares estimates—to move
anywhere along this valley. This results in a great deal of uncertainty in the
coefficient estimates. Notice that the scale for the 1imit coefficient now runs
from roughly —0.2 to 0.2; this is an eight-fold increase over the plausible
range of the 1imit coefficient in the regression with age. Interestingly, even
though the limit and rating coefficients now have much more individual
uncertainty, they will almost certainly lie somewhere in this contour valley.
For example, we would not expect the true value of the 1imit and rating
coefficients to be —0.1 and 1 respectively, even though such a value is
plausible for each coefficient individually.
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Coefficient  Std. error t-statistic p-value

Intercept —173.411 43.828 —-3.957 < 0.0001

Model 1 age —2.292 0.672 —3.407 0.0007
limit 0.173 0.005 34.496 < 0.0001

Intercept —377.537 45.254 —8.343 < 0.0001

Model 2 rating 2.202 0.952 2.312 0.0213
limit 0.025 0.064 0.384 0.7012

TABLE 3.11. The results for two multiple regression models involving the
Credit data set are shown. Model 1 is a regression of balance on age and limit,
and Model 2 a regression of balance on rating and limit. The standard error
of Bumit increases 12-fold in the second regression, due to collinearity.

Since collinearity reduces the accuracy of the estimates of the regression
coefficients, it causes the standard error for 5; to grow. Recall that the

t-statistic for each predictor is calculated by dividing Bj by its standard
error. Consequently, collinearity results in a decline in the t-statistic. As a
result, in the presence of collinearity, we may fail to reject Hy : §; = 0. This
means that the power of the hypothesis test—the probability of correctly
detecting a mon-zero coefficient—is reduced by collinearity.

Table 3.11 compares the coefficient estimates obtained from two separate
multiple regression models. The first is a regression of balance on age and
limit, and the second is a regression of balance on rating and limit. In the
first regression, both age and 1imit are highly significant with very small p-
values. In the second, the collinearity between limit and rating has caused
the standard error for the 1imit coefficient estimate to increase by a factor
of 12 and the p-value to increase to 0.701. In other words, the importance
of the 1imit variable has been masked due to the presence of collinearity.
To avoid such a situation, it is desirable to identify and address potential
collinearity problems while fitting the model.

A simple way to detect collinearity is to look at the correlation matrix
of the predictors. An element of this matrix that is large in absolute value
indicates a pair of highly correlated variables, and therefore a collinearity
problem in the data. Unfortunately, not all collinearity problems can be
detected by inspection of the correlation matrix: it is possible for collinear-
ity to exist between three or more variables even if no pair of variables
has a particularly high correlation. We call this situation multicollinearity.
Instead of inspecting the correlation matrix, a better way to assess multi-
collinearity is to compute the variance inflation factor (VIF). The VIF is
the ratio of the variance of Bj when fitting the full model divided by the

variance of Bj if fit on its own. The smallest possible value for VIF is 1,
which indicates the complete absence of collinearity. Typically in practice
there is a small amount of collinearity among the predictors. As a rule of
thumb, a VIF value that exceeds 5 or 10 indicates a problematic amount of

power

multi-
collinearity

variance
inflation
factor
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collinearity. The VIF for each variable can be computed using the formula

1

1— R2 ’
Xl X—;

VIF(B;) =

where Ri{jl X, is the R? from a regression of X; onto all of the other

predictors. If R?m X is close to one, then collinearity is present, and so
the VIF will be large.

In the Credit data, a regression of balance on age, rating, and limit
indicates that the predictors have VIF values of 1.01, 160.67, and 160.59.
As we suspected, there is considerable collinearity in the data!

When faced with the problem of collinearity, there are two simple solu-
tions. The first is to drop one of the problematic variables from the regres-
sion. This can usually be done without much compromise to the regression
fit, since the presence of collinearity implies that the information that this
variable provides about the response is redundant in the presence of the
other variables. For instance, if we regress balance onto age and limit,
without the rating predictor, then the resulting VIF values are close to
the minimum possible value of 1, and the R? drops from 0.754 to 0.75.
So dropping rating from the set of predictors has effectively solved the
collinearity problem without compromising the fit. The second solution is
to combine the collinear variables together into a single predictor. For in-
stance, we might take the average of standardized versions of limit and
rating in order to create a new variable that measures credit worthiness.

3.4 The Marketing Plan

We now briefly return to the seven questions about the Advertising data
that we set out to answer at the beginning of this chapter.

1. Is there a relationship between advertising sales and budget?

This question can be answered by fitting a multiple regression model
of sales onto TV, radio, and newspaper, as in (3.20), and testing the
hypothesis Hoy : Bty = Bradio = Pnewspaper = 0. In Section 3.2.2,
we showed that the F-statistic can be used to determine whether or
not we should reject this null hypothesis. In this case the p-value
corresponding to the F-statistic in Table 3.6 is very low, indicating
clear evidence of a relationship between advertising and sales.

2. How strong is the relationship?
We discussed two measures of model accuracy in Section 3.1.3. First,
the RSE estimates the standard deviation of the response from the
population regression line. For the Advertising data, the RSE is 1,681
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units while the mean value for the response is 14,022, indicating a
percentage error of roughly 12%. Second, the R? statistic records
the percentage of variability in the response that is explained by
the predictors. The predictors explain almost 90 % of the variance in
sales. The RSE and R? statistics are displayed in Table 3.6.

. Which media contribute to sales?

To answer this question, we can examine the p-values associated with
each predictor’s t-statistic (Section 3.1.2). In the multiple linear re-
gression displayed in Table 3.4, the p-values for TV and radio are low,
but the p-value for newspaper is not. This suggests that only TV and
radio are related to sales. In Chapter 6 we explore this question in
greater detail.

. How large is the effect of each medium on sales?

We saw in Section 3.1.2 that the standard error of Bj can be used
to construct confidence intervals for ;. For the Advertising data,
the 95% confidence intervals are as follows: (0.043,0.049) for TV,
(0.172,0.206) for radio, and (—0.013,0.011) for newspaper. The confi-
dence intervals for TV and radio are narrow and far from zero, provid-
ing evidence that these media are related to sales. But the interval
for newspaper includes zero, indicating that the variable is not statis-
tically significant given the values of TV and radio.

We saw in Section 3.3.3 that collinearity can result in very wide stan-
dard errors. Could collinearity be the reason that the confidence in-
terval associated with newspaper is so wide? The VIF scores are 1.005,
1.145, and 1.145 for TV, radio, and newspaper, suggesting no evidence
of collinearity.

In order to assess the association of each medium individually on
sales, we can perform three separate simple linear regressions. Re-
sults are shown in Tables 3.1 and 3.3. There is evidence of an ex-
tremely strong association between TV and sales and between radio
and sales. There is evidence of a mild association between newspaper
and sales, when the values of TV and radio are ignored.

. How accurately can we predict future sales?

The response can be predicted using (3.21). The accuracy associ-
ated with this estimate depends on whether we wish to predict an
individual response, Y = f(X) + ¢, or the average response, f(X)
(Section 3.2.2). If the former, we use a prediction interval, and if the
latter, we use a confidence interval. Prediction intervals will always
be wider than confidence intervals because they account for the un-
certainty associated with e, the irreducible error.
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6. Is the relationship linear?

In Section 3.3.3, we saw that residual plots can be used in order to
identify non-linearity. If the relationships are linear, then the residual
plots should display no pattern. In the case of the Advertising data,
we observe a non-linear effect in Figure 3.5, though this effect could
also be observed in a residual plot. In Section 3.3.2, we discussed the
inclusion of transformations of the predictors in the linear regression
model in order to accommodate non-linear relationships.

7. Is there synergy among the advertising media?

The standard linear regression model assumes an additive relation-
ship between the predictors and the response. An additive model is
easy to interpret because the effect of each predictor on the response is
unrelated to the values of the other predictors. However, the additive
assumption may be unrealistic for certain data sets. In Section 3.3.2,
we showed how to include an interaction term in the regression model
in order to accommodate non-additive relationships. A small p-value
associated with the interaction term indicates the presence of such
relationships. Figure 3.5 suggested that the Advertising data may
not be additive. Including an interaction term in the model results in
a substantial increase in R?, from around 90 % to almost 97 %.

3.5 Comparison of Linear Regression
with K-Nearest Neighbors

As discussed in Chapter 2, linear regression is an example of a parametric
approach because it assumes a linear functional form for f(X). Parametric
methods have several advantages. They are often easy to fit, because one
need estimate only a small number of coefficients. In the case of linear re-
gression, the coefficients have simple interpretations, and tests of statistical
significance can be easily performed. But parametric methods do have a
disadvantage: by construction, they make strong assumptions about the
form of f(X). If the specified functional form is far from the truth, and
prediction accuracy is our goal, then the parametric method will perform
poorly. For instance, if we assume a linear relationship between X and Y
but the true relationship is far from linear, then the resulting model will
provide a poor fit to the data, and any conclusions drawn from it will be
suspect.

In contrast, non-parametric methods do not explicitly assume a para-
metric form for f(X), and thereby provide an alternative and more flexi-
ble approach for performing regression. We discuss various non-parametric
methods in this book. Here we consider one of the simplest and best-known
non-parametric methods, K -nearest neighbors regression (KNN regression).

K-nearest
neighbors
regression
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FIGURE 3.16. Plots of f(X) using KNN regression on a two-dimensional data
set with 64 observations (orange dots). Left: K = 1 results in a rough step func-
tion fit. Right: K =9 produces a much smoother fit.

The KNN regression method is closely related to the KNN classifier dis-
cussed in Chapter 2. Given a value for K and a prediction point xy, KNN
regression first identifies the K training observations that are closest to
xo, represented by Nj. It then estimates f(xg) using the average of all the
training responses in ANy. In other words,

fla) == 3w

x;E€No

Figure 3.16 illustrates two KNN fits on a data set with p = 2 predictors.
The fit with K = 1 is shown in the left-hand panel, while the right-hand
panel corresponds to K = 9. We see that when K = 1, the KNN fit perfectly
interpolates the training observations, and consequently takes the form of
a step function. When K = 9, the KNN fit still is a step function, but
averaging over nine observations results in much smaller regions of constant
prediction, and consequently a smoother fit. In general, the optimal value
for K will depend on the bias-variance tradeoff, which we introduced in
Chapter 2. A small value for K provides the most flexible fit, which will
have low bias but high variance. This variance is due to the fact that the
prediction in a given region is entirely dependent on just one observation.
In contrast, larger values of K provide a smoother and less variable fit; the
prediction in a region is an average of several points, and so changing one
observation has a smaller effect. However, the smoothing may cause bias by
masking some of the structure in f(X). In Chapter 5, we introduce several
approaches for estimating test error rates. These methods can be used to
identify the optimal value of K in KNN regression.
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In what setting will a parametric approach such as least squares linear re-
gression outperform a non-parametric approach such as KNN regression?
The answer is simple: the parametric approach will outperform the non-
parametric approach if the parametric form that has been selected is close
to the true form of f. Figure 3.17 provides an example with data generated
from a one-dimensional linear regression model. The black solid lines rep-
resent f(X), while the blue curves correspond to the KNN fits using K = 1
and K = 9. In this case, the K = 1 predictions are far too variable, while
the smoother K = 9 fit is much closer to f(X). However, since the true
relationship is linear, it is hard for a non-parametric approach to compete
with linear regression: a non-parametric approach incurs a cost in variance
that is not offset by a reduction in bias. The blue dashed line in the left-
hand panel of Figure 3.18 represents the linear regression fit to the same
data. It is almost perfect. The right-hand panel of Figure 3.18 reveals that
linear regression outperforms KNN for this data. The green solid line, plot-
ted as a function of 1/ K, represents the test set mean squared error (MSE)
for KNN. The KNN errors are well above the black dashed line, which is
the test MSE for linear regression. When the value of K is large, then KNN
performs only a little worse than least squares regression in terms of MSE.
It performs far worse when K is small.

In practice, the true relationship between X and Y is rarely exactly lin-
ear. Figure 3.19 examines the relative performances of least squares regres-
sion and KNN under increasing levels of non-linearity in the relationship
between X and Y. In the top row, the true relationship is nearly linear.
In this case we see that the test MSE for linear regression is still superior
to that of KNN for low values of K. However, for K > 4, KNN out-
performs linear regression. The second row illustrates a more substantial
deviation from linearity. In this situation, KNN substantially outperforms
linear regression for all values of K. Note that as the extent of non-linearity
increases, there is little change in the test set MSE for the non-parametric
KNN method, but there is a large increase in the test set MSE of linear
regression.

Figures 3.18 and 3.19 display situations in which KNN performs slightly
worse than linear regression when the relationship is linear, but much better
than linear regression for non-linear situations. In a real life situation in
which the true relationship is unknown, one might draw the conclusion that
KNN should be favored over linear regression because it will at worst be
slightly inferior than linear regression if the true relationship is linear, and
may give substantially better results if the true relationship is non-linear.
But in reality, even when the true relationship is highly non-linear, KNN
may still provide inferior results to linear regression. In particular, both
Figures 3.18 and 3.19 illustrate settings with p = 1 predictor. But in higher
dimensions, KNN often performs worse than linear regression.

Figure 3.20 considers the same strongly non-linear situation as in the
second row of Figure 3.19, except that we have added additional noise
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FIGURE 3.17. Plots of f(X) using KNN regression on a one-dimensional data
set with 100 observations. The true relationship is given by the black solid line.
Left: The blue curve corresponds to K = 1 and interpolates (i.e. passes directly
through) the training data. Right: The blue curve corresponds to K = 9, and
represents a smoother fit.
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FIGURE 3.18. The same data set shown in Figure 3.17 is investigated further.
Left: The blue dashed line is the least squares fit to the data. Since f(X) is in
fact linear (displayed as the black line), the least squares regression line provides
a very good estimate of f(X). Right: The dashed horizontal line represents the
least squares test set MSE, while the green solid line corresponds to the MSE
for KNN as a function of 1/K (on the log scale). Linear regression achieves a
lower test MSE than does KNN regression, since f(X) is in fact linear. For KNN
regression, the best results occur with a very large value of K, corresponding to a
small value of 1/K.
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FIGURE 3.19. Top Left: In a setting with a slightly non-linear relationship
between X and Y (solid black line), the KNN fits with K =1 (blue) and K =9
(red) are displayed. Top Right: For the slightly non-linear data, the test set MSE
for least squares regression (horizontal black) and K NN with various values of
1/K (green) are displayed. Bottom Left and Bottom Right: As in the top panel,
but with a strongly non-linear relationship between X and Y .

predictors that are not associated with the response. When p =1 or p = 2,
KNN outperforms linear regression. But for p = 3 the results are mixed,
and for p > 4 linear regression is superior to KNN. In fact, the increase in
dimension has only caused a small deterioration in the linear regression test
set MSE, but it has caused more than a ten-fold increase in the MSE for
KNN. This decrease in performance as the dimension increases is a common
problem for KNN, and results from the fact that in higher dimensions
there is effectively a reduction in sample size. In this data set there are
100 training observations; when p = 1, this provides enough information to
accurately estimate f(X). However, spreading 100 observations over p = 20
dimensions results in a phenomenon in which a given observation has no
nearby neighbors—this is the so-called curse of dimensionality. That is,
the K observations that are nearest to a given test observation xg may be
very far away from x( in p-dimensional space when p is large, leading to a

curse of di-
mensionality
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FIGURE 3.20. Test MSE for linear regression (black dashed lines) and KNN
(green curves) as the number of variables p increases. The true function is non—
linear in the first variable, as in the lower panel in Figure 8.19, and does not
depend on the additional variables. The performance of linear regression deteri-
orates slowly in the presence of these additional noise variables, whereas KNN’s
performance degrades much more quickly as p increases.

very poor prediction of f(zg) and hence a poor KNN fit. As a general rule,
parametric methods will tend to outperform non-parametric approaches
when there is a small number of observations per predictor.

Even in problems in which the dimension is small, we might prefer linear
regression to KNN from an interpretability standpoint. If the test MSE
of KNN is only slightly lower than that of linear regression, we might be
willing to forego a little bit of prediction accuracy for the sake of a simple
model that can be described in terms of just a few coefficients, and for
which p-values are available.

3.6 Lab: Linear Regression

3.6.1 Libraries

The 1ibrary () function is used to load libraries, or groups of functions and
data sets that are not included in the base R distribution. Basic functions
that perform least squares linear regression and other simple analyses come
standard with the base distribution, but more exotic functions require ad-
ditional libraries. Here we load the MASS package, which is a very large
collection of data sets and functions. We also load the ISLR package, which
includes the data sets associated with this book.

> library (MASS)
> library (ISLR)

If you receive an error message when loading any of these libraries, it
likely indicates that the corresponding library has not yet been installed
on your system. Some libraries, such as MASS, come with R and do not need to
be separately installed on your computer. However, other packages, such as

library()
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ISLR, must be downloaded the first time they are used. This can be done di-
rectly from within R. For example, on a Windows system, select the Install
package option under the Packages tab. After you select any mirror site, a
list of available packages will appear. Simply select the package you wish to
install and R will automatically download the package. Alternatively, this
can be done at the R command line via install.packages("ISLR"). This in-
stallation only needs to be done the first time you use a package. However,
the library() function must be called each time you wish to use a given
package.

