5
Resampling Methods

Resampling methods are an indispensable tool in modern statistics. They
involve repeatedly drawing samples from a training set and refitting a model
of interest on each sample in order to obtain additional information about
the fitted model. For example, in order to estimate the variability of a linear
regression fit, we can repeatedly draw different samples from the training
data, fit a linear regression to each new sample, and then examine the
extent to which the resulting fits differ. Such an approach may allow us to
obtain information that would not be available from fitting the model only
once using the original training sample.

Resampling approaches can be computationally expensive, because they
involve fitting the same statistical method multiple times using different
subsets of the training data. However, due to recent advances in computing
power, the computational requirements of resampling methods generally
are not prohibitive. In this chapter, we discuss two of the most commonly
used resampling methods, cross-validation and the bootstrap. Both methods
are important tools in the practical application of many statistical learning
procedures. For example, cross-validation can be used to estimate the test
error associated with a given statistical learning method in order to evaluate
its performance, or to select the appropriate level of flexibility. The process
of evaluating a model’s performance is known as model assessment, whereas
the process of selecting the proper level of flexibility for a model is known as
model selection. The bootstrap is used in several contexts, most commonly
to provide a measure of accuracy of a parameter estimate or of a given
statistical learning method.

G. James et al., An Introduction to Statistical Learning: with Applications in R, 175
Springer Texts in Statistics, DOI 10.1007/978-1-4614-7138-7_5,
© Springer Science+Business Media New York 2013

model
assessment

model
selection

176 5. Resampling Methods
5.1 Cross-Validation

In Chapter 2 we discuss the distinction between the test error rate and the
training error rate. The test error is the average error that results from using
a statistical learning method to predict the response on a new observation—
that is, a measurement that was not used in training the method. Given
a data set, the use of a particular statistical learning method is warranted
if it results in a low test error. The test error can be easily calculated if a
designated test set is available. Unfortunately, this is usually not the case.
In contrast, the training error can be easily calculated by applying the
statistical learning method to the observations used in its training. But as
we saw in Chapter 2, the training error rate often is quite different from the
test error rate, and in particular the former can dramatically underestimate
the latter.

In the absence of a very large designated test set that can be used to
directly estimate the test error rate, a number of techniques can be used
to estimate this quantity using the available training data. Some methods
make a mathematical adjustment to the training error rate in order to
estimate the test error rate. Such approaches are discussed in Chapter 6.
In this section, we instead consider a class of methods that estimate the
test error rate by holding out a subset of the training observations from the
fitting process, and then applying the statistical learning method to those
held out observations.

In Sections 5.1.1-5.1.4, for simplicity we assume that we are interested
in performing regression with a quantitative response. In Section 5.1.5 we
consider the case of classification with a qualitative response. As we will
see, the key concepts remain the same regardless of whether the response
is quantitative or qualitative.

5.1.1 The Validation Set Approach

Suppose that we would like to estimate the test error associated with fit-
ting a particular statistical learning method on a set of observations. The
validation set approach, displayed in Figure 5.1, is a very simple strategy
for this task. It involves randomly dividing the available set of observa-
tions into two parts, a training set and a validation set or hold-out set. The
model is fit on the training set, and the fitted model is used to predict the
responses for the observations in the validation set. The resulting validation
set error rate—typically assessed using MSE in the case of a quantitative
response—provides an estimate of the test error rate.

We illustrate the validation set approach on the Auto data set. Recall from
Chapter 3 that there appears to be a non-linear relationship between mpg
and horsepower, and that a model that predicts mpg using horsepower and
horsepower” gives better results than a model that uses only a linear term.
It is natural to wonder whether a cubic or higher-order fit might provide

validation
set approach

validation
set
hold-out set

5.1 Cross-Validation 177

123 n |

!

7 22 13 91

FIGURE 5.1. A schematic display of the validation set approach. A set of n
observations are randomly split into a training set (shown in blue, containing
observations 7, 22, and 13, among others) and a validation set (shown in beige,
and containing observation 91, among others). The statistical learning method is
fit on the training set, and its performance is evaluated on the validation set.

even better results. We answer this question in Chapter 3 by looking at
the p-values associated with a cubic term and higher-order polynomial
terms in a linear regression. But we could also answer this question using
the validation method. We randomly split the 392 observations into two
sets, a training set containing 196 of the data points, and a validation set
containing the remaining 196 observations. The validation set error rates
that result from fitting various regression models on the training sample
and evaluating their performance on the validation sample, using MSE
as a measure of validation set error, are shown in the left-hand panel of
Figure 5.2. The validation set MSE for the quadratic fit is considerably
smaller than for the linear fit. However, the validation set MSE for the cubic
fit is actually slightly larger than for the quadratic fit. This implies that
including a cubic term in the regression does not lead to better prediction
than simply using a quadratic term.

Recall that in order to create the left-hand panel of Figure 5.2, we ran-
domly divided the data set into two parts, a training set and a validation
set. If we repeat the process of randomly splitting the sample set into two
parts, we will get a somewhat different estimate for the test MSE. As an
illustration, the right-hand panel of Figure 5.2 displays ten different vali-
dation set MSE curves from the Auto data set, produced using ten different
random splits of the observations into training and validation sets. All ten
curves indicate that the model with a quadratic term has a dramatically
smaller validation set MSE than the model with only a linear term. Fur-
thermore, all ten curves indicate that there is not much benefit in including
cubic or higher-order polynomial terms in the model. But it is worth noting
that each of the ten curves results in a different test MSE estimate for each
of the ten regression models considered. And there is no consensus among
the curves as to which model results in the smallest validation set MSE.
Based on the variability among these curves, all that we can conclude with
any confidence is that the linear fit is not adequate for this data.

The validation set approach is conceptually simple and is easy to imple-
ment. But it has two potential drawbacks:

178 5. Resampling Methods

© _| o _|
3] o
s %1 s &1
w [Im|
o & o d
o ° o
S o | [
> N > [aY)
&3 = ,
c 87 c 87 "v
& ./0—0\. I}
D o | TS —e—0—90—0 O o _| \——
E — 2 —
2 A e 4
T T T T T T T T T T
2 4 6 8 10 2 4 6 8 10
Degree of Polynomial Degree of Polynomial

FIGURE 5.2. The validation set approach was used on the Auto data set in
order to estimate the test error that results from predicting mpg using polynomial
functions of horsepower. Left: Validation error estimates for a single split into
training and validation data sets. Right: The validation method was repeated ten
times, each time using a different random split of the observations into a training
set and a validation set. This illustrates the variability in the estimated test MSE
that results from this approach.

1. As is shown in the right-hand panel of Figure 5.2, the validation esti-
mate of the test error rate can be highly variable, depending on pre-
cisely which observations are included in the training set and which
observations are included in the validation set.

2. In the validation approach, only a subset of the observations—those
that are included in the training set rather than in the validation
set—are used to fit the model. Since statistical methods tend to per-
form worse when trained on fewer observations, this suggests that the
validation set error rate may tend to overestimate the test error rate
for the model fit on the entire data set.

In the coming subsections, we will present cross-validation, a refinement of
the validation set approach that addresses these two issues.

5.1.2 Leave-One-Out Cross-Validation

Leave-one-out cross-validation (LOOCV) is closely related to the validation
set approach of Section 5.1.1, but it attempts to address that method’s
drawbacks.

Like the validation set approach, LOOCV involves splitting the set of
observations into two parts. However, instead of creating two subsets of
comparable size, a single observation (z1,y;) is used for the validation
set, and the remaining observations {(x2,¥2),...,(zn,yn)} make up the
training set. The statistical learning method is fit on the n — 1 training
observations, and a prediction ¢; is made for the excluded observation,
using its value x1. Since (x1, y1) was not used in the fitting process, MSE; =

leave-one-
out

Cross-
validation

5.1 Cross-Validation 179

123 n
123 n
123 n
123 n
123 n

FIGURE 5.3. A schematic display of LOOCYV. A set of n data points is repeat-
edly split into a training set (shown in blue) containing all but one observation,
and a validation set that contains only that observation (shown in beige). The test
error s then estimated by averaging the n resulting MSE’s. The first training set

contains all but observation 1, the second training set contains all but observation
2, and so forth.

(y1 — 91)? provides an approximately unbiased estimate for the test error.
But even though MSE; is unbiased for the test error, it is a poor estimate
because it is highly variable, since it is based upon a single observation
(z1,91).

We can repeat the procedure by selecting (z2,y2) for the validation
data, training the statistical learning procedure on the n — 1 observations
{(x1,y1), (23,93)s - - -, (Tn, Yn) }, and computing MSEy = (y2—12)?. Repeat-
ing this approach n times produces n squared errors, MSEq,..., MSE,,.
The LOOCYV estimate for the test MSE is the average of these n test error
estimates:

1 n
CVn) = — > MSE;. (5.1)
=1

A schematic of the LOOCYV approach is illustrated in Figure 5.3.
LOOCYV has a couple of major advantages over the validation set ap-
proach. First, it has far less bias. In LOOCYV, we repeatedly fit the sta-
tistical learning method using training sets that contain n — 1 observa-
tions, almost as many as are in the entire data set. This is in contrast to
the validation set approach, in which the training set is typically around
half the size of the original data set. Consequently, the LOOCYV approach
tends not to overestimate the test error rate as much as the validation
set approach does. Second, in contrast to the validation approach which
will yield different results when applied repeatedly due to randomness in
the training/validation set splits, performing LOOCYV multiple times will

180 5. Resampling Methods

Loocv 10-fold CV

—e—o Y }
o TTe—o—o—0—0

Mean Squared Error
16 18 20 22 24 26 28
| |
Mean Squared Error
16 18 20 22 24 26 28
| | |

T T T T T T T T T T
2 4 6 8 10 2 4 6 8 10

Degree of Polynomial Degree of Polynomial

FIGURE 5.4. Cross-validation was used on the Auto data set in order to es-
timate the test error that results from predicting mpg using polynomial functions
of horsepower. Left: The LOOCYV error curve. Right: 10-fold CV was run nine
separate times, each with a different random split of the data into ten parts. The
figure shows the nine slightly different C'V error curves.

always yield the same results: there is no randomness in the training/vali-
dation set splits.

We used LOOCV on the Auto data set in order to obtain an estimate
of the test set MSE that results from fitting a linear regression model to
predict mpg using polynomial functions of horsepower. The results are shown
in the left-hand panel of Figure 5.4.

LOOCYV has the potential to be expensive to implement, since the model
has to be fit n times. This can be very time consuming if n is large, and if
each individual model is slow to fit. With least squares linear or polynomial
regression, an amazing shortcut makes the cost of LOOCYV the same as that
of a single model fit! The following formula holds:

n

1 i — i\
CV(n)—nZ<1_hi) , (5.2)

where g; is the ith fitted value from the original least squares fit, and h; is
the leverage defined in (3.37) on page 98. This is like the ordinary MSE,
except the ith residual is divided by 1 — h;. The leverage lies between 1/n
and 1, and reflects the amount that an observation influences its own fit.
Hence the residuals for high-leverage points are inflated in this formula by
exactly the right amount for this equality to hold.

LOOCV is a very general method, and can be used with any kind of
predictive modeling. For example we could use it with logistic regression
or linear discriminant analysis, or any of the methods discussed in later

5.1 Cross-Validation 181

123 n
!

11765 47

11765 47

11765 47

11765 a7

11765 47

FIGURE 5.5. A schematic display of 5-fold CV. A set of n observations is
randomly split into five non-overlapping groups. Fach of these fifths acts as a
validation set (shown in beige), and the remainder as a training set (shown in
blue). The test error is estimated by averaging the five resulting MSE estimates.

chapters. The magic formula (5.2) does not hold in general, in which case
the model has to be refit n times.

5.1.3 k-Fold Cross-Validation

An alternative to LOOCYV is k-fold C'V. This approach involves randomly
dividing the set of observations into k groups, or folds, of approximately
equal size. The first fold is treated as a validation set, and the method
is fit on the remaining k — 1 folds. The mean squared error, MSE;, is
then computed on the observations in the held-out fold. This procedure is
repeated k times; each time, a different group of observations is treated
as a validation set. This process results in k estimates of the test error,
MSE;, MSEs, ..., MSE. The k-fold CV estimate is computed by averaging
these values,

| =

k
CVry = 7 > _ MSE;. (5.3)
=1

Figure 5.5 illustrates the k-fold CV approach.