3.6.2 Simple Linear Regression

The MASS library contains the Boston data set, which records medv (median
house value) for 506 neighborhoods around Boston. We will seek to predict
medv using 13 predictors such as rm (average number of rooms per house),
age (average age of houses), and 1stat (percent of households with low
socioeconomic status).

> fix(Boston)

> names (Boston)

[1] "Crim“ Ilznll llindusll "ChaS" IanXll llrmll n age n
[8] "dis" "rad" "tax" "ptratio" "black" "lstat" "medv"

To find out more about the data set, we can type ?Boston.

We will start by using the 1m() function to fit a simple linear regression
model, with medv as the response and 1stat as the predictor. The basic
syntax is 1lm(y~x,data), where y is the response, x is the predictor, and
data is the data set in which these two variables are kept.

> Im.fit=1m(medv~lstat)
Error in eval(expr, envir, enclos) : Object "medv" not found

The command causes an error because R does not know where to find
the variables medv and 1stat. The next line tells R that the variables are
in Boston. If we attach Boston, the first line works fine because R now
recognizes the variables.

> Im.fit=1m(medv~lstat ,data=Boston)

> attach (Boston)
> Im.fit=1m(medv~lstat)

If we type 1m.fit, some basic information about the model is output.
For more detailed information, we use summary(lm.fit). This gives us p-
values and standard errors for the coefficients, as well as the R? statistic
and F-statistic for the model.

> 1Im.fit

Call:
Im(formula = medv ~ lstat)

In(Q
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Coefficients:
(Intercept) lstat
34.55 -0.95

> summary (lm.fit)

Call:
Im(formula = medv ~ lstat)
Residuals:

Min 1Q Median 3Q Max

-156.17 -3.99 -1.32 2.03 24.50

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 34.5538 0.5626 61.4 <2e-16 *x*x*
lstat -0.9500 0.0387 -24.5 <2e-16 **x*

Signif. codes: O *x*x 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 6.22 on 504 degrees of freedom
Multiple R-squared: 0.544, Adjusted R-squared: 0.543
F-statistic: 602 on 1 and 504 DF, p-value: <2e-16

We can use the names() function in order to find out what other pieces

. . . names ()
of information are stored in 1m.fit. Although we can extract these quan-
tities by name—e.g. 1m.fit$coefficients—it is safer to use the extractor
functions like coef () to access them.
coef ()
> names (1lm.fit)
[1] "coefficients" "residuals" "effects"
[4] "rank" "fitted.values" "assign"
[7] "qr" "df .residual" "xlevels"
[10] "call™ "terms" "model"
> coef(lm.fit)
(Intercept) lstat
34.55 -0.95
In order to obtain a confidence interval for the coefficient estimates, we can
use the confint() command. _
confint ()
> confint (1lm.fit)
2.5 % 97.5 %
(Intercept) 33.45 35.659
l1stat -1.03 -0.874
The predict() function can be used to produce confidence intervals and et 0)
predic

prediction intervals for the prediction of medv for a given value of 1stat.

> predict (lm.fit,data.frame(lstat=c(5,10,15)),
interval="confidence")
fit lwr upr
1 29.80 29.01 30.60
2 25.05 24.47 25.63
3 20.30 19.73 20.87
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> predict (lm.fit ,data.frame(lstat=c(5,10,15)),
interval="prediction")
fit lwr upr
1 29.80 17.566 42.04
2 25.05 12.828 37.28
3 20.30 8.078 32.53

For instance, the 95 % confidence interval associated with a 1stat value of
10 is (24.47,25.63), and the 95 % prediction interval is (12.828,37.28). As
expected, the confidence and prediction intervals are centered around the
same point (a predicted value of 25.05 for medv when 1stat equals 10), but
the latter are substantially wider.

We will now plot medv and 1stat along with the least squares regression
line using the plot() and abline() functions.

> plot(lstat ,medv)
> abline (lm.fit)

There is some evidence for non-linearity in the relationship between 1stat
and medv. We will explore this issue later in this lab.

The abline() function can be used to draw any line, not just the least
squares regression line. To draw a line with intercept a and slope b, we
type abline(a,b). Below we experiment with some additional settings for
plotting lines and points. The 1wd=3 command causes the width of the
regression line to be increased by a factor of 3; this works for the plot()
and lines () functions also. We can also use the pch option to create different
plotting symbols.
abline (1lm.fit ,lwd=3)
abline (1m.fit,lwd=3,col="red")
plot(lstat ,medv,col="red")
plot (lstat ,medv,pch=20)

plot(lstat ,medv,pch="+")
plot(1:20,1:20,pch=1:20)

vV V V V Vv VvV

Next we examine some diagnostic plots, several of which were discussed
in Section 3.3.3. Four diagnostic plots are automatically produced by ap-
plying the plot () function directly to the output from 1m(). In general, this
command will produce one plot at a time, and hitting Enter will generate
the next plot. However, it is often convenient to view all four plots together.
We can achieve this by using the par() function, which tells R to split the
display screen into separate panels so that multiple plots can be viewed si-
multaneously. For example, par (mfrow=c(2,2)) divides the plotting region
into a 2 x 2 grid of panels.

> par (mfrow=c(2,2))
> plot(Ilm.fit)

Alternatively, we can compute the residuals from a linear regression fit
using the residuals() function. The function rstudent() will return the
studentized residuals, and we can use this function to plot the residuals
against the fitted values.

abline ()

par ()

residuals ()
rstudent ()
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> plot(predict (1m.fit), residuals (1m.fit))
> plot(predict (1lm.fit), rstudent (lm.fit))

On the basis of the residual plots, there is some evidence of non-linearity.
Leverage statistics can be computed for any number of predictors using the

hatvalues() function.
hatvalues ()

> plot(hatvalues (1lm.fit))
> which.max (hatvalues (1m.fit))
3S145

The which.max() function identifies the index of the largest element of a
vector. In this case, it tells us which observation has the largest leverage
statistic.

which.max ()

3.6.3 Multiple Linear Regression

In order to fit a multiple linear regression model using least squares, we
again use the Im() function. The syntax Im(y~x1+x2+x3) is used to fit a
model with three predictors, x1, x2, and x3. The summary() function now
outputs the regression coefficients for all the predictors.

> 1Im.fit=1m(medv~lstat+age ,data=Boston)
> summary (lm.fit)

Call:
Im(formula = medv ~ lstat + age, data = Boston)

Residuals:
Min 1Q Median 3Q Max
-15.98 -3.98 -1.28 1.97 23.16

Coefficients:
Estimate Std. Error t value Pr(>|t])

(Intercept) 33.2228 0.7308 45.46 <2e-16 *x**
lstat -1.0321 0.0482 -21.42 <2e-16 *x*xx*
age 0.0345 0.0122 2.83 0.0049 =*x

Signif. codes: O ***x 0.001 **x 0.01 * 0.05 . 0.1 1

Residual standard error: 6.17 on 503 degrees of freedom
Multiple R-squared: 0.551, Adjusted R-squared: 0.549
F-statistic: 309 on 2 and 503 DF, p-value: <2e-16

The Boston data set contains 13 variables, and so it would be cumbersome
to have to type all of these in order to perform a regression using all of the
predictors. Instead, we can use the following short-hand:

> Im.fit=1m(medv~.,data=Boston)
> summary (lm.fit)

Call:
Im(formula = medv ~ ., data = Boston)
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Residuals:
Min
-15.594

Coefficients:
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Residual standard error: 4.745 on 492 degrees of freedom
Multiple R-Squared: 0.7406, Adjusted R-squared: 0.7338

F-statistic: 108.1 on 13 and 492 DF, p-value: < 2.2e-16

We can access the individual components of a summary object by name
(type ?summary.lm to see what is available). Hence summary(im.fit)$r.sq
gives us the R?, and summary(1m.fit)$sigma gives us the RSE. The vif ()
function, part of the car package, can be used to compute variance inflation
factors. Most VIF’s are low to moderate for this data. The car package is
not part of the base R installation so it must be downloaded the first time
you use it via the install.packages option in R.

vif()

> library (car)
> vif (Im.fit)

crim zn indus chas nox rm age
1.79 2.30 3.99 1.07 4.39 1.93 3.10
dis rad tax ptratio black lstat
3.96 7.48 9.01 1.80 1.35 2.94

What if we would like to perform a regression using all of the variables but
one? For example, in the above regression output, age has a high p-value.
So we may wish to run a regression excluding this predictor. The following
syntax results in a regression using all predictors except age.

> Im.fitl=1lm(medv~.-age ,data=Boston)
> summary (lm.fit1)

Alternatively, the update () function can be used.
update ()
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> 1lm.fitl=update(lm.fit, ~.-age)

3.6.4 Interaction Terms

It is easy to include interaction terms in a linear model using the 1m() func-
tion. The syntax 1stat:black tells R to include an interaction term between
1stat and black. The syntax 1stat*age simultaneously includes 1stat, age,
and the interaction term lstatXxage as predictors; it is a shorthand for
lstat+age+lstat:age.

> summary (lm(medv~lstat*age ,data=Boston))

Call:
Im(formula = medv ~ lstat * age, data = Boston)

Residuals:
Min 1Q Median 3Q Max
-15.81 -4.04 -1.33 2.08 27.55

Coefficients:
Estimate Std. Error t value Pr(>|t])
(Intercept) 36.088536 1.469835 24 .55 < 2e-16 *x*xx*

lstat -1.392117 0.167456 -8.31 8.8e-16 x*xx*x*

age -0.000721 0.019879 -0.04 0.971

lstat:age 0.004156 0.001852 2.24 0.025 =

Signif. codes: O ’**x’ 0.001 ’*x’ 0.01 ’x’ 0.056 ’.” 0.1 > ’ 1

Residual standard error: 6.15 on 502 degrees of freedom
Multiple R-squared: 0.556, Adjusted R-squared: 0.553
F-statistic: 209 on 3 and 502 DF, p-value: <2e-16

3.6.5 Non-linear Transformations of the Predictors

The 1m() function can also accommodate non-linear transformations of the
predictors. For instance, given a predictor X, we can create a predictor X2
using I(Xx~2). The function I() is needed since the -~ has a special meaning
in a formula; wrapping as we do allows the standard usage in R, which is
to raise X to the power 2. We now perform a regression of medv onto 1lstat
and 1stat?.

> Im.fit2=1m(medv~lstat+I(lstat~2))
> summary (Im.fit2)

Call:
Im(formula = medv ~ lstat + I(lstat~2))

Residuals:
Min 1Q Median 3Q Max
-15.28 =8, &S =0 . B 2.31 25.41

I0
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Coefficients:
Estimate Std. Error t value Pr(>|t])

(Intercept) 42.86201 0.87208 49.1 <2e-16 **x
lstat -2.33282 0.12380 =ilE . & <2e-16 *xx*
I(1lstat~2) 0.04355 0.00375 11.6 <2e-16 *x*x*
Signif. codes: O ’**x’ 0.001 ’%x’ 0.01 ’x’ 0.05 ’.” 0.1 > ’ 1

Residual standard error: 5.52 on 503 degrees of freedom
Multiple R-squared: 0.641, Adjusted R-squared: 0.639
F-statistic: 449 on 2 and 503 DF, p-value: <2e-16

The near-zero p-value associated with the quadratic term suggests that
it leads to an improved model. We use the anova() function to further
quantify the extent to which the quadratic fit is superior to the linear fit.

anoval()

> Im.fit=1m(medv~lstat)
> anova(lm.fit,Im.fit2)
Analysis of Variance Table

Model 1: medv ~ lstat
Model 2: medv ~ lstat + I(lstat~2)
Res .Df RSS Df Sum of Sq F Pr(>F)
1 504 19472
2 503 15347 1 4125 135 <2e-16 *x*x*

Signif. codes: O ’**x’ 0.001 ’*x’ 0.01 ’*’ 0.05 ’.” 0.1 > ’ 1

Here Model 1 represents the linear submodel containing only one predictor,
1stat, while Model 2 corresponds to the larger quadratic model that has two
predictors, 1stat and 1stat®. The anova() function performs a hypothesis
test comparing the two models. The null hypothesis is that the two models
fit the data equally well, and the alternative hypothesis is that the full
model is superior. Here the F-statistic is 135 and the associated p-value is
virtually zero. This provides very clear evidence that the model containing
the predictors 1stat and 1stat® is far superior to the model that only
contains the predictor 1stat. This is not surprising, since earlier we saw
evidence for non-linearity in the relationship between medv and 1stat. If we

type

> par (mfrow=c(2,2))
> plot(lm.fit2)

then we see that when the 1stat? term is included in the model, there is
little discernible pattern in the residuals.

In order to create a cubic fit, we can include a predictor of the form
I1(x~3). However, this approach can start to get cumbersome for higher-
order polynomials. A better approach involves using the poly() function
to create the polynomial within 1m(). For example, the following command
produces a fifth-order polynomial fit:

poly ()
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> 1Im.fit5=1m(medv~poly(lstat ,5))
> summary (1lm.fit5)

Call:
Im(formula = medv ~ poly(lstat, 5))

Residuals:
Min 1Q Median 3Q Max
-13.543 -3.104 -0.705 2.084 27.115

Coefficients:
Estimate Std. Error t value Pr(>|t])

(Intercept) 22.533 0.232 97.20 < 2e-16 *x*x*
poly(lstat, 5)1 -152.460 5.215 -29.24 < 2e-16 xxx
poly(lstat, 5)2 64.227 5.215 12.32 < 2e-16 *x*x
poly(lstat, 5)3 -27.051 5.215  -5.19 3.1e-07 #*x*
poly(lstat, 5)4 25.452 5.215 4.88 1.4e-06 %%
poly(lstat, 5)5 -19.252 5/.215 -3.69 0.00025 =x*x*
Signif. codes: 0O ’**x’ 0.001 ’*x’ 0.01 ’x’ 0.05 ’.” 0.1 > ’ 1

Residual standard error: 5.21 on 500 degrees of freedom
Multiple R-squared: 0.682, Adjusted R-squared: 0.679
F-statistic: 214 on 5 and 500 DF, p-value: <2e-16

This suggests that including additional polynomial terms, up to fifth order,
leads to an improvement in the model fit! However, further investigation of
the data reveals that no polynomial terms beyond fifth order have signifi-
cant p-values in a regression fit.

Of course, we are in no way restricted to using polynomial transforma-
tions of the predictors. Here we try a log transformation.

> summary (1lm(medv~log(rm) ,data=Boston))

3.6.6 Qualitative Predictors

We will now examine the Carseats data, which is part of the ISLR library.
We will attempt to predict Sales (child car seat sales) in 400 locations
based on a number of predictors.

> fix(Carseats)
> names (Carseats)

[1] "Sales" "CompPrice" "Income" "Advertising"
[5] "Population" "Price" "ShelveLoc" "Age"
[9] "Education" "Urban" "gs"

The Carseats data includes qualitative predictors such as Shelveloc, an in-
dicator of the quality of the shelving location—that is, the space within
a store in which the car seat is displayed—at each location. The pre-
dictor Shelveloc takes on three possible values, Bad, Medium, and Good.
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Given a qualitative variable such as Shelveloc, R generates dummy variables
automatically. Below we fit a multiple regression model that includes some
interaction terms.

> Im.fit=1m(Sales~.+Income:Advertising+Price:Age,data=Carseats)
> summary (lm.fit)

Call:
Im(formula = Sales ~ . + Income:Advertising + Price:Age, data =
Carseats)

Residuals:
Min 1Q Median 3Q Max
-2.921 -0.750 0.018 0.675 3.341

Coefficients:
Estimate Std. Error t value Pr(>|tl)

(Intercept) 6.575565 1.008747 6.52 2.2e-10 *x*x
CompPrice 0.092937 0.004118 22.57 < 2e-16 **x
Income 0.010894 0.002604 4.18 3.6e-05 *xx*x
Advertising 0.070246 0.022609 3.11 0.00203 =**
Population 0.000159 0.000368 0.43 0.66533
Price -0.100806 0.007440 -13.55 < 2e-16 ***
ShelveLocGood 4.848676 0.152838 31.72 < 2e-16 ***
ShelveLocMedium 1.953262 0.125768 15.53 < 2e-16 *x*x
Age -0.057947 0.015951 -3.63 0.00032 *x*x*
Education -0.020852 0.019613 -1.06 0.28836
UrbanYes 0.140160 0.112402 1.25 0.21317
USYes -0.157557 0.148923 -1.06 0.29073
Income :Advertising 0.000751 0.000278 2.70 0.00729 *xx
Price:Age 0.000107 0.000133 0.80 0.42381
Signif. codes: 0 ’x%%x’> 0.001 ’*x’ 0.01 ’x> 0.05 ’.” 0.1 °’> > 1

Residual standard error: 1.01 on 386 degrees of freedom
Multiple R-squared: 0.876, Adjusted R-squared: 0.872
F-statistic: 210 on 13 and 386 DF, p-value: <2e-16

The contrasts() function returns the coding that R uses for the dummy

. contrasts()
variables.

> attach(Carseats)
> contrasts (ShelveLoc)
Good Medium

Bad 0 0
Good 1 0
Medium 0 1

Use 7contrasts to learn about other contrasts, and how to set them.

R has created a ShelveLocGood dummy variable that takes on a value of
1 if the shelving location is good, and 0 otherwise. It has also created a
ShelveLocMedium dummy variable that equals 1 if the shelving location is
medium, and 0 otherwise. A bad shelving location corresponds to a zero
for each of the two dummy variables. The fact that the coefficient for
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ShelveLocGood in the regression output is positive indicates that a good
shelving location is associated with high sales (relative to a bad location).
And ShelveLocMedium has a smaller positive coefficient, indicating that a
medium shelving location leads to higher sales than a bad shelving location
but lower sales than a good shelving location.

3.6.7 Writing Functions

As we have seen, R comes with many useful functions, and still more func-
tions are available by way of R libraries. However, we will often be inter-
ested in performing an operation for which no function is available. In this
setting, we may want to write our own function. For instance, below we
provide a simple function that reads in the ISLR and MASS libraries, called
LoadLibraries(). Before we have created the function, R returns an error if
we try to call it.

> LoadLibraries

Error: object ’LoadLibraries’ not found

> LoadLibraries ()

Error: could not find function "LoadLibraries"

We now create the function. Note that the + symbols are printed by R and
should not be typed in. The { symbol informs R that multiple commands
are about to be input. Hitting Enter after typing { will cause R to print the
+ symbol. We can then input as many commands as we wish, hitting Enter
after each one. Finally the } symbol informs R that no further commands
will be entered.

LoadLibraries=function () {

library (ISLR)

library (MASS)

print ("The libraries have been loaded.")

}

+ + + + Vv

Now if we type in LoadLibraries, R will tell us what is in the function.

> LoadLibraries

function () {

library (ISLR)

library (MASS)

print ("The libraries have been loaded.")

}

If we call the function, the libraries are loaded in and the print statement
is output.

> LoadLibraries ()
[1] "The libraries have been loaded."
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3.7 Exercises

Conceptual

1. Describe the null hypotheses to which the p-values given in Table 3.4

correspond. Explain what conclusions you can draw based on these
p-values. Your explanation should be phrased in terms of sales, TV,
radio, and newspaper, rather than in terms of the coefficients of the
linear model.

. Carefully explain the differences between the KNN classifier and KNN

regression methods.

. Suppose we have a data set with five predictors, X7 = GPA, X, = 1Q,

X3 = Gender (1 for Female and 0 for Male), X4 = Interaction between
GPA and IQ, and X5 = Interaction between GPA and Gender. The
response is starting salary after graduation (in thousands of dollars).

Suppose we use least squares to fit the model, and get By =50, 81 =
20, B2 = 0.07, B3 = 35, B4 = 0.01, B35 = —10.

(a) Which answer is correct, and why?
i. For a fixed value of IQ and GPA, males earn more on average
than females.

ii. For a fixed value of IQQ and GPA, females earn more on
average than males.

iii. For a fixed value of IQ and GPA, males earn more on average
than females provided that the GPA is high enough.

iv. For a fixed value of 1QQ and GPA, females earn more on
average than males provided that the GPA is high enough.
(b) Predict the salary of a female with I1Q of 110 and a GPA of 4.0.

(c) True or false: Since the coefficient for the GPA/IQ interaction
term is very small, there is very little evidence of an interaction
effect. Justify your answer.

. I collect a set of data (n = 100 observations) containing a single

predictor and a quantitative response. I then fit a linear regression
model to the data, as well as a separate cubic regression, i.e. ¥ =
Bo+ 1 X + B2X? + B3 X3 +e.

(a) Suppose that the true relationship between X and Y is linear,
ie. Y = By + 51X + €. Consider the training residual sum of
squares (RSS) for the linear regression, and also the training
RSS for the cubic regression. Would we expect one to be lower
than the other, would we expect them to be the same, or is there
not enough information to tell? Justify your answer.
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(b) Answer (a) using test rather than training RSS.

(¢) Suppose that the true relationship between X and Y is not linear,
but we don’t know how far it is from linear. Consider the training
RSS for the linear regression, and also the training RSS for the
cubic regression. Would we expect one to be lower than the
other, would we expect them to be the same, or is there not
enough information to tell? Justify your answer.

(d) Answer (c) using test rather than training RSS.
5. Consider the fitted values that result from performing linear regres-

sion without an intercept. In this setting, the ith fitted value takes
the form

Yi = xiﬁa
where
b= <Z 371'%) / (Z :c?,) : (3.38)
i=1 i'=1

Show that we can write

n
Ui = Z iy -

/=1

What is a;/?

Note: We interpret this result by saying that the fitted values from
linear regression are linear combinations of the response values.

6. Using (3.4), argue that in the case of simple linear regression, the
least squares line always passes through the point (z, 7).

7. It is claimed in the text that in the case of simple linear regression
of Y onto X, the R? statistic (3.17) is equal to the square of the
correlation between X and Y (3.18). Prove that this is the case. For
simplicity, you may assume that z =y = 0.

Applied

8. This question involves the use of simple linear regression on the Auto
data set.

(a) Use the 1m() function to perform a simple linear regression with
mpg as the response and horsepower as the predictor. Use the
summary () function to print the results. Comment on the output.
For example:
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(b)
()

Linear Regression

i. Is there a relationship between the predictor and the re-
sponse?

ii. How strong is the relationship between the predictor and
the response?

iii. Is the relationship between the predictor and the response
positive or negative?

iv. What is the predicted mpg associated with a horsepower of
98?7 What are the associated 95 % confidence and prediction
intervals?

Plot the response and the predictor. Use the abline() function
to display the least squares regression line.

Use the plot () function to produce diagnostic plots of the least
squares regression fit. Comment on any problems you see with
the fit.

9. This question involves the use of multiple linear regression on the
Auto data set.

(a)
(b)

(c)

Produce a scatterplot matrix which includes all of the variables
in the data set.

Compute the matrix of correlations between the variables using
the function cor(). You will need to exclude the name variable,
which is qualitative.

Use the 1m() function to perform a multiple linear regression
with mpg as the response and all other variables except name as
the predictors. Use the summary() function to print the results.
Comment on the output. For instance:

i. Is there a relationship between the predictors and the re-
sponse?

ii. Which predictors appear to have a statistically significant
relationship to the response?

iii. What does the coefficient for the year variable suggest?

Use the plot () function to produce diagnostic plots of the linear
regression fit. Comment on any problems you see with the fit.
Do the residual plots suggest any unusually large outliers? Does
the leverage plot identify any observations with unusually high
leverage?

Use the * and : symbols to fit linear regression models with
interaction effects. Do any interactions appear to be statistically
significant?

Try a few different transformations of the variables, such as
log(X), VX, X2. Comment on your findings.

cor()
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10. This question should be answered using the Carseats data set.

(a)

Fit a multiple regression model to predict Sales using Price,
Urban, and US.

Provide an interpretation of each coefficient in the model. Be
careful—some of the variables in the model are qualitative!
Write out the model in equation form, being careful to handle
the qualitative variables properly.

For which of the predictors can you reject the null hypothesis
fﬂ)tﬁ% =07

On the basis of your response to the previous question, fit a
smaller model that only uses the predictors for which there is
evidence of association with the outcome.

How well do the models in (a) and (e) fit the data?

Using the model from (e), obtain 95 % confidence intervals for
the coefficient(s).

Is there evidence of outliers or high leverage observations in the
model from (e)?

11. In this problem we will investigate the t-statistic for the null hypoth-
esis Hy : B = 0 in simple linear regression without an intercept. To
begin, we generate a predictor x and a response y as follows.

> set.seed (1)
> x=rnorm (100)
> y=2*x+rnorm(100)

(a)

Perform a simple linear regression of y onto x, without an in-
tercept. Report the coefficient estimate B , the standard error of
this coefficient estimate, and the t-statistic and p-value associ-
ated with the null hypothesis Hy : § = 0. Comment on these
results. (You can perform regression without an intercept using
the command 1m(y~x+0).)

Now perform a simple linear regression of x onto y without an
intercept, and report the coefficient estimate, its standard error,
and the corresponding t-statistic and p-values associated with
the null hypothesis Hy : § = 0. Comment on these results.
What is the relationship between the results obtained in (a) and
(b)?

For the regression of Y onto X without an intercept, the t-
statistic for Hy : 8 = 0 takes the form B/SE(@’), where £ is
given by (3.38), and where

Z?:1(yi - szB)Q
(n—1)> 0 @)

SE(B) =
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(f)
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(These formulas are slightly different from those given in Sec-
tions 3.1.1 and 3.1.2, since here we are performing regression
without an intercept.) Show algebraically, and confirm numeri-
cally in R, that the t-statistic can be written as

(Vn—1) 37, @iy
VCim 2 i1 vi) — iy vy )?
Using the results from (d), argue that the t-statistic for the re-

gression of y onto x is the same as the t-statistic for the regression
of x onto y.

In R, show that when regression is performed with an intercept,
the t-statistic for Hp : f1 = 0 is the same for the regression of y
onto x as it is for the regression of x onto y.

12. This problem involves simple linear regression without an intercept.

(a)

(b)

(c)

Recall that the coefficient estimate 3 for the linear regression of
Y onto X without an intercept is given by (3.38). Under what
circumstance is the coefficient estimate for the regression of X
onto Y the same as the coefficient estimate for the regression of
Y onto X7

Generate an example in R with n = 100 observations in which
the coefficient estimate for the regression of X onto Y is different
from the coefficient estimate for the regression of Y onto X.

Generate an example in R with n = 100 observations in which
the coefficient estimate for the regression of X onto Y is the
same as the coefficient estimate for the regression of Y onto X.

13. In this exercise you will create some simulated data and will fit simple
linear regression models to it. Make sure to use set.seed(1) prior to
starting part (a) to ensure consistent results.

(a)

(b)

Using the rnorm() function, create a vector, x, containing 100
observations drawn from a N (0, 1) distribution. This represents
a feature, X.

Using the rnorm() function, create a vector, eps, containing 100
observations drawn from a N(0,0.25) distribution i.e. a normal
distribution with mean zero and variance 0.25.

Using x and eps, generate a vector y according to the model
Y =—-1+05X +e (3.39)

What is the length of the vector y? What are the values of S
and (7 in this linear model?
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(f)
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Create a scatterplot displaying the relationship between x and
y. Comment on what you observe.

Fit a least squares linear model to predict y using x. Comment
on the model obtained. How do BO and Bl compare to [y and
B17?

Display the least squares line on the scatterplot obtained in (d).
Draw the population regression line on the plot, in a different
color. Use the legend() command to create an appropriate leg-
end.

Now fit a polynomial regression model that predicts y using x
and x”. Is there evidence that the quadratic term improves the
model fit? Explain your answer.

Repeat (a)-(f) after modifying the data generation process in
such a way that there is less noise in the data. The model (3.39)
should remain the same. You can do this by decreasing the vari-
ance of the normal distribution used to generate the error term
e in (b). Describe your results.

Repeat (a)—(f) after modifying the data generation process in
such a way that there is more noise in the data. The model
(3.39) should remain the same. You can do this by increasing
the variance of the normal distribution used to generate the
error term ¢ in (b). Describe your results.

What are the confidence intervals for Sy and S based on the
original data set, the noisier data set, and the less noisy data
set? Comment on your results.

14. This problem focuses on the collinearity problem.

(a)

Perform the following commands in R:

set .seed (1)

x1=runif (100)
x2=0.5*x1+rnorm (100) /10
y=2+2%x1+0.3*x2+rnorm (100)

vV V V V

The last line corresponds to creating a linear model in which y is
a function of x1 and x2. Write out the form of the linear model.
What are the regression coefficients?

What is the correlation between x1 and x2?7 Create a scatterplot
displaying the relationship between the variables.

Using this data, fit a least squares regression to predict y using
x1 and x2. Describe the results obtained. What are BO, Bl, and
Bz? How do these relate to the true By, f1, and (27 Can you
reject the null hypothesis Hy : 51 = 0?7 How about the null

hypothesis Hy : B2 = 07
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Now fit a least squares regression to predict y using only x1.
Comment on your results. Can you reject the null hypothesis
fﬂ)IBIZZO?

Now fit a least squares regression to predict y using only x2.
Comment on your results. Can you reject the null hypothesis
JQb Zﬁl =07

Do the results obtained in (¢)—(e) contradict each other? Explain
your answer.

Now suppose we obtain one additional observation, which was
unfortunately mismeasured.
> xl=c(x1, 0.1)

> x2=c(x2, 0.8)
> y=c(y,6)

Re-fit the linear models from (c) to (e) using this new data. What
effect does this new observation have on the each of the models?
In each model, is this observation an outlier? A high-leverage
point? Both? Explain your answers.

15. This problem involves the Boston data set, which we saw in the lab
for this chapter. We will now try to predict per capita crime rate
using the other variables in this data set. In other words, per capita
crime rate is the response, and the other variables are the predictors.

(a)

For each predictor, fit a simple linear regression model to predict
the response. Describe your results. In which of the models is
there a statistically significant association between the predictor
and the response? Create some plots to back up your assertions.

Fit a multiple regression model to predict the response using
all of the predictors. Describe your results. For which predictors
can we reject the null hypothesis Hy : 3; = 07

How do your results from (a) compare to your results from (b)?
Create a plot displaying the univariate regression coefficients
from (a) on the z-axis, and the multiple regression coefficients
from (b) on the y-axis. That is, each predictor is displayed as a
single point in the plot. Its coefficient in a simple linear regres-
sion model is shown on the z-axis, and its coefficient estimate
in the multiple linear regression model is shown on the y-axis.

Is there evidence of non-linear association between any of the
predictors and the response? To answer this question, for each
predictor X, fit a model of the form

Y = Bo+ B X + B2 X+ B X7 + .
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Classification

The linear regression model discussed in Chapter 3 assumes that the re-
sponse variable Y is quantitative. But in many situations, the response
variable is instead qualitative. For example, eye color is qualitative, taking
on values blue, brown, or green. Often qualitative variables are referred
to as categorical; we will use these terms interchangeably. In this chapter,
we study approaches for predicting qualitative responses, a process that
is known as classification. Predicting a qualitative response for an obser-
vation can be referred to as classifying that observation, since it involves
assigning the observation to a category, or class. On the other hand, often
the methods used for classification first predict the probability of each of
the categories of a qualitative variable, as the basis for making the classi-
fication. In this sense they also behave like regression methods.

There are many possible classification techniques, or classifiers, that one
might use to predict a qualitative response. We touched on some of these
in Sections 2.1.5 and 2.2.3. In this chapter we discuss three of the most
widely-used classifiers: logistic regression, linear discriminant analysis, and
K -nearest neighbors. We discuss more computer-intensive methods in later
chapters, such as generalized additive models (Chapter 7), trees, random
forests, and boosting (Chapter 8), and support vector machines (Chap-
ter 9).

G. James et al., An Introduction to Statistical Learning: with Applications in R, 127
Springer Texts in Statistics, DOI 10.1007/978-1-4614-7138-7_4,
© Springer Science+Business Media New York 2013

qualitative

classification
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4.1 An Overview of Classification

Classification problems occur often, perhaps even more so than regression
problems. Some examples include:

1. A person arrives at the emergency room with a set of symptoms
that could possibly be attributed to one of three medical conditions.
Which of the three conditions does the individual have?

2. An online banking service must be able to determine whether or not
a transaction being performed on the site is fraudulent, on the basis
of the user’s IP address, past transaction history, and so forth.

3. On the basis of DNA sequence data for a number of patients with
and without a given disease, a biologist would like to figure out which
DNA mutations are deleterious (disease-causing) and which are not.

Just as in the regression setting, in the classification setting we have a
set of training observations (z1,y1), ..., (Zn,yn) that we can use to build
a classifier. We want our classifier to perform well not only on the training
data, but also on test observations that were not used to train the classifier.

In this chapter, we will illustrate the concept of classification using the
simulated Default data set. We are interested in predicting whether an
individual will default on his or her credit card payment, on the basis of
annual income and monthly credit card balance. The data set is displayed
in Figure 4.1. We have plotted annual income and monthly credit card
balance for a subset of 10,000 individuals. The left-hand panel of Figure 4.1
displays individuals who defaulted in a given month in orange, and those
who did not in blue. (The overall default rate is about 3%, so we have
plotted only a fraction of the individuals who did not default.) It appears
that individuals who defaulted tended to have higher credit card balances
than those who did not. In the right-hand panel of Figure 4.1, two pairs
of boxplots are shown. The first shows the distribution of balance split by
the binary default variable; the second is a similar plot for income. In this
chapter, we learn how to build a model to predict default (Y) for any
given value of balance (X) and income (X3). Since Y is not quantitative,
the simple linear regression model of Chapter 3 is not appropriate.

It is worth noting that Figure 4.1 displays a very pronounced relation-
ship between the predictor balance and the response default. In most real
applications, the relationship between the predictor and the response will
not be nearly so strong. However, for the sake of illustrating the classifica-
tion procedures discussed in this chapter, we use an example in which the
relationship between the predictor and the response is somewhat exagger-
ated.
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FIGURE 4.1. The Default data set. Left: The annual incomes and monthly
credit card balances of a number of individuals. The individuals who defaulted on
their credit card payments are shown in orange, and those who did not are shown
in blue. Center: Boxplots of balance as a function of default status. Right:
Boxplots of income as a function of default status.

4.2 Why Not Linear Regression?

We have stated that linear regression is not appropriate in the case of a
qualitative response. Why not?