It is not hard to see that LOOCYV is a special case of k-fold CV in which &
is set to equal n. In practice, one typically performs k-fold CV using k = 5
or k = 10. What is the advantage of using £ = 5 or k = 10 rather than
k = n? The most obvious advantage is computational. LOOCYV requires
fitting the statistical learning method n times. This has the potential to be
computationally expensive (except for linear models fit by least squares,
in which case formula (5.2) can be used). But cross-validation is a very
general approach that can be applied to almost any statistical learning
method. Some statistical learning methods have computationally intensive
fitting procedures, and so performing LOOCV may pose computational
problems, especially if n is extremely large. In contrast, performing 10-fold

k-fold CV

182 5. Resampling Methods

3.0
I
3.0
I

2.0 25
I
25

2.0

1.5
1.5

1.0
1.0

Mean Squared Error
Mean Squared Error
Mean Squared Error

05
05

0.0
I
0.0
I
0
I

T T T T T T T T T T T T
2 5 10 20 2 5 10 20 2 5 10 20

Flexibility Flexibility Flexibility

FIGURE 5.6. True and estimated test MSE for the simulated data sets in Fig-
ures 2.9 (left), 2.10 (center), and 2.11 (right). The true test MSE is shown in
blue, the LOOCYV estimate is shown as a black dashed line, and the 10-fold C'V
estimate is shown in orange. The crosses indicate the minimum of each of the
MSE curves.

CV requires fitting the learning procedure only ten times, which may be
much more feasible. As we see in Section 5.1.4, there also can be other
non-computational advantages to performing 5-fold or 10-fold CV, which
involve the bias-variance trade-off.

The right-hand panel of Figure 5.4 displays nine different 10-fold CV
estimates for the Auto data set, each resulting from a different random
split of the observations into ten folds. As we can see from the figure, there
is some variability in the CV estimates as a result of the variability in how
the observations are divided into ten folds. But this variability is typically
much lower than the variability in the test error estimates that results from
the validation set approach (right-hand panel of Figure 5.2).

When we examine real data, we do not know the true test MSE, and
so it is difficult to determine the accuracy of the cross-validation estimate.
However, if we examine simulated data, then we can compute the true
test MSE, and can thereby evaluate the accuracy of our cross-validation
results. In Figure 5.6, we plot the cross-validation estimates and true test
error rates that result from applying smoothing splines to the simulated
data sets illustrated in Figures 2.9-2.11 of Chapter 2. The true test MSE
is displayed in blue. The black dashed and orange solid lines respectively
show the estimated LOOCV and 10-fold CV estimates. In all three plots,
the two cross-validation estimates are very similar. In the right-hand panel
of Figure 5.6, the true test MSE and the cross-validation curves are almost
identical. In the center panel of Figure 5.6, the two sets of curves are similar
at the lower degrees of flexibility, while the CV curves overestimate the test
set MSE for higher degrees of flexibility. In the left-hand panel of Figure 5.6,
the CV curves have the correct general shape, but they underestimate the
true test MSE.

5.1 Cross-Validation 183

When we perform cross-validation, our goal might be to determine how
well a given statistical learning procedure can be expected to perform on
independent data; in this case, the actual estimate of the test MSE is
of interest. But at other times we are interested only in the location of
the minimum point in the estimated test MSE curve. This is because we
might be performing cross-validation on a number of statistical learning
methods, or on a single method using different levels of flexibility, in order
to identify the method that results in the lowest test error. For this purpose,
the location of the minimum point in the estimated test MSE curve is
important, but the actual value of the estimated test MSE is not. We find
in Figure 5.6 that despite the fact that they sometimes underestimate the
true test MSE, all of the CV curves come close to identifying the correct
level of flexibility—that is, the flexibility level corresponding to the smallest
test MSE.

5.1.4 Bias-Variance Trade-Off for k-Fold Cross-Validation

We mentioned in Section 5.1.3 that k-fold CV with k& < n has a compu-
tational advantage to LOOCV. But putting computational issues aside,
a less obvious but potentially more important advantage of k-fold CV is
that it often gives more accurate estimates of the test error rate than does
LOOCV. This has to do with a bias-variance trade-off.

It was mentioned in Section 5.1.1 that the validation set approach can
lead to overestimates of the test error rate, since in this approach the
training set used to fit the statistical learning method contains only half
the observations of the entire data set. Using this logic, it is not hard to
see that LOOCV will give approximately unbiased estimates of the test
error, since each training set contains n — 1 observations, which is almost
as many as the number of observations in the full data set. And performing
k-fold CV for, say, k = 5 or k = 10 will lead to an intermediate level of
bias, since each training set contains (k — 1)n/k observations—fewer than
in the LOOCV approach, but substantially more than in the validation set
approach. Therefore, from the perspective of bias reduction, it is clear that
LOOCYV is to be preferred to k-fold CV.

However, we know that bias is not the only source for concern in an esti-
mating procedure; we must also consider the procedure’s variance. It turns
out that LOOCYV has higher variance than does k-fold CV with k£ < n. Why
is this the case?” When we perform LOOCYV, we are in effect averaging the
outputs of n fitted models, each of which is trained on an almost identical
set of observations; therefore, these outputs are highly (positively) corre-
lated with each other. In contrast, when we perform k-fold CV with k& < n,
we are averaging the outputs of k fitted models that are somewhat less
correlated with each other, since the overlap between the training sets in
each model is smaller. Since the mean of many highly correlated quantities

184 5. Resampling Methods

has higher variance than does the mean of many quantities that are not
as highly correlated, the test error estimate resulting from LOOCYV tends
to have higher variance than does the test error estimate resulting from
k-fold CV.

To summarize, there is a bias-variance trade-off associated with the
choice of k in k-fold cross-validation. Typically, given these considerations,
one performs k-fold cross-validation using k = 5 or k = 10, as these values
have been shown empirically to yield test error rate estimates that suffer
neither from excessively high bias nor from very high variance.

5.1.5 Cross-Validation on Classification Problems

In this chapter so far, we have illustrated the use of cross-validation in the
regression setting where the outcome Y is quantitative, and so have used
MSE to quantify test error. But cross-validation can also be a very useful
approach in the classification setting when Y is qualitative. In this setting,
cross-validation works just as described earlier in this chapter, except that
rather than using MSE to quantify test error, we instead use the number
of misclassified observations. For instance, in the classification setting, the
LOOCYV error rate takes the form

1 n
CViy = - E Err;, (5.4)
i=1

where Err; = I(y; # ;). The k-fold CV error rate and validation set error
rates are defined analogously.