Suppose that we are trying to predict the medical condition of a patient
in the emergency room on the basis of her symptoms. In this simplified
example, there are three possible diagnoses: stroke, drug overdose, and
epileptic seizure. We could consider encoding these values as a quantita-
tive response variable, Y, as follows:

1 if stroke;
Y =2 if drug overdose;

3 if epileptic seizure.

Using this coding, least squares could be used to fit a linear regression model
to predict Y on the basis of a set of predictors Xy, ..., X,. Unfortunately,
this coding implies an ordering on the outcomes, putting drug overdose in
between stroke and epileptic seizure, and insisting that the difference
between stroke and drug overdose is the same as the difference between
drug overdose and epileptic seizure. In practice there is no particular
reason that this needs to be the case. For instance, one could choose an
equally reasonable coding,

1 if epileptic seizure;
Y =<2 if stroke;

3 if drug overdose.
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which would imply a totally different relationship among the three condi-
tions. Each of these codings would produce fundamentally different linear
models that would ultimately lead to different sets of predictions on test
observations.

If the response variable’s values did take on a natural ordering, such as
mild, moderate, and severe, and we felt the gap between mild and moderate
was similar to the gap between moderate and severe, then a 1, 2, 3 coding
would be reasonable. Unfortunately, in general there is no natural way to
convert a qualitative response variable with more than two levels into a
quantitative response that is ready for linear regression.

For a binary (two level) qualitative response, the situation is better. For
instance, perhaps there are only two possibilities for the patient’s med-
ical condition: stroke and drug overdose. We could then potentially use
the dummy variable approach from Section 3.3.1 to code the response as
follows:

v {O if stroke;

1 if drug overdose.

We could then fit a linear regression to this binary response, and predict
drug overdose if ¥ > 0.5 and stroke otherwise. In the binary case it is not
hard to show that even if we flip the above coding, linear regression will
produce the same final predictions.

For a binary response with a 0/1 coding as above, regression by least
squares does make sense; it can be shown that the X B obtained using linear
regression is in fact an estimate of Pr(drug overdose|X) in this special
case. However, if we use linear regression, some of our estimates might be
outside the [0, 1] interval (see Figure 4.2), making them hard to interpret
as probabilities! Nevertheless, the predictions provide an ordering and can
be interpreted as crude probability estimates. Curiously, it turns out that
the classifications that we get if we use linear regression to predict a binary
response will be the same as for the linear discriminant analysis (LDA)
procedure we discuss in Section 4.4.

However, the dummy variable approach cannot be easily extended to
accommodate qualitative responses with more than two levels. For these
reasons, it is preferable to use a classification method that is truly suited
for qualitative response values, such as the ones presented next.

4.3 Logistic Regression

Consider again the Default data set, where the response default falls into
one of two categories, Yes or No. Rather than modeling this response Y
directly, logistic regression models the probability that Y belongs to a par-
ticular category.

binary
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FIGURE 4.2. Classification using the Default data. Left: Estimated probabil-
ity of default using linear regression. Some estimated probabilities are negative!
The orange ticks indicate the 0/1 values coded for default(No or Yes). Right:
Predicted probabilities of default wusing logistic regression. All probabilities lie
between 0 and 1.

For the Default data, logistic regression models the probability of default.
For example, the probability of default given balance can be written as

Pr(default = Yes|ba1ance).

The values of Pr(default = YVes|balance), which we abbreviate
p(balance), will range between 0 and 1. Then for any given value of balance,
a prediction can be made for default. For example, one might predict
default = Yes for any individual for whom p(balance) > 0.5. Alterna-
tively, if a company wishes to be conservative in predicting individuals who
are at risk for default, then they may choose to use a lower threshold, such
as p(balance) > 0.1.

4.83.1 The Logistic Model

How should we model the relationship between p(X) = Pr(Y = 1|X) and
X7 (For convenience we are using the generic 0/1 coding for the response).
In Section 4.2 we talked of using a linear regression model to represent
these probabilities:

p(X) = Bo + p1 X. (4.1)

If we use this approach to predict default=Yes using balance, then we
obtain the model shown in the left-hand panel of Figure 4.2. Here we see
the problem with this approach: for balances close to zero we predict a
negative probability of default; if we were to predict for very large balances,
we would get values bigger than 1. These predictions are not sensible, since
of course the true probability of default, regardless of credit card balance,
must fall between 0 and 1. This problem is not unique to the credit default
data. Any time a straight line is fit to a binary response that is coded as
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0 or 1, in principle we can always predict p(X) < 0 for some values of X
and p(X) > 1 for others (unless the range of X is limited).

To avoid this problem, we must model p(X) using a function that gives
outputs between 0 and 1 for all values of X. Many functions meet this
description. In logistic regression, we use the logistic function,

650+51X

P(X) =T rax (4.2)

To fit the model (4.2), we use a method called mazimum likelihood, which
we discuss in the next section. The right-hand panel of Figure 4.2 illustrates
the fit of the logistic regression model to the Default data. Notice that for
low balances we now predict the probability of default as close to, but never
below, zero. Likewise, for high balances we predict a default probability
close to, but never above, one. The logistic function will always produce
an S-shaped curve of this form, and so regardless of the value of X, we
will obtain a sensible prediction. We also see that the logistic model is
better able to capture the range of probabilities than is the linear regression
model in the left-hand plot. The average fitted probability in both cases is
0.0333 (averaged over the training data), which is the same as the overall
proportion of defaulters in the data set.
After a bit of manipulation of (4.2), we find that

p(X) — eﬁo+,31X
e . (4.3)

The quantity p(X)/[1—p(X)] is called the odds, and can take on any value
between 0 and oo. Values of the odds close to 0 and oo indicate very low
and very high probabilities of default, respectively. For example, on average
1 in 5 people with an odds of 1/4 will default, since p(X) = 0.2 implies an

odds of 19—'02_2 = 1/4. Likewise on average nine out of every ten people with
an odds of 9 will default, since p(X) = 0.9 implies an odds of 19’39 =0.

Odds are traditionally used instead of probabilities in horse-racing, since
they relate more naturally to the correct betting strategy.
By taking the logarithm of both sides of (4.3), we arrive at

p(X)
The left-hand side is called the log-odds or logit. We see that the logistic
regression model (4.2) has a logit that is linear in X.

Recall from Chapter 3 that in a linear regression model, (1 gives the
average change in Y associated with a one-unit increase in X . In contrast,
in a logistic regression model, increasing X by one unit changes the log odds
by 31 (4.4), or equivalently it multiplies the odds by e”* (4.3). However,
because the relationship between p(X) and X in (4.2) is not a straight line,

logistic
function

maximum

likelihood

odds

log-odds
logit
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B1 does not correspond to the change in p(X) associated with a one-unit
increase in X . The amount that p(X) changes due to a one-unit change in
X will depend on the current value of X. But regardless of the value of X,
if 51 is positive then increasing X will be associated with increasing p(X),
and if By is negative then increasing X will be associated with decreasing
p(X). The fact that there is not a straight-line relationship between p(X)
and X, and the fact that the rate of change in p(X) per unit change in X
depends on the current value of X, can also be seen by inspection of the
right-hand panel of Figure 4.2.

4.8.2  Estimating the Regression Coefficients

The coefficients 5y and ; in (4.2) are unknown, and must be estimated
based on the available training data. In Chapter 3, we used the least squares
approach to estimate the unknown linear regression coefficients. Although
we could use (non-linear) least squares to fit the model (4.4), the more
general method of maximum likelihood is preferred, since it has better sta-
tistical properties. The basic intuition behind using maximum likelihood
to fit a logistic regression model is as follows: we seek estimates for 5y and
B1 such that the predicted probability p(z;) of default for each individual,
using (4.2), corresponds as closely as possible to the individual’s observed
default status. In other words, we try to find Bo and Bl such that plugging
these estimates into the model for p(X), given in (4.2), yields a number
close to one for all individuals who defaulted, and a number close to zero
for all individuals who did not. This intuition can be formalized using a
mathematical equation called a likelithood function:

(B 1) = [ pl=i) [ —plas)). (4.5)
1y =1 i1y, =0
The estimates Bo and Bl are chosen to maximize this likelihood function.

Maximum likelihood is a very general approach that is used to fit many
of the non-linear models that we examine throughout this book. In the
linear regression setting, the least squares approach is in fact a special case
of maximum likelihood. The mathematical details of maximum likelihood
are beyond the scope of this book. However, in general, logistic regression
and other models can be easily fit using a statistical software package such
as R, and so we do not need to concern ourselves with the details of the
maximum likelihood fitting procedure.

Table 4.1 shows the coefficient estimates and related information that
result from fitting a logistic regression model on the Default data in order
to predict the probability of default=Yes using balance. We see that /3’1 =
0.0055; this indicates that an increase in balance is associated with an
increase in the probability of default. To be precise, a one-unit increase in
balance is associated with an increase in the log odds of default by 0.0055
units.

likelihood

function
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Coefficient Std. error Z-statistic  P-value
Intercept —10.6513 0.3612 —29.5 <0.0001
balance 0.0055 0.0002 24.9 <0.0001

TABLE 4.1. For the Default data, estimated coefficients of the logistic regres-
ston model that predicts the probability of default wusing balance. A one-unit
increase in balance is associated with an increase in the log odds of default by
0.0055 wunits.

Many aspects of the logistic regression output shown in Table 4.1 are
similar to the linear regression output of Chapter 3. For example, we can
measure the accuracy of the coefficient estimates by computing their stan-
dard errors. The z-statistic in Table 4.1 plays the same role as the ¢-statistic
in the linear regression output, for example in Table 3.1 on page 68. For
instance, the z-statistic associated with 3; is equal to S / SE(Bl), and so a
large (absolute) value of the z-statistic indicates evidence against the null

hypothesis Hy : 1 = 0. This null hypothesis implies that p(X) = lj%—
in other words, that the probability of default does not depend on balance.
Since the p-value associated with balance in Table 4.1 is tiny, we can reject
Hy. In other words, we conclude that there is indeed an association between
balance and probability of default. The estimated intercept in Table 4.1
is typically not of interest; its main purpose is to adjust the average fitted

probabilities to the proportion of ones in the data.

4.3.8 Making Predictions

Once the coefficients have been estimated, it is a simple matter to compute
the probability of default for any given credit card balance. For example,
using the coefficient estimates given in Table 4.1, we predict that the default
probability for an individual with a balance of $1,000 is

eBo+B1X o —10.6513+0.0055x1,000

p(X) = 1+ ePotAX 1+ e 10.6513+0.0055x1,000 — 0.00576,

which is below 1 %. In contrast, the predicted probability of default for an
individual with a balance of $2,000 is much higher, and equals 0.586 or
58.6 %.

One can use qualitative predictors with the logistic regression model
using the dummy variable approach from Section 3.3.1. As an example,
the Default data set contains the qualitative variable student. To fit the
model we simply create a dummy variable that takes on a value of 1 for
students and 0 for non-students. The logistic regression model that results
from predicting probability of default from student status can be seen in
Table 4.2. The coefficient associated with the dummy variable is positive,
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Coefficient Std. error Z-statistic = P-value
Intercept —3.5041 0.0707 —49.55 <0.0001
student [Yes] 0.4049 0.1150 3.52 0.0004

TABLE 4.2. For the Default data, estimated coefficients of the logistic regres-
sion model that predicts the probability of default using student status. Student
status is encoded as a dummy variable, with a value of 1 for a student and a value
of 0 for a non-student, and represented by the variable student [Yes] in the table.

and the associated p-value is statistically significant. This indicates that
students tend to have higher default probabilities than non-students:

- o—3.5041+0.4049 x 1
Pr(default=Yes|student=Yes) =

T o ssoaroammx — 00431,

- o—3-5041+0.4049 %0

Pr(default=Yes|student=No) = 14 ¢ 3.501170.4049%0 0.0292.
6_ . .

4.8.4  Multiple Logistic Regression

We now consider the problem of predicting a binary response using multiple
predictors. By analogy with the extension from simple to multiple linear
regression in Chapter 3, we can generalize (4.4) as follows:

p(X)
1 — | = X1+ X 4.6
where X = (X1,...,X,) are p predictors. Equation 4.6 can be rewritten as

ebotB1Xa+-+Bp Xp
p(X) - 1 + eBotBi1Xit-4B8p Xy "

(4.7)

Just as in Section 4.3.2, we use the maximum likelihood method to estimate
ﬁOaﬁl;”-vﬁp-

Table 4.3 shows the coefficient estimates for a logistic regression model
that uses balance, income (in thousands of dollars), and student status to
predict probability of default. There is a surprising result here. The p-
values associated with balance and the dummy variable for student status
are very small, indicating that each of these variables is associated with
the probability of default. However, the coefficient for the dummy variable
is negative, indicating that students are less likely to default than non-
students. In contrast, the coefficient for the dummy variable is positive in
Table 4.2. How is it possible for student status to be associated with an
increase in probability of default in Table 4.2 and a decrease in probability
of default in Table 4.37 The left-hand panel of Figure 4.3 provides a graph-
ical illustration of this apparent paradox. The orange and blue solid lines
show the average default rates for students and non-students, respectively,
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Coefficient Std. error Z-statistic  P-value

Intercept —10.8690 0.4923 —22.08 <0.0001
balance 0.0057 0.0002 24.74 <0.0001
income 0.0030 0.0082 0.37 0.7115
student [Yes] —0.6468 0.2362 —2.74 0.0062

TABLE 4.3. For the Default data, estimated coefficients of the logistic regres-
sion model that predicts the probability of default using balance, income, and
student status. Student status is encoded as a dummy variable student[Yes],
with a value of 1 for a student and a value of O for a non-student. In fitting this
model, income was measured in thousands of dollars.

as a function of credit card balance. The negative coefficient for student in
the multiple logistic regression indicates that for a fized value of balance
and income, a student is less likely to default than a non-student. Indeed,
we observe from the left-hand panel of Figure 4.3 that the student default
rate is at or below that of the non-student default rate for every value of
balance. But the horizontal broken lines near the base of the plot, which
show the default rates for students and non-students averaged over all val-
ues of balance and income, suggest the opposite effect: the overall student
default rate is higher than the non-student default rate. Consequently, there
is a positive coefficient for student in the single variable logistic regression
output shown in Table 4.2.

The right-hand panel of Figure 4.3 provides an explanation for this dis-
crepancy. The variables student and balance are correlated. Students tend
to hold higher levels of debt, which is in turn associated with higher prob-
ability of default. In other words, students are more likely to have large
credit card balances, which, as we know from the left-hand panel of Fig-
ure 4.3, tend to be associated with high default rates. Thus, even though
an individual student with a given credit card balance will tend to have a
lower probability of default than a non-student with the same credit card
balance, the fact that students on the whole tend to have higher credit card
balances means that overall, students tend to default at a higher rate than
non-students. This is an important distinction for a credit card company
that is trying to determine to whom they should offer credit. A student is
riskier than a non-student if no information about the student’s credit card
balance is available. However, that student is less risky than a non-student
with the same credit card balance!

This simple example illustrates the dangers and subtleties associated
with performing regressions involving only a single predictor when other
predictors may also be relevant. As in the linear regression setting, the
results obtained using one predictor may be quite different from those ob-
tained using multiple predictors, especially when there is correlation among
the predictors. In general, the phenomenon seen in Figure 4.3 is known as
confounding.

confounding
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FIGURE 4.3. Confounding in the Default data. Left: Default rates are shown
for students (orange) and non-students (blue). The solid lines display default rate
as a function of balance, while the horizontal broken lines display the overall
default rates. Right: Boxplots of balance for students (orange) and non-students
(blue) are shown.

By substituting estimates for the regression coefficients from Table 4.3
into (4.7), we can make predictions. For example, a student with a credit
card balance of $1,500 and an income of $40,000 has an estimated proba-
bility of default of

6—10.869+0.00574>< 1,500+0.003x40—0.6468x 1
=0.058.  (4.8)

p(X) - 1+ ¢—10.869+40.00574x1,500+0.003x40—0.6468 x1

A non-student with the same balance and income has an estimated prob-
ability of default of

6710.869+0.OO574>< 1,500+0.003x40—0.6468 <0
=0.105.  (4.9)

p(X) - 1+ ¢—10.869+0.00574x1,50040.003x40—0.6468 x0

(Here we multiply the income coefficient estimate from Table 4.3 by 40,
rather than by 40,000, because in that table the model was fit with income
measured in units of $1,000.)

4.3.5  Logistic Regression for >2 Response Classes

We sometimes wish to classify a response variable that has more than two
classes. For example, in Section 4.2 we had three categories of medical con-
dition in the emergency room: stroke, drug overdose, epileptic seizure.
In this setting, we wish to model both Pr(Y = stroke|X) and Pr(Y =
drug overdose|X), with the remaining Pr(Y = epileptic seizure|X) =
1 — Pr(Y = stroke|X) — Pr(Y = drug overdose|X). The two-class logis-
tic regression models discussed in the previous sections have multiple-class
extensions, but in practice they tend not to be used all that often. One of
the reasons is that the method we discuss in the next section, discriminant
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analysis, is popular for multiple-class classification. So we do not go into
the details of multiple-class logistic regression here, but simply note that
such an approach is possible, and that software for it is available in R.