As an example, we fit various logistic regression models on the two-
dimensional classification data displayed in Figure 2.13. In the top-left
panel of Figure 5.7, the black solid line shows the estimated decision bound-
ary resulting from fitting a standard logistic regression model to this data
set. Since this is simulated data, we can compute the true test error rate,
which takes a value of 0.201 and so is substantially larger than the Bayes
error rate of 0.133. Clearly logistic regression does not have enough flexi-
bility to model the Bayes decision boundary in this setting. We can easily
extend logistic regression to obtain a non-linear decision boundary by using
polynomial functions of the predictors, as we did in the regression setting in
Section 3.3.2. For example, we can fit a quadratic logistic regression model,
given by

log (%) = Po + B1X1 + B2 XT + B3 X2 + faX3. (5.5)

The top-right panel of Figure 5.7 displays the resulting decision boundary,
which is now curved. However, the test error rate has improved only slightly,
to 0.197. A much larger improvement is apparent in the bottom-left panel

5.1 Cross-Validation 185

Degree=1 Degree=2

Degree=3 Degree=4

FIGURE 5.7. Logistic regression fits on the two-dimensional classification data
displayed in Figure 2.13. The Bayes decision boundary is represented using a
purple dashed line. Estimated decision boundaries from linear, quadratic, cubic
and quartic (degrees 1-4) logistic regressions are displayed in black. The test error
rates for the four logistic regression fits are respectively 0.201, 0.197, 0.160, and
0.162, while the Bayes error rate is 0.133.

of Figure 5.7, in which we have fit a logistic regression model involving
cubic polynomials of the predictors. Now the test error rate has decreased
to 0.160. Going to a quartic polynomial (bottom-right) slightly increases
the test error.

In practice, for real data, the Bayes decision boundary and the test er-
ror rates are unknown. So how might we decide between the four logistic
regression models displayed in Figure 5.77 We can use cross-validation in
order to make this decision. The left-hand panel of Figure 5.8 displays in

186 5. Resampling Methods

(= (=
8 8
o o
2 2
o oS | o oS |
© ©
o o @ o
5 oS | 5 oS |
T T
S | S |
o &
s s
T T T T T T T T T T T T
2 4 6 8 10 001 002 005 010 020 050 1.00
Order of Polynomials Used 1/K

FIGURE 5.8. Test error (brown), training error (blue), and 10-fold CV error
(black) on the two-dimensional classification data displayed in Figure 5.7. Left:
Logistic regression using polynomial functions of the predictors. The order of
the polynomials used is displayed on the x-axis. Right: The KNN classifier with
different values of K, the number of neighbors used in the KNN classifier.

black the 10-fold CV error rates that result from fitting ten logistic regres-
sion models to the data, using polynomial functions of the predictors up
to tenth order. The true test errors are shown in brown, and the training
errors are shown in blue. As we have seen previously, the training error
tends to decrease as the flexibility of the fit increases. (The figure indicates
that though the training error rate doesn’t quite decrease monotonically,
it tends to decrease on the whole as the model complexity increases.) In
contrast, the test error displays a characteristic U-shape. The 10-fold CV
error rate provides a pretty good approximation to the test error rate.
While it somewhat underestimates the error rate, it reaches a minimum
when fourth-order polynomials are used, which is very close to the min-
imum of the test curve, which occurs when third-order polynomials are
used. In fact, using fourth-order polynomials would likely lead to good test
set performance, as the true test error rate is approximately the same for
third, fourth, fifth, and sixth-order polynomials.

The right-hand panel of Figure 5.8 displays the same three curves us-
ing the KNN approach for classification, as a function of the value of K
(which in this context indicates the number of neighbors used in the KNN
classifier, rather than the number of CV folds used). Again the training
error rate declines as the method becomes more flexible, and so we see that
the training error rate cannot be used to select the optimal value for K.
Though the cross-validation error curve slightly underestimates the test
error rate, it takes on a minimum very close to the best value for K.

5.2 The Bootstrap 187
5.2 The Bootstrap

The bootstrap is a widely applicable and extremely powerful statistical tool
that can be used to quantify the uncertainty associated with a given esti-
mator or statistical learning method. As a simple example, the bootstrap
can be used to estimate the standard errors of the coefficients from a linear
regression fit. In the specific case of linear regression, this is not particularly
useful, since we saw in Chapter 3 that standard statistical software such as
R outputs such standard errors automatically. However, the power of the
bootstrap lies in the fact that it can be easily applied to a wide range of
statistical learning methods, including some for which a measure of vari-
ability is otherwise difficult to obtain and is not automatically output by
statistical software.

In this section we illustrate the bootstrap on a toy example in which we
wish to determine the best investment allocation under a simple model.
In Section 5.3 we explore the use of the bootstrap to assess the variability
associated with the regression coefficients in a linear model fit.

Suppose that we wish to invest a fixed sum of money in two financial
assets that yield returns of X and Y, respectively, where X and Y are
random quantities. We will invest a fraction « of our money in X, and will
invest the remaining 1 — « in Y. Since there is variability associated with
the returns on these two assets, we wish to choose o to minimize the total
risk, or variance, of our investment. In other words, we want to minimize
Var(aX + (1 —a)Y). One can show that the value that minimizes the risk
is given by

2
0y —O0XY
0% + 02 —20xy’
X Y XY

(5.6)

o =

where 0% = Var(X),0% = Var(Y), and oxy = Cov(X,Y).
In reality, the quantities 0%, 0%, and o xy are unknown. We can compute
estimates for these quantities, 6%, 6%, and 6xy, using a data set that

contains past measurements for X and Y. We can then estimate the value
of a that minimizes the variance of our investment using

I\2 ~

O'Y — O0XY
-2 ~2 s .
ox +0y —20xy

&= (5.7)
Figure 5.9 illustrates this approach for estimating o on a simulated data
set. In each panel, we simulated 100 pairs of returns for the investments
X and Y. We used these returns to estimate 0%, 0%, and oxy, which we
then substituted into (5.7) in order to obtain estimates for . The value of
& resulting from each simulated data set ranges from 0.532 to 0.657.

It is natural to wish to quantify the accuracy of our estimate of a. To
estimate the standard deviation of &, we repeated the process of simu-
lating 100 paired observations of X and Y, and estimating « using (5.7),

bootstrap

188 5. Resampling Methods

° ° °
4 ° o °
i o8 ... ¥ .. [) ¢
°
- .: Py ° - ° ° "000.
o ¢ o0ge . ° ',Oo. o o
i ° 3 P ° o .t.oo .
> ° [LYY ° > oo ° 0
o LA ° o L4
] %l e ec® %% 0%
".:o T1e®e® o P
.i ° ° ‘.o.:.'
q e . ol o °® . o o
.o . ° %o
T T T T T T T T T T
2 1 0 1 2 -2 1 0 1 2
X X
° °
«d '} . o ©
% S :.::..o
. .'.'v\..‘ e e e “°e
[o &% .
> ° o ‘:.ﬁq’. . > 4% o> ;’l ° .
- 4 SR B IO o
® . “. ° 'O..o ..o
9 oo o 0 «1%e % o s
° [° ®e
o ° ol e °
T T T T T T T T T T T T
3 2 1 0 1 2 -2 1 0 1 2 3
X X

FIGURE 5.9. Each panel displays 100 simulated returns for investments
X and Y. From left to right and top to bottom, the resulting estimates for «
are 0.576, 0.532, 0.657, and 0.651.

1,000 times. We thereby obtained 1,000 estimates for «, which we can call
G, Qo ..., 01,000 The left-hand panel of Figure 5.10 displays a histogram
of the resulting estimates. For these simulations the parameters were set to
0% =1,0% =1.25, and oxy = 0.5, and so we know that the true value of
a is 0.6. We indicated this value using a solid vertical line on the histogram.
The mean over all 1,000 estimates for « is

1 1,000
&= 1508 Z_‘; &, = 0.5996,

very close to o = 0.6, and the standard deviation of the estimates is

1,000

> (Gr —a@)* =0.083.

r=1

1,000 — 1

This gives us a very good idea of the accuracy of &: SE(&) ~ 0.083. So
roughly speaking, for a random sample from the population, we would
expect & to differ from « by approximately 0.08, on average.

In practice, however, the procedure for estimating SE(&) outlined above
cannot be applied, because for real data we cannot generate new samples
from the original population. However, the bootstrap approach allows us
to use a computer to emulate the process of obtaining new sample sets,

5.2 The Bootstrap 189

0.9

200
J
200
J

|
-

150
1
0.7
I

«
0.6 .

50 100 150
1 1
50 100
1
0.5
I

0.4
1

—

0.3
L

r T T T T T 1 T T
0.4 0.5 0.6 0.7 0.8 0.9 0.3 0.4 0.5 0.6 0.7 0.8 0.9 True Bootstrap

(03 [0}

FIGURE 5.10. Left: A histogram of the estimates of o obtained by generating
1,000 simulated data sets from the true population. Center: A histogram of the
estimates of a obtained from 1,000 bootstrap samples from a single data set.
Right: The estimates of o displayed in the left and center panels are shown as
boxplots. In each panel, the pink line indicates the true value of a.

so that we can estimate the variability of & without generating additional
samples. Rather than repeatedly obtaining independent data sets from the
population, we instead obtain distinct data sets by repeatedly sampling
observations from the original data set.

This approach is illustrated in Figure 5.11 on a simple data set, which
we call Z, that contains only n = 3 observations. We randomly select n
observations from the data set in order to produce a bootstrap data set,
Z*!. The sampling is performed with replacement, which means that the
same observation can occur more than once in the bootstrap data set. In
this example, Z*! contains the third observation twice, the first observation
once, and no instances of the second observation. Note that if an observation
is contained in Z*!, then both its X and Y values are included. We can use
Z*! to produce a new bootstrap estimate for «, which we call &*'. This
procedure is repeated B times for some large value of B, in order to produce
B different bootstrap data sets, Z*', Z*2,..., Z*B and B corresponding o
estimates, &*',&*2,...,&*P. We can compute the standard error of these
bootstrap estimates using the formula

B

B 2
) 1 . 1 Z -
r'=1

r=1

This serves as an estimate of the standard error of & estimated from the
original data set.

The bootstrap approach is illustrated in the center panel of Figure 5.10,
which displays a histogram of 1,000 bootstrap estimates of «, each com-
puted using a distinct bootstrap data set. This panel was constructed on
the basis of a single data set, and hence could be created using real data.

replacement

190 5. Resampling Methods

Obs | X Y
3 53 28 ~x]
-
1 43 |24
3 53 28
Obs 1X_ 1y Obs X |Y
1 43 (24 2 21 11 ~x)
5 21 111 53 |28
3 53 |23 1 43 |24
t
Original Data (Z) .
Obs | X |Y "B
o
2.1 | 1.1
2.1 | 1.1
1 43 |24

FIGURE 5.11. A graphical illustration of the bootstrap approach on a small
sample containing n = 3 observations. FEach bootstrap data set contains n obser-
vations, sampled with replacement from the original data set. Each bootstrap data
set is used to obtain an estimate of .

Note that the histogram looks very similar to the left-hand panel which dis-
plays the idealized histogram of the estimates of « obtained by generating
1,000 simulated data sets from the true population. In particular the boot-
strap estimate SE(&) from (5.8) is 0.087, very close to the estimate of 0.083
obtained using 1,000 simulated data sets. The right-hand panel displays the
information in the center and left panels in a different way, via boxplots of
the estimates for a obtained by generating 1,000 simulated data sets from
the true population and using the bootstrap approach. Again, the boxplots
are quite similar to each other, indicating that the bootstrap approach can
be used to effectively estimate the variability associated with &.

5.3 Lab: Cross-Validation and the Bootstrap

In this lab, we explore the resampling techniques covered in this chapter.
Some of the commands in this lab may take a while to run on your com-
puter.

5.3 Lab: Cross-Validation and the Bootstrap 191

5.3.1 The Validation Set Approach

We explore the use of the validation set approach in order to estimate the
test error rates that result from fitting various linear models on the Auto
data set.

Before we begin, we use the set.seed() function in order to set a seed for
R’s random number generator, so that the reader of this book will obtain
precisely the same results as those shown below. It is generally a good idea
to set a random seed when performing an analysis such as cross-validation
that contains an element of randomness, so that the results obtained can
be reproduced precisely at a later time.

We begin by using the sample() function to split the set of observations
into two halves, by selecting a random subset of 196 observations out of
the original 392 observations. We refer to these observations as the training
set.

> library (ISLR)
> set.seed (1)
> train=sample (392,196)

(Here we use a shortcut in the sample command; see ?sample for details.)
We then use the subset option in 1m() to fit a linear regression using only
the observations corresponding to the training set.

> 1m.fit=1m(mpg~horsepower ,data=Auto,subset=train)

We now use the predict() function to estimate the response for all 392
observations, and we use the mean() function to calculate the MSE of the
196 observations in the validation set. Note that the -train index below
selects only the observations that are not in the training set.

> attach (Auto)
> mean ((mpg-predict (Im.fit ,Auto)) [-train]~2)
[1] 26.14

Therefore, the estimated test MSE for the linear regression fit is 26.14. We
can use the poly() function to estimate the test error for the quadratic
and cubic regressions.

> 1m.fit2=1m(mpg~poly (horsepower ,2) ,data=Auto,subset=train)
> mean ((mpg-predict (Ilm.fit2,Auto)) [-train]~2)

[1] 19.82

> 1Im.fit3=1m(mpg~poly (horsepower ,3) ,data=Auto,subset=train)
> mean ((mpg-predict (lm.fit3,Auto)) [-train]~2)

[1] 19.78

These error rates are 19.82 and 19.78, respectively. If we choose a different
training set instead, then we will obtain somewhat different errors on the
validation set.