4.4 Linear Discriminant Analysis

Logistic regression involves directly modeling Pr(Y = k|X = z) using the
logistic function, given by (4.7) for the case of two response classes. In
statistical jargon, we model the conditional distribution of the response Y,
given the predictor(s) X. We now consider an alternative and less direct
approach to estimating these probabilities. In this alternative approach,
we model the distribution of the predictors X separately in each of the
response classes (i.e. given Y'), and then use Bayes’ theorem to flip these
around into estimates for Pr(Y = k|X = z). When these distributions are
assumed to be normal, it turns out that the model is very similar in form
to logistic regression.

Why do we need another method, when we have logistic regression?
There are several reasons:

e When the classes are well-separated, the parameter estimates for the
logistic regression model are surprisingly unstable. Linear discrimi-
nant analysis does not suffer from this problem.

e If n is small and the distribution of the predictors X is approximately
normal in each of the classes, the linear discriminant model is again
more stable than the logistic regression model.

e As mentioned in Section 4.3.5, linear discriminant analysis is popular
when we have more than two response classes.

4.4.1 Using Bayes” Theorem for Classification

Suppose that we wish to classify an observation into one of K classes, where
K > 2. In other words, the qualitative response variable Y can take on K
possible distinct and unordered values. Let 7 represent the overall or prior
probability that a randomly chosen observation comes from the kth class;
this is the probability that a given observation is associated with the kth
category of the response variable Y. Let fi(x) = Pr(X = z|Y = k)! denote
the density function of X for an observation that comes from the kth class.
In other words, fi(x) is relatively large if there is a high probability that
an observation in the kth class has X ~ x, and fi(x) is small if it is very

ITechnically this definition is only correct if X is a discrete random variable. If X
is continuous then fk (I)daj would correspond to the probability of X falling in in a small
region dx around z.

prior

density
function
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unlikely that an observation in the kth class has X ~ x. Then Bayes’
theorem states that

T fr ()
Zl L mufi(z )

In accordance with our earlier notation, we will use the abbreviation py(X)
= Pr(Y = k|X). This suggests that instead of directly computing py(X)
as in Section 4.3.1, we can simply plug in estimates of 7, and f;(X) into
(4.10). In general, estimating mj is easy if we have a random sample of
Y's from the population: we simply compute the fraction of the training
observations that belong to the kth class. However, estimating fj(X) tends
to be more challenging, unless we assume some simple forms for these
densities. We refer to pi(x) as the posterior probability that an observation
X = x belongs to the kth class. That is, it is the probability that the
observation belongs to the kth class, given the predictor value for that
observation.

We know from Chapter 2 that the Bayes classifier, which classifies an
observation to the class for which py(X) is largest, has the lowest possible
error rate out of all classifiers. (This is of course only true if the terms
in (4.10) are all correctly specified.) Therefore, if we can find a way to
estimate fr(X), then we can develop a classifier that approximates the
Bayes classifier. Such an approach is the topic of the following sections.

Pr(Y = k|X =) = (4.10)

4.4.2  Linear Discriminant Analysis for p =1

For now, assume that p = 1—that is, we have only one predictor. We
would like to obtain an estimate for fi(z) that we can plug into (4.10) in
order to estimate py(z). We will then classify an observation to the class
for which pg(x) is greatest. In order to estimate fi(x), we will first make
some assumptions about its form.

Suppose we assume that fi(z) is normal or Gaussian. In the one-
dimensional setting, the normal density takes the form

1 1 ,
folo) = e (‘ﬂ@‘“’” ) (4.11)

where pj, and o are the mean and variance parameters for the kth class.
For now, let us further assume that 02 = ... = 0% that is, there is a shared
variance term across all K classes, which for simplicity we can denote by
o?. Plugging (4.11) into (4.10), we find that

T 7oy XD (— 55z (@ — p)?)
il 17Tl\ﬁ exp (—g55z(z — u)? )

pr(z) = (4.12)

(Note that in (4.12), 7, denotes the prior probability that an observation
belongs to the kth class, not to be confused with m ~ 3.14159, the math-
ematical constant.) The Bayes classifier involves assigning an observation

Bayes’
theorem

posterior

normal
Gaussian
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4

FIGURE 4.4. Left: Two one-dimensional normal density functions are shown.
The dashed vertical line represents the Bayes decision boundary. Right: 20 obser-
vations were drawn from each of the two classes, and are shown as histograms.
The Bayes decision boundary is again shown as a dashed vertical line. The solid
vertical line represents the LDA decision boundary estimated from the training
data.

X = z to the class for which (4.12) is largest. Taking the log of (4.12)
and rearranging the terms, it is not hard to show that this is equivalent to
assigning the observation to the class for which

fe PR
is largest. For instance, if K = 2 and m = mo, then the Bayes classifier
assigns an observation to class 1 if 2x (u1 — p2) > pf — p3, and to class
2 otherwise. In this case, the Bayes decision boundary corresponds to the
point where

2(p1 — p2) 2

An example is shown in the left-hand panel of Figure 4.4. The two normal
density functions that are displayed, fi(x) and fa(x), represent two distinct
classes. The mean and variance parameters for the two density functions
are 1 = —1.25, o = 1.25, and 0? = 03 = 1. The two densities overlap,
and so given that X = x, there is some uncertainty about the class to which
the observation belongs. If we assume that an observation is equally likely
to come from either class—that is, m; = mo = 0.5—then by inspection of
(4.14), we see that the Bayes classifier assigns the observation to class 1
if z < 0 and class 2 otherwise. Note that in this case, we can compute
the Bayes classifier because we know that X is drawn from a Gaussian
distribution within each class, and we know all of the parameters involved.
In a real-life situation, we are not able to calculate the Bayes classifier.

In practice, even if we are quite certain of our assumption that X is drawn
from a Gaussian distribution within each class, we still have to estimate
the parameters ji1,..., g, T1,...,7k, and 2. The linear discriminant
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analysis (LDA) method approximates the Bayes classifier by plugging esti-
mates for 7y, ug, and o2 into (4.13). In particular, the following estimates
are used:

5r = n_lKZ Z (2 — fu)? (4.15)

where n is the total number of training observations, and ng is the number
of training observations in the kth class. The estimate for uy is simply the
average of all the training observations from the kth class, while 62 can
be seen as a weighted average of the sample variances for each of the K
classes. Sometimes we have knowledge of the class membership probabili-
ties 71, ..., Tk, which can be used directly. In the absence of any additional
information, LDA estimates m; using the proportion of the training obser-
vations that belong to the kth class. In other words,

frk = nk/n (4.16)

The LDA classifier plugs the estimates given in (4.15) and (4.16) into (4.13),
and assigns an observation X = x to the class for which

. e
op(x) =z - 53 " 933 + log(7x) (4.17)

is largest. The word linear in the classifier’s name stems from the fact
that the discriminant functions dx(z) in (4.17) are linear functions of = (as
opposed to a more complex function of x).

The right-hand panel of Figure 4.4 displays a histogram of a random
sample of 20 observations from each class. To implement LDA, we began
by estimating 7y, px, and o2 using (4.15) and (4.16). We then computed the
decision boundary, shown as a black solid line, that results from assigning
an observation to the class for which (4.17) is largest. All points to the left
of this line will be assigned to the green class, while points to the right of
this line are assigned to the purple class. In this case, since n; = ny = 20,
we have 1 = 7. As a result, the decision boundary corresponds to the
midpoint between the sample means for the two classes, (11 + fi2)/2. The
figure indicates that the LDA decision boundary is slightly to the left of
the optimal Bayes decision boundary, which instead equals (u1 + p2)/2 =
0. How well does the LDA classifier perform on this data? Since this is
simulated data, we can generate a large number of test observations in order
to compute the Bayes error rate and the LDA test error rate. These are
10.6 % and 11.1 %, respectively. In other words, the LDA classifier’s error
rate is only 0.5 % above the smallest possible error rate! This indicates that
LDA is performing pretty well on this data set.

linear
discriminant
analysis

discriminant
function
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FIGURE 4.5. Two multivariate Gaussian density functions are shown, with
p = 2. Left: The two predictors are uncorrelated. Right: The two variables have
a correlation of 0.7.

To reiterate, the LDA classifier results from assuming that the observa-
tions within each class come from a normal distribution with a class-specific
mean vector and a common variance o2, and plugging estimates for these
parameters into the Bayes classifier. In Section 4.4.4, we will consider a less
stringent set of assumptions, by allowing the observations in the kth class
to have a class-specific variance, U,%.

4.4.83  Linear Discriminant Analysis for p >1

We now extend the LDA classifier to the case of multiple predictors. To
do this, we will assume that X = (X1, Xo,...,X,) is drawn from a multi-
variate Gaussian (or multivariate normal) distribution, with a class-specific
mean vector and a common covariance matrix. We begin with a brief review
of such a distribution.

The multivariate Gaussian distribution assumes that each individual pre-
dictor follows a one-dimensional normal distribution, as in (4.11), with some
correlation between each pair of predictors. Two examples of multivariate
Gaussian distributions with p = 2 are shown in Figure 4.5. The height of
the surface at any particular point represents the probability that both X,
and X, fall in a small region around that point. In either panel, if the sur-
face is cut along the X axis or along the X5 axis, the resulting cross-section
will have the shape of a one-dimensional normal distribution. The left-hand
panel of Figure 4.5 illustrates an example in which Var(X;) = Var(X3) and
Cor(X1, X2) = 0; this surface has a characteristic bell shape. However, the
bell shape will be distorted if the predictors are correlated or have unequal
variances, as is illustrated in the right-hand panel of Figure 4.5. In this
situation, the base of the bell will have an elliptical, rather than circular,

multivariate
Gaussian
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X1 Xl

FIGURE 4.6. An example with three classes. The observations from each class
are drawn from a multivariate Gaussian distribution with p = 2, with a class-spe-
cific mean vector and a common covariance matriz. Left: Ellipses that contain
95 % of the probability for each of the three classes are shown. The dashed lines
are the Bayes decision boundaries. Right: 20 observations were generated from
each class, and the corresponding LDA decision boundaries are indicated using
solid black lines. The Bayes decision boundaries are once again shown as dashed
lines.

shape. To indicate that a p-dimensional random variable X has a multi-
variate Gaussian distribution, we write X ~ N(u,X). Here E(X) = p is
the mean of X (a vector with p components), and Cov(X) = X is the
p X p covariance matrix of X. Formally, the multivariate Gaussian density
is defined as

f(x) = W exp (—%(w - u)TZ_l(m — u)) . (4.18)

In the case of p > 1 predictors, the LDA classifier assumes that the
observations in the kth class are drawn from a multivariate Gaussian dis-
tribution N (ug, X), where py is a class-specific mean vector, and ¥ is a
covariance matrix that is common to all K classes. Plugging the density
function for the kth class, fr(X = z), into (4.10) and performing a little
bit of algebra reveals that the Bayes classifier assigns an observation X = x
to the class for which

1
—uF =7y + log my, (4.19)

Sp(x) = 272ty — 5

is largest. This is the vector/matrix version of (4.13).

An example is shown in the left-hand panel of Figure 4.6. Three equally-
sized Gaussian classes are shown with class-specific mean vectors and a
common covariance matrix. The three ellipses represent regions that con-
tain 95 % of the probability for each of the three classes. The dashed lines
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are the Bayes decision boundaries. In other words, they represent the set
of values z for which 0y (x) = d¢(2); i.e.

_ 1 _ _ 1 _
TR e = g 2 e =22 = o 2 (4.20)

for k # 1. (The logm, term from (4.19) has disappeared because each of
the three classes has the same number of training observations; i.e. my is
the same for each class.) Note that there are three lines representing the
Bayes decision boundaries because there are three pairs of classes among
the three classes. That is, one Bayes decision boundary separates class 1
from class 2, one separates class 1 from class 3, and one separates class 2
from class 3. These three Bayes decision boundaries divide the predictor
space into three regions. The Bayes classifier will classify an observation
according to the region in which it is located.

Once again, we need to estimate the unknown parameters uq,..., ux,
m,...,Tr, and X; the formulas are similar to those used in the one-
dimensional case, given in (4.15). To assign a new observation X = z,
LDA plugs these estimates into (4.19) and classifies to the class for which
o () is largest. Note that in (4.19) 0x(z) is a linear function of z; that is,
the LDA decision rule depends on x only through a linear combination of
its elements. Once again, this is the reason for the word linear in LDA.

In the right-hand panel of Figure 4.6, 20 observations drawn from each of
the three classes are displayed, and the resulting LDA decision boundaries
are shown as solid black lines. Overall, the LDA decision boundaries are
pretty close to the Bayes decision boundaries, shown again as dashed lines.
The test error rates for the Bayes and LDA classifiers are 0.0746 and 0.0770,
respectively. This indicates that LDA is performing well on this data.

We can perform LDA on the Default data in order to predict whether
or not an individual will default on the basis of credit card balance and
student status. The LDA model fit to the 10,000 training samples results
in a training error rate of 2.75 %. This sounds like a low error rate, but two
caveats must be noted.

e First of all, training error rates will usually be lower than test error
rates, which are the real quantity of interest. In other words, we
might expect this classifier to perform worse if we use it to predict
whether or not a new set of individuals will default. The reason is
that we specifically adjust the parameters of our model to do well on
the training data. The higher the ratio of parameters p to number
of samples n, the more we expect this overfitting to play a role. For
these data we don’t expect this to be a problem, since p = 2 and
n = 10, 000.

e Second, since only 3.33% of the individuals in the training sample
defaulted, a simple but useless classifier that always predicts that

overfitting
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True default status
No Yes | Total
Predicted No | 9,644 252 | 9,896

default status  Yes 23 81 104
Total | 9,667 333 | 10,000

TABLE 4.4. A confusion matriz compares the LDA predictions to the true de-
fault statuses for the 10,000 training observations in the Default data set. Ele-
ments on the diagonal of the matrixz represent individuals whose default statuses
were correctly predicted, while off-diagonal elements represent individuals that

were misclassified. LDA made incorrect predictions for 23 individuals who did
not default and for 252 individuals who did default.

each individual will not default, regardless of his or her credit card
balance and student status, will result in an error rate of 3.33 %. In
other words, the trivial null classifier will achieve an error rate that
is only a bit higher than the LDA training set error rate.

In practice, a binary classifier such as this one can make two types of
errors: it can incorrectly assign an individual who defaults to the no default
category, or it can incorrectly assign an individual who does not default to
the default category. It is often of interest to determine which of these two
types of errors are being made. A confusion matriz, shown for the Default
data in Table 4.4, is a convenient way to display this information. The
table reveals that LDA predicted that a total of 104 people would default.
Of these people, 81 actually defaulted and 23 did not. Hence only 23 out
of 9,667 of the individuals who did not default were incorrectly labeled.
This looks like a pretty low error rate! However, of the 333 individuals who
defaulted, 252 (or 75.7 %) were missed by LDA. So while the overall error
rate is low, the error rate among individuals who defaulted is very high.
From the perspective of a credit card company that is trying to identify
high-risk individuals, an error rate of 252/333 = 75.7 % among individuals
who default may well be unacceptable.

Class-specific performance is also important in medicine and biology,
where the terms sensitivity and specificity characterize the performance of
a classifier or screening test. In this case the sensitivity is the percentage of
true defaulters that are identified, a low 24.3 % in this case. The specificity
is the percentage of non-defaulters that are correctly identified, here (1 —
23/9,667) x 100 = 99.8 %.

Why does LDA do such a poor job of classifying the customers who de-
fault? In other words, why does it have such a low sensitivity? As we have
seen, LDA is trying to approximate the Bayes classifier, which has the low-
est total error rate out of all classifiers (if the Gaussian model is correct).
That is, the Bayes classifier will yield the smallest possible total number
of misclassified observations, irrespective of which class the errors come
from. That is, some misclassifications will result from incorrectly assigning

null

confusion
matrix

sensitivity

specificity
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True default status
No Yes | Total
Predicted No | 9,432 138 | 9,570

default status  Yes 235 195 430
Total | 9,667 333 | 10,000

TABLE 4.5. A confusion matriz compares the LDA predictions to the true de-
fault statuses for the 10,000 training observations in the Default data set, using
a modified threshold value that predicts default for any individuals whose posterior
default probability exceeds 20 %.

a customer who does not default to the default class, and others will re-
sult from incorrectly assigning a customer who defaults to the non-default
class. In contrast, a credit card company might particularly wish to avoid
incorrectly classifying an individual who will default, whereas incorrectly
classifying an individual who will not default, though still to be avoided,
is less problematic. We will now see that it is possible to modify LDA in
order to develop a classifier that better meets the credit card company’s
needs.

The Bayes classifier works by assigning an observation to the class for
which the posterior probability pi(X) is greatest. In the two-class case, this
amounts to assigning an observation to the default class if

Pr(default = Yes|X = z) > 0.5. (4.21)

Thus, the Bayes classifier, and by extension LDA, uses a threshold of 50 %
for the posterior probability of default in order to assign an observation
to the default class. However, if we are concerned about incorrectly pre-
dicting the default status for individuals who default, then we can consider
lowering this threshold. For instance, we might label any customer with a
posterior probability of default above 20% to the default class. In other
words, instead of assigning an observation to the default class if (4.21)
holds, we could instead assign an observation to this class if

Pr(default = Yes|X = z) > 0.2. (4.22)

The error rates that result from taking this approach are shown in Table 4.5.
Now LDA predicts that 430 individuals will default. Of the 333 individuals
who default, LDA correctly predicts all but 138, or 41.4 %. This is a vast
improvement over the error rate of 75.7% that resulted from using the
threshold of 50 %. However, this improvement comes at a cost: now 235
individuals who do not default are incorrectly classified. As a result, the
overall error rate has increased slightly to 3.73 %. But a credit card company
may consider this slight increase in the total error rate to be a small price to
pay for more accurate identification of individuals who do indeed default.