> set.seed(2)
> train=sample (392,196)
> 1m.fit=1m(mpg~horsepower ,subset=train)

seed

sample ()

192 5. Resampling Methods

> mean ((mpg-predict (Ilm.fit ,Auto)) [-train]~2)

[1] 23.30

> Im.fit2=1m(mpg~poly (horsepower ,2) ,data=Auto,subset=train)
> mean ((mpg-predict (Im.fit2,Auto)) [-train]~2)

[1] 18.90

> Im.fit3=1m(mpg~poly (horsepower ,3) ,data=Auto,subset=train)
> mean ((mpg-predict (lm.fit3,Auto)) [-train]~2)

[1] 19.26

Using this split of the observations into a training set and a validation
set, we find that the validation set error rates for the models with linear,
quadratic, and cubic terms are 23.30, 18.90, and 19.26, respectively.
These results are consistent with our previous findings: a model that
predicts mpg using a quadratic function of horsepower performs better than
a model that involves only a linear function of horsepower, and there is
little evidence in favor of a model that uses a cubic function of horsepower.

5.3.2 Leave-One-Out Cross-Validation

The LOOCYV estimate can be automatically computed for any generalized
linear model using the glm() and cv.glm() functions. In the lab for Chap-
ter 4, we used the glm() function to perform logistic regression by passing
in the family="binomial" argument. But if we use gim() to fit a model
without passing in the family argument, then it performs linear regression,
just like the 1m() function. So for instance,

> glm.fit=glm(mpg~horsepower ,data=Auto)
> coef (glm.fit)
(Intercept) horsepower

39.936 -0.158

and

> Im.fit=1m(mpg~horsepower ,data=Auto)
> coef (1m.fit)
(Intercept) horsepower

39.936 -0.158

yield identical linear regression models. In this lab, we will perform linear
regression using the glm() function rather than the 1m() function because
the former can be used together with cv.glm(). The cv.gIm() function is
part of the boot library.

library (boot)
glm.fit=glm (mpg~horsepower ,data=Auto)
cv.err=cv.glm(Auto,glm.fit)
cv.err$delta

1 1
24.23 24.23

vV V VvV V

The cv.glm() function produces a list with several components. The two
numbers in the delta vector contain the cross-validation results. In this

cv.glm()

5.3 Lab: Cross-Validation and the Bootstrap 193

case the numbers are identical (up to two decimal places) and correspond
to the LOOCV statistic given in (5.1). Below, we discuss a situation in
which the two numbers differ. Our cross-validation estimate for the test
error is approximately 24.23.

We can repeat this procedure for increasingly complex polynomial fits.
To automate the process, we use the for() function to initiate a for loop
which iteratively fits polynomial regressions for polynomials of order i = 1
to ¢ = 5, computes the associated cross-validation error, and stores it in
the ith element of the vector cv.error. We begin by initializing the vector.
This command will likely take a couple of minutes to run.

> cv.error=rep (0,5)

> for (i in 1:5){

+ glm.fit=glm (mpg~poly (horsepower ,i),data=Auto)
+ cv.error[i]l=cv.glm(Auto,glm.fit) $delta [1]

+ }

>

[

Ccv.error
1] 24.23 19.25 19.33 19.42 19.03

As in Figure 5.4, we see a sharp drop in the estimated test MSE between
the linear and quadratic fits, but then no clear improvement from using
higher-order polynomials.

5.3.3 k-Fold Cross-Validation

The cv.glm() function can also be used to implement k-fold CV. Below we
use k = 10, a common choice for k, on the Auto data set. We once again set
a random seed and initialize a vector in which we will store the CV errors
corresponding to the polynomial fits of orders one to ten.

> set.seed (17)

> cv.error.10=rep (0,10)

> for (i in 1:10){

+ glm.fit=glm (mpg~poly (horsepower ,i),data=Auto)

+ cv.error.10[il=cv.glm (Auto,glm.fit ,K=10) $delta [1]
+ }

>
[

cv.error .10
1] 24.21 19.19 19.31 19.34 18.88 19.02 18.90 19.71 18.95 19.50

Notice that the computation time is much shorter than that of LOOCYV.
(In principle, the computation time for LOOCYV for a least squares linear
model should be faster than for k-fold CV, due to the availability of the
formula (5.2) for LOOCV; however, unfortunately the cv.glm() function
does not make use of this formula.) We still see little evidence that using
cubic or higher-order polynomial terms leads to lower test error than simply
using a quadratic fit.

We saw in Section 5.3.2 that the two numbers associated with delta are
essentially the same when LOOCYV is performed. When we instead perform
k-fold CV, then the two numbers associated with delta differ slightly. The

for()

for loop

194 5. Resampling Methods

first is the standard k-fold CV estimate, as in (5.3). The second is a bias-
corrected version. On this data set, the two estimates are very similar to
each other.

5.3.4 The Bootstrap

We illustrate the use of the bootstrap in the simple example of Section 5.2,
as well as on an example involving estimating the accuracy of the linear
regression model on the Auto data set.

Estimating the Accuracy of a Statistic of Interest

One of the great advantages of the bootstrap approach is that it can be
applied in almost all situations. No complicated mathematical calculations
are required. Performing a bootstrap analysis in R entails only two steps.
First, we must create a function that computes the statistic of interest.
Second, we use the boot () function, which is part of the boot library, to
perform the bootstrap by repeatedly sampling observations from the data
set with replacement.

The Portfolio data set in the ISLR package is described in Section 5.2.
To illustrate the use of the bootstrap on this data, we must first create
a function, alpha.fn(), which takes as input the (X,Y) data as well as
a vector indicating which observations should be used to estimate «. The
function then outputs the estimate for a based on the selected observations.

alpha.fn=function (data,index){

X=data$X [index]

Y=data$Y [index]

return ((var (Y)-cov (X,Y))/(var (X)+var (Y) -2*xcov(X,Y)))
}

+ + + + Vv

This function returns, or outputs, an estimate for o based on applying
(5.7) to the observations indexed by the argument index. For instance, the
following command tells R to estimate « using all 100 observations.

> alpha.fn(Portfolio,1:100)
[1] 0.576

The next command uses the sample() function to randomly select 100 ob-
servations from the range 1 to 100, with replacement. This is equivalent
to constructing a new bootstrap data set and recomputing & based on the
new data set.