Figure 4.7 illustrates the trade-off that results from modifying the thresh-
old value for the posterior probability of default. Various error rates are
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FIGURE 4.7. For the Default data set, error rates are shown as a function of
the threshold value for the posterior probability that is used to perform the assign-
ment. The black solid line displays the overall error rate. The blue dashed line
represents the fraction of defaulting customers that are incorrectly classified, and
the orange dotted line indicates the fraction of errors among the non-defaulting
customers.

shown as a function of the threshold value. Using a threshold of 0.5, as in
(4.21), minimizes the overall error rate, shown as a black solid line. This
is to be expected, since the Bayes classifier uses a threshold of 0.5 and is
known to have the lowest overall error rate. But when a threshold of 0.5 is
used, the error rate among the individuals who default is quite high (blue
dashed line). As the threshold is reduced, the error rate among individuals
who default decreases steadily, but the error rate among the individuals
who do not default increases. How can we decide which threshold value is
best? Such a decision must be based on domain knowledge, such as detailed
information about the costs associated with default.

The ROC curve is a popular graphic for simultaneously displaying the
two types of errors for all possible thresholds. The name “ROC” is his-
toric, and comes from communications theory. It is an acronym for receiver
operating characteristics. Figure 4.8 displays the ROC curve for the LDA
classifier on the training data. The overall performance of a classifier, sum-
marized over all possible thresholds, is given by the area under the (ROC)
curve (AUC). An ideal ROC curve will hug the top left corner, so the larger
the AUC the better the classifier. For this data the AUC is 0.95, which is
close to the maximum of one so would be considered very good. We expect
a classifier that performs no better than chance to have an AUC of 0.5
(when evaluated on an independent test set not used in model training).
ROC curves are useful for comparing different classifiers, since they take
into account all possible thresholds. It turns out that the ROC curve for the
logistic regression model of Section 4.3.4 fit to these data is virtually indis-
tinguishable from this one for the LDA model, so we do not display it here.

As we have seen above, varying the classifier threshold changes its true
positive and false positive rate. These are also called the sensitivity and one

ROC curve

area under
the (ROC)

curve

sensitivity



148 4. Classification
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FIGURE 4.8. A ROC curve for the LDA classifier on the Default data. It
traces out two types of error as we wvary the threshold value for the posterior
probability of default. The actual thresholds are not shown. The true positive rate
is the sensitivity: the fraction of defaulters that are correctly identified, using
a given threshold value. The false positive rate is 1-specificity: the fraction of
non-defaulters that we classify incorrectly as defaulters, using that same threshold
value. The ideal ROC curve hugs the top left corner, indicating a high true positive
rate and a low false positive rate. The dotted line represents the “no information”
classifier; this is what we would expect if student status and credit card balance
are not associated with probability of default.

Predicted class
— or Null + or Non-null | Total
True — or Null True Neg. (TN) | False Pos. (FP) N
class 4 or Non-null | False Neg. (FN) | True Pos. (TP) P
Total N* p*

TABLE 4.6. Possible results when applying a classifier or diagnostic test to a
population.

minus the specificity of our classifier. Since there is an almost bewildering
array of terms used in this context, we now give a summary. Table 4.6
shows the possible results when applying a classifier (or diagnostic test)
to a population. To make the connection with the epidemiology literature,
we think of “+” as the “disease” that we are trying to detect, and “—" as
the “non-disease” state. To make the connection to the classical hypothesis
testing literature, we think of “—” as the null hypothesis and “+” as the
alternative (non-null) hypothesis. In the context of the Default data, “+”

indicates an individual who defaults, and “—” indicates one who does not.

specificity
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Name Definition Synonyms

False Pos. rate FP/N | Type I error, 1—Specificity

True Pos. rate TP/P | 1-Type II error, power, sensitivity, recall
Pos. Pred. value TP/P* | Precision, 1—false discovery proportion
Neg. Pred. value TN/N*

TABLE 4.7. Important measures for classification and diagnostic testing,
derived from quantities in Table 4.6.

Table 4.7 lists many of the popular performance measures that are used in
this context. The denominators for the false positive and true positive rates
are the actual population counts in each class. In contrast, the denominators
for the positive predictive value and the negative predictive value are the
total predicted counts for each class.

4.4.4  Quadratic Discriminant Analysis

As we have discussed, LDA assumes that the observations within each
class are drawn from a multivariate Gaussian distribution with a class-
specific mean vector and a covariance matrix that is common to all K
classes. Quadratic discriminant analysis (QDA) provides an alternative
approach. Like LDA, the QDA classifier results from assuming that the
observations from each class are drawn from a Gaussian distribution, and
plugging estimates for the parameters into Bayes’ theorem in order to per-
form prediction. However, unlike LDA, QDA assumes that each class has
its own covariance matrix. That is, it assumes that an observation from the
kth class is of the form X ~ N(uy,Xj), where Xy is a covariance matrix
for the kth class. Under this assumption, the Bayes classifier assigns an
observation X = x to the class for which

1 _ 1
o(z) = —5(33 — ) T2 () — 5108 Xk | + log T
1 _ _ 1 _ 1
= —§:UT2k Ly 4+ xTZk lluk - §u22k luk ~3 log | Xk | + log 7k

(4.23)

is largest. So the QDA classifier involves plugging estimates for X, g,
and 7, into (4.23), and then assigning an observation X = x to the class
for which this quantity is largest. Unlike in (4.19), the quantity = appears
as a quadratic function in (4.23). This is where QDA gets its name.

Why does it matter whether or not we assume that the K classes share a
common covariance matrix? In other words, why would one prefer LDA to
QDA, or vice-versa? The answer lies in the bias-variance trade-off. When
there are p predictors, then estimating a covariance matrix requires esti-
mating p(p+1)/2 parameters. QDA estimates a separate covariance matrix
for each class, for a total of Kp(p+1)/2 parameters. With 50 predictors this

quadratic
discriminant
analysis
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FIGURE 4.9. Left: The Bayes (purple dashed), LDA (black dotted), and QDA
(green solid) decision boundaries for a two-class problem with 31 = Xa. The
shading indicates the QDA decision rule. Since the Bayes decision boundary is
linear, it is more accurately approximated by LDA than by QDA. Right: Details
are as given in the left-hand panel, except that 31 # Xo. Since the Bayes decision
boundary is non-linear, it is more accurately approximated by QDA than by LDA.

is some multiple of 1,275, which is a lot of parameters. By instead assum-
ing that the K classes share a common covariance matrix, the LDA model
becomes linear in x, which means there are Kp linear coefficients to esti-
mate. Consequently, LDA is a much less flexible classifier than QDA, and
so has substantially lower variance. This can potentially lead to improved
prediction performance. But there is a trade-off: if LDA’s assumption that
the K classes share a common covariance matrix is badly off, then LDA
can suffer from high bias. Roughly speaking, LDA tends to be a better bet
than QDA if there are relatively few training observations and so reducing
variance is crucial. In contrast, QDA is recommended if the training set is
very large, so that the variance of the classifier is not a major concern, or if
the assumption of a common covariance matrix for the K classes is clearly
untenable.

Figure 4.9 illustrates the performances of LDA and QDA in two scenarios.
In the left-hand panel, the two Gaussian classes have a common correla-
tion of 0.7 between X; and Xs. As a result, the Bayes decision boundary
is linear and is accurately approximated by the LDA decision boundary.
The QDA decision boundary is inferior, because it suffers from higher vari-
ance without a corresponding decrease in bias. In contrast, the right-hand
panel displays a situation in which the orange class has a correlation of 0.7
between the variables and the blue class has a correlation of —0.7. Now
the Bayes decision boundary is quadratic, and so QDA more accurately
approximates this boundary than does LDA.
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4.5 A Comparison of Classification Methods

In this chapter, we have considered three different classification approaches:
logistic regression, LDA, and QDA. In Chapter 2, we also discussed the
K-nearest neighbors (KNN) method. We now consider the types of
scenarios in which one approach might dominate the others.

Though their motivations differ, the logistic regression and LDA methods
are closely connected. Consider the two-class setting with p = 1 predictor,
and let p;(z) and p2(x) = 1—p1(z) be the probabilities that the observation
X = x belongs to class 1 and class 2, respectively. In the LDA framework,
we can see from (4.12) to (4.13) (and a bit of simple algebra) that the log
odds is given by

log (M> = log (pl(x)> = co + 17, (4.24)

1—pi(x) p2()

where ¢ and ¢; are functions of yy, 2, and 2. From (4.4), we know that
in logistic regression,

log ( P1 > = Bo + f1z. (425)
D1

Both (4.24) and (4.25) are linear functions of z. Hence, both logistic re-
gression and LDA produce linear decision boundaries. The only difference
between the two approaches lies in the fact that 8y and 1 are estimated
using maximum likelihood, whereas ¢y and ¢; are computed using the esti-
mated mean and variance from a normal distribution. This same connection
between LDA and logistic regression also holds for multidimensional data
with p > 1.

Since logistic regression and LDA differ only in their fitting procedures,
one might expect the two approaches to give similar results. This is often,
but not always, the case. LDA assumes that the observations are drawn
from a Gaussian distribution with a common covariance matrix in each
class, and so can provide some improvements over logistic regression when
this assumption approximately holds. Conversely, logistic regression can
outperform LDA if these Gaussian assumptions are not met.

Recall from Chapter 2 that KNN takes a completely different approach
from the classifiers seen in this chapter. In order to make a prediction for
an observation X = z, the K training observations that are closest to z are
identified. Then X is assigned to the class to which the plurality of these
observations belong. Hence KNN is a completely non-parametric approach:
no assumptions are made about the shape of the decision boundary. There-
fore, we can expect this approach to dominate LDA and logistic regression
when the decision boundary is highly non-linear. On the other hand, KNN
does not tell us which predictors are important; we don’t get a table of
coefficients as in Table 4.3.



152 4. Classification

SCENARIO 1 SCENARIO 2 SCENARIO 3

0.45
s

0.40
s
0.30
s
0.40
s

0.25
s
0.35
s

035
)
-.-.-.-1”...

.
- N
. H
. .

8

.
1
0.30
s

o B . : .
3 ' N ' &4 ' ' '
: L 4 g . .
! - - . .
re) ' 1
' i © | ) [l
— h S _n_
— = —
KNN-1 KNN-CV  LDA Logistic QDA KNN71 KNNfCV LDA Logist\c QDA KNN-1 KNN-CV  LDA Logistic QDA

FIGURE 4.10. Bozxplots of the test error rates for each of the linear scenarios
described in the main text.
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FIGURE 4.11. Bozplots of the test error rates for each of the non-linear sce-
narios described in the main text.

Finally, QDA serves as a compromise between the non-parametric KNN
method and the linear LDA and logistic regression approaches. Since QDA
assumes a quadratic decision boundary, it can accurately model a wider
range of problems than can the linear methods. Though not as flexible
as KNN, QDA can perform better in the presence of a limited number of
training observations because it does make some assumptions about the
form of the decision boundary.

To illustrate the performances of these four classification approaches,
we generated data from six different scenarios. In three of the scenarios,
the Bayes decision boundary is linear, and in the remaining scenarios it
is non-linear. For each scenario, we produced 100 random training data
sets. On each of these training sets, we fit each method to the data and
computed the resulting test error rate on a large test set. Results for the
linear scenarios are shown in Figure 4.10, and the results for the non-linear
scenarios are in Figure 4.11. The KNN method requires selection of K, the
number of neighbors. We performed KNN with two values of K: K = 1,
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and a value of K that was chosen automatically using an approach called
cross-validation, which we discuss further in Chapter 5.

In each of the six scenarios, there were p = 2 predictors. The scenarios
were as follows:

Scenario 1: There were 20 training observations in each of two classes.
The observations within each class were uncorrelated random normal
variables with a different mean in each class. The left-hand panel
of Figure 4.10 shows that LDA performed well in this setting, as
one would expect since this is the model assumed by LDA. KNN
performed poorly because it paid a price in terms of variance that
was not offset by a reduction in bias. QDA also performed worse
than LDA, since it fit a more flexible classifier than necessary. Since
logistic regression assumes a linear decision boundary, its results were
only slightly inferior to those of LDA.

Scenario 2: Details are as in Scenario 1, except that within each
class, the two predictors had a correlation of —0.5. The center panel
of Figure 4.10 indicates little change in the relative performances of
the methods as compared to the previous scenario.

Scenario 3: We generated X; and X5 from the t-distribution, with .
50 observations per class. The t-distribution has a similar shape to distribution
the normal distribution, but it has a tendency to yield more extreme
points—that is, more points that are far from the mean. In this set-
ting, the decision boundary was still linear, and so fit into the logistic
regression framework. The set-up violated the assumptions of LDA,
since the observations were not drawn from a normal distribution.
The right-hand panel of Figure 4.10 shows that logistic regression
outperformed LDA, though both methods were superior to the other
approaches. In particular, the QDA results deteriorated considerably
as a consequence of non-normality.

Scenario 4: The data were generated from a normal distribution,
with a correlation of 0.5 between the predictors in the first class,
and correlation of —0.5 between the predictors in the second class.
This setup corresponded to the QDA assumption, and resulted in
quadratic decision boundaries. The left-hand panel of Figure 4.11
shows that QDA outperformed all of the other approaches.

Scenario 5: Within each class, the observations were generated from
a normal distribution with uncorrelated predictors. However, the re-
sponses were sampled from the logistic function using X%, X2, and
X1 x X5 as predictors. Consequently, there is a quadratic decision
boundary. The center panel of Figure 4.11 indicates that QDA once
again performed best, followed closely by KNN-CV. The linear meth-
ods had poor performance.
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Scenario 6: Details are as in the previous scenario, but the responses
were sampled from a more complicated non-linear function. As a re-
sult, even the quadratic decision boundaries of QDA could not ade-
quately model the data. The right-hand panel of Figure 4.11 shows
that QDA gave slightly better results than the linear methods, while
the much more flexible KNN-CV method gave the best results. But
KNN with K = 1 gave the worst results out of all methods. This
highlights the fact that even when the data exhibits a complex non-
linear relationship, a non-parametric method such as KNN can still
give poor results if the level of smoothness is not chosen correctly.

These six examples illustrate that no one method will dominate the oth-
ers in every situation. When the true decision boundaries are linear, then
the LDA and logistic regression approaches will tend to perform well. When
the boundaries are moderately non-linear, QDA may give better results.
Finally, for much more complicated decision boundaries, a non-parametric
approach such as KNN can be superior. But the level of smoothness for a
non-parametric approach must be chosen carefully. In the next chapter we
examine a number of approaches for choosing the correct level of smooth-
ness and, in general, for selecting the best overall method.

Finally, recall from Chapter 3 that in the regression setting we can accom-
modate a non-linear relationship between the predictors and the response
by performing regression using transformations of the predictors. A similar
approach could be taken in the classification setting. For instance, we could
create a more flexible version of logistic regression by including X?2, X3,
and even X* as predictors. This may or may not improve logistic regres-
sion’s performance, depending on whether the increase in variance due to
the added flexibility is offset by a sufficiently large reduction in bias. We
could do the same for LDA. If we added all possible quadratic terms and
cross-products to LDA, the form of the model would be the same as the
QDA model, although the parameter estimates would be different. This
device allows us to move somewhere between an LDA and a QDA model.

4.6 Lab: Logistic Regression, LDA, QDA, and
KNN

4.6.1 The Stock Market Data

We will begin by examining some numerical and graphical summaries of
the Smarket data, which is part of the ISLR library. This data set consists of
percentage returns for the S&P 500 stock index over 1,250 days, from the
beginning of 2001 until the end of 2005. For each date, we have recorded
the percentage returns for each of the five previous trading days, Lagil
through Lag5. We have also recorded Volume (the number of shares traded
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on the previous day, in billions), Today (the percentage return on the date
in question) and Direction (whether the market was Up or Down on this
date).

> library (ISLR)
> names (Smarket)

[1] "Year" "Lagl" "Lag2" "Lag3" "Lag4d"
[6] "Lagb™" "Volume" "Today" "Direction"
> dim(Smarket)
[1] 1250 9
> summary (Smarket )
Year Lagl Lag2
Min. 12001 Min. :-4.92200 Min. :-4.92200

1st Qu.:2002 1st Qu.:-0.63950 1st Qu.:-0.63950
Median :2003 Median : 0.03900 Median : 0.03900

Mean :2003 Mean : 0.00383 Mean : 0.00392

3rd Qu.:2004 3rd Qu.: 0.59675 3rd Qu.: 0.59675

Max . :2005 Max . : 5.73300 Max . : 5.73300
Lag3 Lag4 Lagb

Min. :=-4.92200 Min. :-4.92200 Min. :-4.92200

1st Qu.:-0.64000 1st Qu.:-0.64000 1st Qu.:-0.64000
Median : 0.03850 Median : 0.03850 Median : 0.03850

Mean : 0.00172 Mean 0.00164 Mean : 0.00561

3rd Qu.: 0.59675 3rd Qu.: 0.59675 3rd Qu.: 0.59700

Max . : 5.73300 Max . : 5.73300 Max . : 5.73300
Volume Today Direction

Min . :0.356 Min . :-4.92200 Down : 602

1st Qu.:1.257 1st Qu.:-0.63950 Up :648

Median :1.423 Median : 0.03850

Mean 1.478 Mean : 0.00314

3rd Qu.:1.642 3rd Qu.: 0.59675

Max . :3.152 Max . 5.73300

> pairs(Smarket)

The cor() function produces a matrix that contains all of the pairwise
correlations among the predictors in a data set. The first command below
gives an error message because the Direction variable is qualitative.

> cor (Smarket)

Error in cor (Smarket) : ’x’ must be numeric
> cor (Smarket [,-9])

Year Lagil Lag2 Lag3 Lag4 Lagb
Year 1.0000 0.02970 0.03060 0.03319 0.03569 0.02979
Lagl 0.0297 1.00000 -0.02629 -0.01080 -0.00299 -0.00567
Lag2 0.0306 -0.02629 1.00000 -0.02590 -0.01085 -0.00356
Lag3 0.0332 -0.01080 -0.02590 1.00000 -0.02405 -0.01881
Lag4 0.0357 -0.00299 -0.01085 -0.02405 1.00000 -0.02708
Lagb 0.0298 -0.00567 -0.00356 -0.01881 -0.02708 1.00000
Volume 0.5390 0.04091 -0.04338 -0.04182 -0.04841 -0.02200

0

.0301 -0.02616 -0.01025 -0.00245 -0.00690 -0.03486
Volume Today
Year 0.5390 0.03010

Today
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Lagil 0.0409 -0.02616
Lag2 -0.0434 -0.01025
Lag3 -0.0418 -0.00245
Lag4 -0.0484 -0.00690
Lagh -0.0220 -0.03486

Volume 1.0000 0.01459
Today 0.0146 1.00000

As one would expect, the correlations between the lag variables and to-
day’s returns are close to zero. In other words, there appears to be little
correlation between today’s returns and previous days’ returns. The only
substantial correlation is between Year and Volume. By plotting the data we
see that Volume is increasing over time. In other words, the average number
of shares traded daily increased from 2001 to 2005.

> attach (Smarket)
> plot(Volume)

4.0.2  Logistic Regression

Next, we will fit a logistic regression model in order to predict Direction
using Lagl through Lags and Volume. The glm() function fits generalized
linear models, a class of models that includes logistic regression. The syntax
of the glm () function is similar to that of 1m(), except that we must pass in
the argument family=binomial in order to tell R to run a logistic regression
rather than some other type of generalized linear model.

> glm.fits=glm(Direction~Lagl+Lag2+Lag3+Lagé4+Lagb+Volume ,
data=Smarket ,family=binomial)
> summary (glm.fits)

Call:
glm(formula = Direction ~ Lagl + Lag2 + Lag3 + Lag4 + Lagh
+ Volume, family = binomial, data = Smarket)

Deviance Residuals:
Min 1Q Median 3Q Max
-1.45 -1.20 1.07 1.15 i o 38

Coefficients:
Estimate Std. Error z value Pr(>|z])

(Intercept) -0.12600 0.24074 -0.52 0.60
Lagl -0.07307 0.05017 -1.46 0.15
Lag2 -0.04230 0.05009 -0.84 0.40
Lag3 0.01109 0.04994 0.22 0.82
Lag4 0.00936 0.04997 0.19 0.85
Lagh 0.01031 0.04951 0.21 0.83
Volume 0.13544 0.15836 0.86 0.39

glm()

generalized
linear model
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(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1731.2 on 1249 degrees of freedom
Residual deviance: 1727.6 on 1243 degrees of freedom
AIC: 1742

Number of Fisher Scoring iterations: 3

The smallest p-value here is associated with Lagi. The negative coefficient
for this predictor suggests that if the market had a positive return yesterday,
then it is less likely to go up today. However, at a value of 0.15, the p-value
is still relatively large, and so there is no clear evidence of a real association
between Lagl and Direction.

We use the coef () function in order to access just the coefficients for this
fitted model. We can also use the summary() function to access particular
aspects of the fitted model, such as the p-values for the coefficients.

> coef (glm.fits)

(Intercept) Lagil Lag2 Lag3 Lagé

-0.12600 -0.07307 -0.04230 0.01109 0.00936
Lagb Volume
0.01031 0.13544

> summary (glm.fits) $coef
Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.12600 0.2407 -0.523 0.601

Lagl -0.07307 0.0502 -1.457 0.145

Lag2 -0.04230 0.0501 -0.845 0.398

Lag3 0.01109 0.0499 0.222 0.824

Lag4 0.00936 0.0500 0.187 0.851

Lagh 0.01031 0.0495 0.208 0.835

Volume 0.13544 0.1584 0.855 0.392

> summary (glm.fits) $coef [,4]

(Intercept) Lagil Lag?2 Lag3 Lag4
0.601 0.145 0.398 0.824 0.851
Lagb Volume
0.835 0.392

The predict() function can be used to predict the probability that the
market will go up, given values of the predictors. The type="response"
option tells R to output probabilities of the form P(Y = 1|X), as opposed
to other information such as the logit. If no data set is supplied to the
predict () function, then the probabilities are computed for the training
data that was used to fit the logistic regression model. Here we have printed
only the first ten probabilities. We know that these values correspond to
the probability of the market going up, rather than down, because the
contrasts() function indicates that R has created a dummy variable with
a 1 for Up.
> glm.probs=predict (glm.fits,type="response")
> glm.probs [1:10]

1 2 3 4 5 6 7 8 9 10
0.507 0.481 0.481 0.515 0.511 0.507 0.493 0.509 0.518 0.489
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> contrasts (Direction)

Up
Down O
Up 1

In order to make a prediction as to whether the market will go up or
down on a particular day, we must convert these predicted probabilities
into class labels, Up or Down. The following two commands create a vector
of class predictions based on whether the predicted probability of a market
increase is greater than or less than 0.5.

> glm.pred=rep ("Down" ,1250)
> glm.pred[glm.probs>.5]="Up"

The first command creates a vector of 1,250 Down elements. The second line
transforms to Up all of the elements for which the predicted probability of a
market increase exceeds 0.5. Given these predictions, the table() function
can be used to produce a confusion matrix in order to determine how many
observations were correctly or incorrectly classified.

> table(glm.pred,Direction)
Direction
glm.pred Down Up
Down 145 141
Up 457 507
> (507+145) /1250
[1] 0.5216
> mean(glm.pred==Direction)
[1] 0.5216

The diagonal elements of the confusion matrix indicate correct predictions,
while the off-diagonals represent incorrect predictions. Hence our model
correctly predicted that the market would go up on 507 days and that
it would go down on 145 days, for a total of 507 + 145 = 652 correct
predictions. The mean() function can be used to compute the fraction of
days for which the prediction was correct. In this case, logistic regression
correctly predicted the movement of the market 52.2 % of the time.

At first glance, it appears that the logistic regression model is working
a little better than random guessing. However, this result is misleading
because we trained and tested the model on the same set of 1,250 observa-
tions. In other words, 100 — 52.2 = 47.8 % is the training error rate. As we
have seen previously, the training error rate is often overly optimistic—it
tends to underestimate the test error rate. In order to better assess the ac-
curacy of the logistic regression model in this setting, we can fit the model
using part of the data, and then examine how well it predicts the held out
data. This will yield a more realistic error rate, in the sense that in prac-
tice we will be interested in our model’s performance not on the data that
we used to fit the model, but rather on days in the future for which the
market’s movements are unknown.

table()
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To implement this strategy, we will first create a vector corresponding
to the observations from 2001 through 2004. We will then use this vector
to create a held out data set of observations from 2005.
> train=(Year <2005)
> Smarket .2005=Smarket [! train,]
> dim(Smarket .2005)

[1] 252 9
> Direction .2005=Direction [!train]

The object train is a vector of 1,250 elements, corresponding to the ob-
servations in our data set. The elements of the vector that correspond to
observations that occurred before 2005 are set to TRUE, whereas those that
correspond to observations in 2005 are set to FALSE. The object train is
a Boolean vector, since its elements are TRUE and FALSE. Boolean vectors
can be used to obtain a subset of the rows or columns of a matrix. For
instance, the command Smarket [train,] would pick out a submatrix of the
stock market data set, corresponding only to the dates before 2005, since
those are the ones for which the elements of train are TRUE. The ! symbol
can be used to reverse all of the elements of a Boolean vector. That is,
I'train is a vector similar to train, except that the elements that are TRUE
in train get swapped to FALSE in !train, and the elements that are FALSE
in train get swapped to TRUE in !train. Therefore, Smarket [!train,] yields
a submatrix of the stock market data containing only the observations for
which train is FALSE—that is, the observations with dates in 2005. The
output above indicates that there are 252 such observations.

We now fit a logistic regression model using only the subset of the obser-
vations that correspond to dates before 2005, using the subset argument.
We then obtain predicted probabilities of the stock market going up for
each of the days in our test set—that is, for the days in 2005.
> glm.fits=glm(Direction~Lagl+Lag2+Lag3+Lagé4+Lagb+Volume ,

data=Smarket ,family=binomial , subset=train)
> glm.probs=predict (glm.fits, Smarket .2005, type="response")

Notice that we have trained and tested our model on two completely sep-
arate data sets: training was performed using only the dates before 2005,
and testing was performed using only the dates in 2005. Finally, we com-
pute the predictions for 2005 and compare them to the actual movements
of the market over that time period.

> glm.pred=rep ("Down" ,252)
> glm.pred[glm.probs>.5]="Up"
> table(glm.pred,Direction .2005)
Direction .2005
glm.pred Down Up
Down 77T 97
Up 34 44
> mean(glm.pred==Direction .2005)

boolean
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[1] 0.48
> mean(glm.pred!=Direction .2005)
[1] 0.52

The '= notation means not equal to, and so the last command computes
the test set error rate. The results are rather disappointing: the test error
rate is 52 %, which is worse than random guessing! Of course this result
is not all that surprising, given that one would not generally expect to be
able to use previous days’ returns to predict future market performance.
(After all, if it were possible to do so, then the authors of this book would
be out striking it rich rather than writing a statistics textbook.)

We recall that the logistic regression model had very underwhelming p-
values associated with all of the predictors, and that the smallest p-value,
though not very small, corresponded to Lagi. Perhaps by removing the
variables that appear not to be helpful in predicting Direction, we can
obtain a more effective model. After all, using predictors that have no
relationship with the response tends to cause a deterioration in the test
error rate (since such predictors cause an increase in variance without a
corresponding decrease in bias), and so removing such predictors may in
turn yield an improvement. Below we have refit the logistic regression using
just Lagl and Lag2, which seemed to have the highest predictive power in
the original logistic regression model.

> glm.fits=glm(Direction~Lagl+Lag2,data=Smarket ,family=binomial,
subset=train)
glm.probs=predict (glm.fits, Smarket .2005, type="response")
glm.pred=rep ("Down" ,252)
glm.pred[glm.probs>.5]="Up"
table (glm.pred,Direction .2005)
Direction .2005

glm.pred Down Up

Down 35 35

Up 76 106
> mean(glm.pred==Direction .2005)
[1] 0.56
> 106/ (106+76)
[1] 0.582

vV V Vv V

Now the results appear to be a little better: 56% of the daily movements
have been correctly predicted. It is worth noting that in this case, a much
simpler strategy of predicting that the market will increase every day will
also be correct 56% of the time! Hence, in terms of overall error rate, the
logistic regression method is no better than the naive approach. However,
the confusion matrix shows that on days when logistic regression predicts
an increase in the market, it has a 58% accuracy rate. This suggests a
possible trading strategy of buying on days when the model predicts an in-
creasing market, and avoiding trades on days when a decrease is predicted.
Of course one would need to investigate more carefully whether this small
improvement was real or just due to random chance.
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Suppose that we want to predict the returns associated with particular
values of Lagl and Lag2. In particular, we want to predict Direction on a
day when Lagl and Lag2 equal 1.2 and 1.1, respectively, and on a day when
they equal 1.5 and —0.8. We do this using the predict() function.
> predict (glm.fits,newdata=data.frame(Lagl=c(1.2,1.5),

Lag2=c(1.1,-0.8)) ,type="response")

1 2
0.4791 0.4961

4.6.3  Linear Discriminant Analysis

Now we will perform LDA on the Smarket data. In R, we fit an LDA model
using the 1da() function, which is part of the MASS library. Notice that the
syntax for the 1da() function is identical to that of 1m(), and to that of
glm() except for the absence of the family option. We fit the model using
only the observations before 2005.

> library (MASS)

> 1lda.fit=1da(Direction~Lagl+Lag2,data=Smarket ,subset=train)
> lda.fit

Call:

lda(Direction ~ Lagl + Lag2, data = Smarket, subset = train)

Prior probabilities of groups:
Down Up
0.492 0.508

Group means:

Lagl Lag?2
Down 0.0428 0.0339
Up -0.0395 -0.0313

Coefficients of linear discriminants:
LD1

Lagl -0.642

Lag2 -0.514

> plot(lda.fit)

The LDA output indicates that 71 = 0.492 and 75 = 0.508; in other words,
49.2% of the training observations correspond to days during which the
market went down. It also provides the group means; these are the average
of each predictor within each class, and are used by LDA as estimates
of pg. These suggest that there is a tendency for the previous 2 days’
returns to be negative on days when the market increases, and a tendency
for the previous days’ returns to be positive on days when the market
declines. The coefficients of linear discriminants output provides the linear
combination of Lagi and Lag2 that are used to form the LDA decision rule.
In other words, these are the multipliers of the elements of X = z in
(4.19). If —0.642 x Lag1 —0.514 x Lag?2 is large, then the LDA classifier will

1da()
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predict a market increase, and if it is small, then the LDA classifier will
predict a market decline. The plot() function produces plots of the linear
discriminants, obtained by computing —0.642 x Lagl — 0.514 x Lag2 for
each of the training observations.

The predict () function returns a list with three elements. The first ele-
ment, class, contains LDA’s predictions about the movement of the market.
The second element, posterior, is a matrix whose kth column contains the
posterior probability that the corresponding observation belongs to the kth
class, computed from (4.10). Finally, x contains the linear discriminants,
described earlier.

> 1lda.pred=predict (lda.fit, Smarket .2005)
> names (lda.pred)
[1] "class" "posterior" "x"

As we observed in Section 4.5, the LDA and logistic regression predictions
are almost identical.

> 1lda.class=1da.pred$class
> table(lda.class ,Direction .2005)
Direction .2005
lda.pred Down Up
Down 85 3B

Up 76 106
> mean(lda.class==Direction .2005)
[1] 0.56

Applying a 50 % threshold to the posterior probabilities allows us to recre-
ate the predictions contained in 1da.pred$class.

> sum(lda.pred$posterior[,1]>=.5)
[11 70

> sum(lda.pred$posterior[,1]1<.5)
[1] 182

Notice that the posterior probability output by the model corresponds to
the probability that the market will decrease:

> lda.pred$posterior[1:20,1]
> lda.class [1:20]

If we wanted to use a posterior probability threshold other than 50 % in
order to make predictions, then we could easily do so. For instance, suppose
that we wish to predict a market decrease only if we are very certain that the
market will indeed decrease on that day—say, if the posterior probability
is at least 90 %.

> sum(lda.pred$posterior[,1]1>.9)
[11 ©

No days in 2005 meet that threshold! In fact, the greatest posterior prob-
ability of decrease in all of 2005 was 52.02 %.
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4.6.4 Quadratic Discriminant Analysis

We will now fit a QDA model to the Smarket data. QDA is implemented
in R using the gqda() function, which is also part of the MASS library. The

.2 . d
syntax is identical to that of 1da(). 2d20

> qda.fit=qda(Direction~Lagl+Lag2,data=Smarket ,subset=train)
> qda.fit

Call:

gqda (Direction ~ Lagl + Lag2, data = Smarket, subset = train)

Prior probabilities of groups:
Down Up
0.492 0.508

Group means:

Lagl Lag?2
Down 0.0428 0.0339
Up -0.0395 -0.0313

The output contains the group means. But it does not contain the coef-
ficients of the linear discriminants, because the QDA classifier involves a
quadratic, rather than a linear, function of the predictors. The predict ()
function works in exactly the same fashion as for LDA.

> qda.class=predict (qda.fit, Smarket .2005) $class
> table(qgda.class ,Direction .2005)
Direction .2005
qda.class Down Up
Down 30 20

Up 81 121
> mean(qda.class==Direction .2005)
[1] 0.599

Interestingly, the QDA predictions are accurate almost 60 % of the time,
even though the 2005 data was not used to fit the model. This level of accu-
racy is quite impressive for stock market data, which is known to be quite
hard to model accurately. This suggests that the quadratic form assumed
by QDA may capture the true relationship more accurately than the linear
forms assumed by LDA and logistic regression. However, we recommend
evaluating this method’s performance on a larger test set before betting
that this approach will consistently beat the market!

4.6.5 K-Nearest Neighbors

We will now perform KNN using the knn() function, which is part of the
class library. This function works rather differently from the other model-
fitting functions that we have encountered thus far. Rather than a two-step
approach in which we first fit the model and then we use the model to make
predictions, knn() forms predictions using a single command. The function
requires four inputs.

knn ()
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1. A matrix containing the predictors associated with the training data,
labeled train.X below.