> set.seed (1)
> alpha.fn(Portfolio,sample (100,100, replace=T))
[1] 0.596

We can implement a bootstrap analysis by performing this command many
times, recording all of the corresponding estimates for a, and computing

boot ()

5.3 Lab: Cross-Validation and the Bootstrap 195

the resulting standard deviation. However, the boot () function automates

b
this approach. Below we produce R = 1,000 bootstrap estimates for a. 0ot 0

> boot(Portfolio,alpha.fn,R=1000)
ORDINARY NONPARAMETRIC BOOTSTRAP

Call:
boot (data = Portfolio, statistic = alpha.fn, R = 1000)

Bootstrap Statistics
original bias std. error
tlx 0.5758 -7.315e-05 0.0886

The final output shows that using the original data, & = 0.5758, and that
the bootstrap estimate for SE(&) is 0.0886.

Estimating the Accuracy of a Linear Regression Model

The bootstrap approach can be used to assess the variability of the coef-
ficient estimates and predictions from a statistical learning method. Here
we use the bootstrap approach in order to assess the variability of the
estimates for 8y and (31, the intercept and slope terms for the linear regres-
sion model that uses horsepower to predict mpg in the Auto data set. We
will compare the estimates obtained using the bootstrap to those obtained
using the formulas for SE(fy) and SE(5;) described in Section 3.1.2.

We first create a simple function, boot.fn(), which takes in the Auto data
set as well as a set of indices for the observations, and returns the intercept
and slope estimates for the linear regression model. We then apply this
function to the full set of 392 observations in order to compute the esti-
mates of By and [y on the entire data set using the usual linear regression
coefficient estimate formulas from Chapter 3. Note that we do not need the
{ and } at the beginning and end of the function because it is only one line
long.
> boot.fn=function (data,index)

+ return (coef (1lm(mpg~horsepower ,data=data,subset=index)))
> boot.fn(Auto,1:392)

(Intercept) horsepower
39.936 -0.158

The boot.fn() function can also be used in order to create bootstrap esti-
mates for the intercept and slope terms by randomly sampling from among
the observations with replacement. Here we give two examples.

> set.seed (1)
> boot.fn(Auto,sample (392,392, replace=T))
(Intercept) horsepower

38.739 -0.148
> boot.fn (Auto,sample (392,392, replace=T))
(Intercept) horsepower

40.038 -0.160

196 5. Resampling Methods

Next, we use the boot () function to compute the standard errors of 1,000
bootstrap estimates for the intercept and slope terms.

> boot (Auto ,boot.fn,1000)
ORDINARY NONPARAMETRIC BOOTSTRAP

Call:
boot (data = Auto, statistic = boot.fn, R = 1000)

Bootstrap Statistics

original bias std. error
tix 39.936 0.0297 0.8600
t2*x -0.158 -0.0003 0.0074

This indicates that the bootstrap estimate for SE(S3) is 0.86, and that
the bootstrap estimate for SE(Bl) is 0.0074. As discussed in Section 3.1.2,
standard formulas can be used to compute the standard errors for the
regression coefficients in a linear model. These can be obtained using the
summary () function.

> summary (1lm (mpg~horsepower ,data=Auto)) $coef
Estimate Std. Error t value Pr(>|t])

(Intercept) 39.936 0.71750 55.7 1.22e-187

horsepower -0.158 0.00645 -24.5 7.03e-81

The standard error estimates for Bo and Bl obtained using the formulas
from Section 3.1.2 are 0.717 for the intercept and 0.0064 for the slope.
Interestingly, these are somewhat different from the estimates obtained
using the bootstrap. Does this indicate a problem with the bootstrap? In
fact, it suggests the opposite. Recall that the standard formulas given in
Equation 3.8 on page 66 rely on certain assumptions. For example, they
depend on the unknown parameter o2, the noise variance. We then estimate
o? using the RSS. Now although the formula for the standard errors do not
rely on the linear model being correct, the estimate for o2 does. We see in
Figure 3.8 on page 91 that there is a non-linear relationship in the data, and
so the residuals from a linear fit will be inflated, and so will 62. Secondly,
the standard formulas assume (somewhat unrealistically) that the z; are
fixed, and all the variability comes from the variation in the errors ¢;. The
bootstrap approach does not rely on any of these assumptions, and so it is
likely giving a more accurate estimate of the standard errors of Bo and 51
than is the summary () function.

Below we compute the bootstrap standard error estimates and the stan-
dard linear regression estimates that result from fitting the quadratic model
to the data. Since this model provides a good fit to the data (Figure 3.8),
there is now a better correspondence between the bootstrap estimates and
the standard estimates of SE(8y), SE(31) and SE(32).

5.4 Exercises

> boot.fn=function (data,index)

+ coefficients(lm(mpg~horsepower+I(horsepower "2) ,data=data,
subset=index))

> set.seed (1)

> boot (Auto ,boot.fn,1000)

ORDINARY NONPARAMETRIC BOOTSTRAP

Call:
boot (data = Auto, statistic = boot.fn, R = 1000)

Bootstrap Statistics

original bias std. error
tl*x 56.900 6.098e-03 2.0945
t2*% -0.466 -1.777e-04 0.0334
t3*x 0.001 1.324e-06 0.0001

> summary (1lm (mpg~horsepower +I (horsepower "2) ,data=Auto)) $coef
Estimate Std. Error t value Pr(>|t])

(Intercept) 56.9001 1.80043 32 1.7e-109
horsepower -0.4662 0.03112 -15 2.3e-40
I(horsepower ~2) 0.0012 0.00012 10 2.2e-21

H.4 Exercises

Conceptual

197

1. Using basic statistical properties of the variance, as well as single-
variable calculus, derive (5.6). In other words, prove that « given by

(5.6) does indeed minimize Var(aX + (1 — a)Y).

2. We will now derive the probability that a given observation is part
of a bootstrap sample. Suppose that we obtain a bootstrap sample

from a set of n observations.

(a) What is the probability that the first bootstrap observation is
not the jth observation from the original sample? Justify your

answer.

(b) What is the probability that the second bootstrap observation

is not the jth observation from the original sample?

(c) Argue that the probability that the jth observation is not in the

bootstrap sample is (1 —1/n)™.

(d) When n = 5, what is the probability that the jth observation is

in the bootstrap sample?

(e) When n = 100, what is the probability that the jth observation

is in the bootstrap sample?

198 5. Resampling Methods

(f) When n = 10,000, what is the probability that the jth observa-
tion is in the bootstrap sample?

(g) Create a plot that displays, for each integer value of n from 1
to 100,000, the probability that the jth observation is in the
bootstrap sample. Comment on what you observe.

(h) We will now investigate numerically the probability that a boot-
strap sample of size n = 100 contains the jth observation. Here
j = 4. We repeatedly create bootstrap samples, and each time
we record whether or not the fourth observation is contained in
the bootstrap sample.

> store=rep (NA, 10000)

> for(i in 1:10000) {
store[i]=sum(sample (1:100, rep=TRUE)==4)>0

}

> mean(store)
Comment on the results obtained.
3. We now review k-fold cross-validation.

(a) Explain how k-fold cross-validation is implemented.

(b) What are the advantages and disadvantages of k-fold cross-
validation relative to:

i. The validation set approach?
ii. LOOCV?

4. Suppose that we use some statistical learning method to make a pre-
diction for the response Y for a particular value of the predictor X.
Carefully describe how we might estimate the standard deviation of
our prediction.

Applied

5. In Chapter 4, we used logistic regression to predict the probability of
default using income and balance on the Default data set. We will
now estimate the test error of this logistic regression model using the
validation set approach. Do not forget to set a random seed before
beginning your analysis.

(a) Fit a logistic regression model that uses income and balance to
predict default.

(b) Using the validation set approach, estimate the test error of this
model. In order to do this, you must perform the following steps:

i. Split the sample set into a training set and a validation set.

()

(d)

5.4 Exercises 199

ii. Fit a multiple logistic regression model using only the train-
ing observations.

iii. Obtain a prediction of default status for each individual in
the validation set by computing the posterior probability of
default for that individual, and classifying the individual to
the default category if the posterior probability is greater
than 0.5.

iv. Compute the validation set error, which is the fraction of
the observations in the validation set that are misclassified.

Repeat the process in (b) three times, using three different splits
of the observations into a training set and a validation set. Com-
ment on the results obtained.

Now consider a logistic regression model that predicts the prob-
ability of default using income, balance, and a dummy variable
for student. Estimate the test error for this model using the val-
idation set approach. Comment on whether or not including a
dummy variable for student leads to a reduction in the test error
rate.

6. We continue to consider the use of a logistic regression model to
predict the probability of default using income and balance on the
Default data set. In particular, we will now compute estimates for
the standard errors of the income and balance logistic regression co-
efficients in two different ways: (1) using the bootstrap, and (2) using
the standard formula for computing the standard errors in the glm()
function. Do not forget to set a random seed before beginning your
analysis.

(a)

(d)

Using the summary() and glm() functions, determine the esti-
mated standard errors for the coefficients associated with income
and balance in a multiple logistic regression model that uses
both predictors.

Write a function, boot.£fn(), that takes as input the Default data
set as well as an index of the observations, and that outputs
the coefficient estimates for income and balance in the multiple
logistic regression model.

Use the boot () function together with your boot.fn() function to
estimate the standard errors of the logistic regression coefficients
for income and balance.

Comment on the estimated standard errors obtained using the
glm() function and using your bootstrap function.

7. In Sections 5.3.2 and 5.3.3, we saw that the cv.glm() function can be
used in order to compute the LOOCYV test error estimate. Alterna-
tively, one could compute those quantities using just the gim() and

200 5. Resampling Methods

predict.glm() functions, and a for loop. You will now take this ap-
proach in order to compute the LOOCYV error for a simple logistic
regression model on the Weekly data set. Recall that in the context
of classification problems, the LOOCV error is given in (5.4).

(a) Fit a logistic regression model that predicts Direction using Lagl
and Lag2.

(b) Fit a logistic regression model that predicts Direction using Lag1
and Lag2 using all but the first observation.

(c¢) Use the model from (b) to predict the direction of the first obser-
vation. You can do this by predicting that the first observation
will go up if P(Direction="Up"|Lagl, Lag2) > 0.5. Was this ob-
servation correctly classified?

(d) Write a for loop from i = 1 to i = n, where n is the number of

observations in the data set, that performs each of the following
steps:

i. Fit a logistic regression model using all but the ith obser-
vation to predict Direction using Lagl and Lag?2.

ii. Compute the posterior probability of the market moving up
for the ¢th observation.

iii. Use the posterior probability for the ith observation in order
to predict whether or not the market moves up.

iv. Determine whether or not an error was made in predicting
the direction for the ith observation. If an error was made,
then indicate this as a 1, and otherwise indicate it as a 0.

(e) Take the average of the n numbers obtained in (d)iv in order to
obtain the LOOCYV estimate for the test error. Comment on the
results.

8. We will now perform cross-validation on a simulated data set.

(a) Generate a simulated data set as follows:

> set.seed (1)
> x=rnorm (100)
> y=x-2%x"2+rnorm (100)

In this data set, what is n and what is p? Write out the model
used to generate the data in equation form.

(b) Create a scatterplot of X against Y. Comment on what you find.

(¢) Set a random seed, and then compute the LOOCYV errors that
result from fitting the following four models using least squares:

5.4 Exercises 201

1. Y:ﬁo—f-BlX—FC

.Y =80+ 61X + X%+ ¢

iii. Y =By + S1X + BoX? + B3 X5 + ¢

iv. Y = P04 /X + B2 X2 + B3 X3+ B Xt + e
Note you may find it helpful to use the data.frame() function
to create a single data set containing both X and Y.
Repeat (c) using another random seed, and report your results.
Are your results the same as what you got in (c)? Why?
Which of the models in (¢) had the smallest LOOCV error? Is
this what you expected? Explain your answer.
Comment on the statistical significance of the coefficient esti-
mates that results from fitting each of the models in (c) using
least squares. Do these results agree with the conclusions drawn
based on the cross-validation results?

9. We will now consider the Boston housing data set, from the MASS
library.

(a)
(b)

Based on this data set, provide an estimate for the population
mean of medv. Call this estimate fi.

Provide an estimate of the standard error of fi. Interpret this
result.

Hint: We can compute the standard error of the sample mean by
dividing the sample standard deviation by the square root of the
number of observations.

Now estimate the standard error of i using the bootstrap. How
does this compare to your answer from (b)?

Based on your bootstrap estimate from (c), provide a 95 % con-
fidence interval for the mean of medv. Compare it to the results
obtained using t.test (Boston$medv).

Hint: You can approzimate a 95 % confidence interval using the
formula [fn — 2SE(Q), o + 2SE(f1)].

Based on this data set, provide an estimate, fi,eq, for the median
value of medv in the population.

We now would like to estimate the standard error of fi,,eq. Unfor-
tunately, there is no simple formula for computing the standard
error of the median. Instead, estimate the standard error of the
median using the bootstrap. Comment on your findings.

Based on this data set, provide an estimate for the tenth per-
centile of medv in Boston suburbs. Call this quantity fig.1. (You
can use the quantile() function.)

Use the bootstrap to estimate the standard error of fig.1. Com-
ment on your findings.