2. A matrix containing the predictors associated with the data for which
we wish to make predictions, labeled test.X below.

3. A vector containing the class labels for the training observations,
labeled train.Direction below.

4. A value for K, the number of nearest neighbors to be used by the
classifier.

We use the cbind() function, short for column bind, to bind the Lagl and
Lag2 variables together into two matrices, one for the training set and the
other for the test set.

cbind ()

library (class)

train.X=cbind(Lagl,Lag2) [train,]
test.X=cbind (Lagl,Lag2) [!train,]
train.Direction=Direction [train]

vV V V V

Now the knn() function can be used to predict the market’s movement for
the dates in 2005. We set a random seed before we apply knn() because
if several observations are tied as nearest neighbors, then R will randomly
break the tie. Therefore, a seed must be set in order to ensure reproducibil-
ity of results.

> set.seed (1)
> knn.pred=knn(train.X,test.X,train.Direction ,k=1)
> table(knn.pred,Direction .2005)
Direction .2005
knn .pred Down Up
Down 43 58

Up 68 83
> (83+43) /252
[1] 0.5

The results using K = 1 are not very good, since only 50 % of the observa-
tions are correctly predicted. Of course, it may be that K = 1 results in an
overly flexible fit to the data. Below, we repeat the analysis using K = 3.

> knn.pred=knn(train.X,test.X,train.Direction ,k=3)
> table(knn.pred,Direction .2005)
Direction .2005
knn .pred Down Up
Down 48 54

Up 63 87
> mean (knn.pred==Direction .2005)
[1] 0.536

The results have improved slightly. But increasing K further turns out
to provide no further improvements. It appears that for this data, QDA
provides the best results of the methods that we have examined so far.
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4.6.6 An Application to Caravan Insurance Data

Finally, we will apply the KNN approach to the Caravan data set, which is
part of the ISLR library. This data set includes 85 predictors that measure
demographic characteristics for 5,822 individuals. The response variable is
Purchase, which indicates whether or not a given individual purchases a
caravan insurance policy. In this data set, only 6 % of people purchased
caravan insurance.
> dim(Caravan)
[1] 5822 86
> attach(Caravan)
> summary (Purchase)

No Yes
5474 348
> 348/5822
[1] 0.0598

Because the KNN classifier predicts the class of a given test observation by
identifying the observations that are nearest to it, the scale of the variables
matters. Any variables that are on a large scale will have a much larger
effect on the distance between the observations, and hence on the KNN
classifier, than variables that are on a small scale. For instance, imagine a
data set that contains two variables, salary and age (measured in dollars
and years, respectively). As far as KNN is concerned, a difference of $1,000
in salary is enormous compared to a difference of 50 years in age. Conse-
quently, salary will drive the KNN classification results, and age will have
almost no effect. This is contrary to our intuition that a salary difference
of $1,000 is quite small compared to an age difference of 50 years. Further-
more, the importance of scale to the KNN classifier leads to another issue:
if we measured salary in Japanese yen, or if we measured age in minutes,
then we’d get quite different classification results from what we get if these
two variables are measured in dollars and years.

A good way to handle this problem is to standardize the data so that all
variables are given a mean of zero and a standard deviation of one. Then
all variables will be on a comparable scale. The scale() function does just
this. In standardizing the data, we exclude column 86, because that is the
qualitative Purchase variable.
> standardized.X=scale(Caravan[,-86])
> var (Caravan[,1])

[1] 165

> var(Caravan [,2])

[1] ©0.165

> var (standardized.X[,1])

[11 1

> var (standardized.X[,2])

[1] 1

Now every column of standardized.X has a standard deviation of one and
a mean of zero.

standardize

scale()
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We now split the observations into a test set, containing the first 1,000
observations, and a training set, containing the remaining observations.
We fit a KNN model on the training data using K = 1, and evaluate its
performance on the test data.

test=1:1000
train.X=standardized.X[-test,]
test.X=standardized.X[test,]
train.Y=Purchase [-test]
test.Y=Purchase [test]
set.seed (1)
knn.pred=knn (train.X, test.X,train.Y,k=1)
> mean(test.Y!=knn.pred)

[1] 0.118

> mean(test.Y!="No")

[1] 0.059

V V. V V V V V

The vector test is numeric, with values from 1 through 1,000. Typing
standardized.X[test,] yields the submatrix of the data containing the ob-
servations whose indices range from 1 to 1,000, whereas typing
standardized.X[-test,] yields the submatrix containing the observations
whose indices do not range from 1 to 1,000. The KNN error rate on the
1,000 test observations is just under 12%. At first glance, this may ap-
pear to be fairly good. However, since only 6 % of customers purchased
insurance, we could get the error rate down to 6 % by always predicting No
regardless of the values of the predictors!

Suppose that there is some non-trivial cost to trying to sell insurance
to a given individual. For instance, perhaps a salesperson must visit each
potential customer. If the company tries to sell insurance to a random
selection of customers, then the success rate will be only 6 %, which may
be far too low given the costs involved. Instead, the company would like
to try to sell insurance only to customers who are likely to buy it. So the
overall error rate is not of interest. Instead, the fraction of individuals that
are correctly predicted to buy insurance is of interest.

It turns out that KNN with K = 1 does far better than random guessing
among the customers that are predicted to buy insurance. Among 77 such
customers, 9, or 11.7 %, actually do purchase insurance. This is double the
rate that one would obtain from random guessing.

> table(knn.pred,test.Y)
test.Y
knn.pred No Yes
No 873 50
Yes 68 9
> 9/(68+9)
[1] 0.117

Using K = 3, the success rate increases to 19 %, and with K = 5 the rate is
26.7 %. This is over four times the rate that results from random guessing.
It appears that KNN is finding some real patterns in a difficult data set!
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> knn.pred=knn(train.X,test.X,train.Y,k=3)
> table(knn.pred,test.Y)
test.Y
knn.pred No Yes
No 920 54
Yes 21 5
> 5/26
[1] 0.192
> knn.pred=knn(train.X,test.X,train.Y,k=5)
> table(knn.pred,test.Y)
test.Y
knn.pred No Yes
No 930 515!
Yes 11 4
> 4/15
[1] 0.267

167

As a comparison, we can also fit a logistic regression model to the data.
If we use 0.5 as the predicted probability cut-off for the classifier, then
we have a problem: only seven of the test observations are predicted to
purchase insurance. Even worse, we are wrong about all of these! However,
we are not required to use a cut-off of 0.5. If we instead predict a purchase
any time the predicted probability of purchase exceeds 0.25, we get much
better results: we predict that 33 people will purchase insurance, and we
are correct for about 33 % of these people. This is over five times better

than random guessing!

> glm.fits=glm(Purchase~.,data=Caravan ,family=binomial,

subset=-test)
Warning message:

glm.fits: fitted probabilities numerically O or 1 occurred
> glm.probs=predict (glm.fits,Caravan[test,],type="response")

> glm.pred=rep ("No",1000)
> glm.pred[glm.probs>.5]="Yes"
> table(glm.pred,test.Y)
test.Y
glm.pred No Yes
No 934 59
Yes 7 0
> glm.pred=rep ("No",1000)
> glm.pred[glm.probs>.25]="Yes"
> table(glm.pred,test.Y)
test.Y
glm.pred No Yes
No 919 48
Yes 22 11
> 11/(22+11)
[1] 0.333
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4.7 HExercises

Conceptual

1. Using a little bit of algebra, prove that (4.2) is equivalent to (4.3). In
other words, the logistic function representation and logit represen-
tation for the logistic regression model are equivalent.

2. It was stated in the text that classifying an observation to the class
for which (4.12) is largest is equivalent to classifying an observation
to the class for which (4.13) is largest. Prove that this is the case. In
other words, under the assumption that the observations in the kth
class are drawn from a N(u,o?) distribution, the Bayes’ classifier
assigns an observation to the class for which the discriminant function
is maximized.

3. This problem relates to the QDA model, in which the observations
within each class are drawn from a normal distribution with a class-
specific mean vector and a class specific covariance matrix. We con-
sider the simple case where p = 1; i.e. there is only one feature.

Suppose that we have K classes, and that if an observation belongs
to the kth class then X comes from a one-dimensional normal dis-
tribution, X ~ N(ug,0%). Recall that the density function for the
one-dimensional normal distribution is given in (4.11). Prove that in
this case, the Bayes’ classifier is not linear. Argue that it is in fact
quadratic.

Hint: For this problem, you should follow the arguments laid out in

Section 4.4.2, but without making the assumption that o3 = ... = 0%.

4. When the number of features p is large, there tends to be a deteri-
oration in the performance of KNN and other local approaches that
perform prediction using only observations that are near the test ob- @
servation for which a prediction must be made. This phenomenon is
known as the curse of dimensionality, and it ties into the fact that urse of i
non-parametric approaches often perform poorly when p is large. We nensionality
will now investigate this curse.

(a) Suppose that we have a set of observations, each with measure-
ments on p = 1 feature, X. We assume that X is uniformly
(evenly) distributed on [0, 1]. Associated with each observation
is a response value. Suppose that we wish to predict a test obser-
vation’s response using only observations that are within 10 % of
the range of X closest to that test observation. For instance, in
order to predict the response for a test observation with X = 0.6,
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we will use observations in the range [0.55,0.65]. On average,
what fraction of the available observations will we use to make
the prediction?

Now suppose that we have a set of observations, each with
measurements on p = 2 features, X; and X,. We assume that
(X1, X5) are uniformly distributed on [0, 1] x [0,1]. We wish to
predict a test observation’s response using only observations that
are within 10 % of the range of X; and within 10 % of the range
of X5 closest to that test observation. For instance, in order to
predict the response for a test observation with X; = 0.6 and
X2 = 0.35, we will use observations in the range [0.55,0.65] for
X1 and in the range [0.3,0.4] for X5. On average, what fraction
of the available observations will we use to make the prediction?

Now suppose that we have a set of observations on p = 100 fea-
tures. Again the observations are uniformly distributed on each
feature, and again each feature ranges in value from 0 to 1. We
wish to predict a test observation’s response using observations
within the 10 % of each feature’s range that is closest to that test
observation. What fraction of the available observations will we
use to make the prediction?

Using your answers to parts (a)—(c), argue that a drawback of
KNN when p is large is that there are very few training obser-
vations “near” any given test observation.

Now suppose that we wish to make a prediction for a test obser-
vation by creating a p-dimensional hypercube centered around
the test observation that contains, on average, 10 % of the train-
ing observations. For p = 1,2, and 100, what is the length of
each side of the hypercube? Comment on your answer.

Note: A hypercube is a generalization of a cube to an arbitrary
number of dimensions. When p = 1, a hypercube is simply a line
segment, when p = 2 it is a square, and when p = 100 it is a
100-dimensional cube.

5. We now examine the differences between LDA and QDA.

(a)

If the Bayes decision boundary is linear, do we expect LDA or
QDA to perform better on the training set? On the test set?

If the Bayes decision boundary is non-linear, do we expect LDA
or QDA to perform better on the training set? On the test set?

In general, as the sample size n increases, do we expect the test
prediction accuracy of QDA relative to LDA to improve, decline,
or be unchanged? Why?
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(d) True or False: Even if the Bayes decision boundary for a given
problem is linear, we will probably achieve a superior test er-
ror rate using QDA rather than LDA because QDA is flexible
enough to model a linear decision boundary. Justify your answer.

. Suppose we collect data for a group of students in a statistics class

with variables X7 =hours studied, X, =undergrad GPA, and Y =
receive an A. We fit a logistic regression and produce estimated
coefficient, By = —6, 31 = 0.05, 52 = 1.

(a) Estimate the probability that a student who studies for 40 h and
has an undergrad GPA of 3.5 gets an A in the class.

(b) How many hours would the student in part (a) need to study to
have a 50 % chance of getting an A in the class?

Suppose that we wish to predict whether a given stock will issue a
dividend this year (“Yes” or “No”) based on X, last year’s percent
profit. We examine a large number of companies and discover that the
mean value of X for companies that issued a dividend was X = 10,
while the mean for those that didn’t was X = 0. In addition, the
variance of X for these two sets of companies was 6% = 36. Finally,
80 % of companies issued dividends. Assuming that X follows a nor-
mal distribution, predict the probability that a company will issue
a dividend this year given that its percentage profit was X = 4 last
year.

Hint: Recall that the densitgj function for a normal random variable

is f(z) = \/#76_(%_“)2/20 . You will need to use Bayes’ theorem.

. Suppose that we take a data set, divide it into equally-sized training

and test sets, and then try out two different classification procedures.
First we use logistic regression and get an error rate of 20 % on the
training data and 30 % on the test data. Next we use 1-nearest neigh-
bors (i.e. K = 1) and get an average error rate (averaged over both
test and training data sets) of 18 %. Based on these results, which
method should we prefer to use for classification of new observations?
Why?

. This problem has to do with odds.

(a) On average, what fraction of people with an odds of 0.37 of
defaulting on their credit card payment will in fact default?

(b) Suppose that an individual has a 16 % chance of defaulting on
her credit card payment. What are the odds that she will de-
fault?
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10. This question should be answered using the Weekly data set, which
is part of the ISLR package. This data is similar in nature to the
Smarket data from this chapter’s lab, except that it contains 1,089
weekly returns for 21 years, from the beginning of 1990 to the end of
2010.

(a)
(b)

Produce some numerical and graphical summaries of the Weekly
data. Do there appear to be any patterns?

Use the full data set to perform a logistic regression with
Direction as the response and the five lag variables plus Volume
as predictors. Use the summary function to print the results. Do
any of the predictors appear to be statistically significant? If so,
which ones?

Compute the confusion matrix and overall fraction of correct
predictions. Explain what the confusion matrix is telling you
about the types of mistakes made by logistic regression.

Now fit the logistic regression model using a training data period
from 1990 to 2008, with Lag2 as the only predictor. Compute the
confusion matrix and the overall fraction of correct predictions
for the held out data (that is, the data from 2009 and 2010).

Repeat (d) using LDA.
Repeat (d) using QDA.
Repeat (d) using KNN with K = 1.

Which of these methods appears to provide the best results on
this data?

Experiment with different combinations of predictors, includ-
ing possible transformations and interactions, for each of the
methods. Report the variables, method, and associated confu-
sion matrix that appears to provide the best results on the held
out data. Note that you should also experiment with values for
K in the KNN classifier.

11. In this problem, you will develop a model to predict whether a given
car gets high or low gas mileage based on the Auto data set.

(a)

Create a binary variable, mpg01, that contains a 1 if mpg contains
a value above its median, and a 0 if mpg contains a value below
its median. You can compute the median using the median()
function. Note you may find it helpful to use the data.frame()
function to create a single data set containing both mpg01 and
the other Auto variables.
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(b)

Classification

Explore the data graphically in order to investigate the associ-
ation between mpg01 and the other features. Which of the other
features seem most likely to be useful in predicting mpg01? Scat-
terplots and boxplots may be useful tools to answer this ques-
tion. Describe your findings.

Split the data into a training set and a test set.

Perform LDA on the training data in order to predict mpg01
using the variables that seemed most associated with mpg01 in
(b). What is the test error of the model obtained?

Perform QDA on the training data in order to predict mpg01
using the variables that seemed most associated with mpg01 in
(b). What is the test error of the model obtained?

Perform logistic regression on the training data in order to pre-
dict mpg01 using the variables that seemed most associated with
mpg01 in (b). What is the test error of the model obtained?

Perform KNN on the training data, with several values of K, in
order to predict mpg01. Use only the variables that seemed most
associated with mpg01 in (b). What test errors do you obtain?
Which value of K seems to perform the best on this data set?

12. This problem involves writing functions.

(a)

(b)

Write a function, Power (), that prints out the result of raising 2
to the 3rd power. In other words, your function should compute
23 and print out the results.
Hint: Recall that x~a raises x to the power a. Use the print ()
function to output the result.

Create a new function, Power2(), that allows you to pass any
two numbers, x and a, and prints out the value of x~a. You can
do this by beginning your function with the line

> Power2=function(x,a){

You should be able to call your function by entering, for instance,

> Power2(3,8)

on the command line. This should output the value of 3%, namely,
6,561.

Using the Power2() function that you just wrote, compute 103,
817, and 1313.

Now create a new function, Power3(), that actually returns the
result x"a as an R object, rather than simply printing it to the
screen. That is, if you store the value x~a in an object called
result within your function, then you can simply return() this
result, using the following line:

return()
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return (result)

The line above should be the last line in your function, before
the } symbol.

(e) Now using the Power3() function, create a plot of f(z) = z?.

The z-axis should display a range of integers from 1 to 10, and
the y-axis should display x?. Label the axes appropriately, and
use an appropriate title for the figure. Consider displaying either
the z-axis, the y-axis, or both on the log-scale. You can do this
by using log=‘‘x’’, log=‘‘y’’, or log="‘‘xy’’ as arguments to
the plot () function.

(f) Create a function, PlotPower (), that allows you to create a plot
of x against x~a for a fixed a and for a range of values of x. For
instance, if you call

> PlotPower (1:10,3)

then a plot should be created with an z-axis taking on values
1,2,...,10, and a y-axis taking on values 13,23,...,103.

13. Using the Boston data set, fit classification models in order to predict
whether a given suburb has a crime rate above or below the median.
Explore logistic regression, LDA, and KNN models using various sub-
sets of the predictors. Describe your findings.



