
EECS 159A/CSE 181A
Task Planning

Outline
Statement of Work

Divide up project into tasks and subtasks

Assign tasks to responsible individuals

Define deliverables

Gantt Chart

Dependency among subtasks and across tasks

Estimate task effort, schedule tasks by week

Define milestones for synchronization

Statement of Work
Outline

Tasks & subtasks

Details on the tasks & subtasks

Expanded outline of the task & subtasks

Can be complete sentences or paragraphs

Deliverables

Associated with each task

Steps in Generating Task Outline

Decompose work into tasks & subtasks

by system architecture (horizontal)

by layer of abstraction (vertical)

Cover all Stages of Development

design, implement, integrate, test, improve

Figure out dependency between tasks,  
cut unnecessary dependencies

Divide and Conquer
Divide: more intuitive

Spatial: horizontal vs. vertical decomposition

Temporal: stages of development

Conquer: often neglected or underestimated

not automatic! always takes more time and effort

must be modular to enable independent testing

try to start integrating early

should not wait until integration to do first test

Tasks & Subtasks vs. Milestones
Divide and Conquer

Tasks: “Divide”

Horizontally: by Subsystems (“block diagram”)

Vertically: Level of abstraction (HW, SW, comm)

Nature of work (technical, presentation, …)

Milestones: “conquer”

Intermediate goals along the way to completion

Project or subproject level, can cut across tasks

Potential decision points to switch to Plan B

Horizontal vs Vertical
Decomposition

Horizontal: by subsystems

Divide task by subsystem

Each person may need to
work on multiple layers of
abstraction

Vertical: by layer of
abstraction

e.g., hardware, HAL,
firmware, software, protocol
stack, app

Each person may need to
work across multiple systems

scanner gateway server
Person1 v
Person2 v
Person3 v

PersonA PersonB PersonC
application v
firmware v
hardware v

Example Decomposition 1:
Mostly Horizontal

telemetry
board

sensors
enclosure

Control &
processing UI

MVC
Comm.

Power

Data
Logging

1. Scanner
SubsystemTa

sk
s 2. Gateway

Subsystem
3. Server

Subsystem

This means you can
(probably) develop in
parallel, but you may
spend a lot more time

in integration.

Example Task Outline 1:
Horizontal Decomposition

1. Scanner Subsystem

1.1. Component research

1.2. Interface definition

1.3. Enclosure design

1.4. Telemetry design

1.5. Presentation

2. Gateway Subsystem

2.1. Data logging subsystem

2.2. Bluetooth driver

2.3. Power subsystem

2.4. Sensor interfacing

2.5. Presentation

3. Server Subsystem

3.1. Define Database Schema

3.2. Access Control Policy

3.3. Python Coding

3.4. Presentation

4. Integration

4.1. Integrating Scanner &
Gateway

4.2. Integrating Gateway & Server

4.3. Integrating all subsystems

4.4. Demo video

4.5. Final report

Issues with Horizontal
Decomposition

Advantages:

Each person is responsible for
own subsystem

Can develop in parallel,
minimal dependency - till later

Issues

Each person needs to know
several layers of abstraction

e.g., both Person2 & Person3
would need to know hardware,
firmware, etc

They might start talking to each
other too late!

scanner gateway server

Person1 v

Person2 v

Person3 v

both are embedded systems
both contain hardware, firmware,
device interfacing, …

one person must be able to build the
whole scanner (hardware, firmware),
another person must be able to build
the whole gateway, …

application v
firmware v
hardware v

application v
firmware v
hardware v

Example Task Outline 2:  
Vertical Decomposition

1. Hardware

1.1. Component research

1.2. Schematic for scanner, gateway

1.3. Enclosure for scanner, gateway

1.4. PCB layout and assembly for..

1.5. Hardware Testing for …

2. Firmware

2.1. Firmware architecture for
scanner, gateway

2.2. Device Drivers and HAL for
scanner, gateway

2.3. Bluetooth Communication
between scanner, gateway

2.4. Power Management for scanner,
gateway

2.5. Firmware testing

3. Application

3.1. Application layer for scanner

3.2. Application layer for gateway

3.3. Application layer for server

4. Integration & Presentation

4.1. Poster 1

4.2. Testing Scanner, Gateway, Server

4.3. Demo video

4.4. Final report

Example Decomposition 2:
Mostly Vertical

scanner gateway database GUI client

2. Hardware

1. Firmware

3. App

schematic
board layout

enclosure enclosure
telemetry

schematic

HAL
driver

protocol stack
power mgmt.

application

telemetry

HAL

driver

application

board layout

protocol stack

application

server
hardware

protocol stack

application

This means the same
“domain expert” may
have to work across
multiple subsystems!

Issues with Vertical
Decomposition

“Advantages”

Each person just needs to
be an expert on their own
area (e.g., hardware, HAL,
firmware, software, protocol
stack, app)

No need to learn another
field from scratch

Issues

e.g., Each person may need
to work across multiple
subsystems

Logistically may be more
difficult: might need
multiple units of the same
MCU boards, debuggers,
etc to develop in parallel

PersonA PersonB PersonC

application v

firmware v

hardware vscanner gateway server
v v

scanner gateway server
v v

scanner gateway server
v v v

So, should you assign tasks
vertically or horizontally?
If your team’s skill set is…

from different majors => vertical may be better

different majors may contribute at different levels

If your system organization is..

mostly networked => horizontal may be better

can proceed in parallel, minimal dependency,
black-box testing

Often mixed vertical and horizontal

Common Hardware Tasks
component evaluation

component ordering

schematic design

schematic checking (inspection, simulation)

layout & floor planning

assembly

testing

allow time for another hardware iteration

Refining Task into Detailed SOW

1. Hardware

1.1. Component research

•Find options for ID scanner (barcode, QRcode)

•Deliverable: ordered scanner

1.2. Enclosure design

•Draw enclosure 3D model in Solidworks

•Print sample enclosure for fitting PCB and for look and feel

•Revise 3D model to meet constraint

•Deliverable: 2 units of 3D-printed enclosures

1.3. …

Common Mechanical Design
Tasks

conceptualization

CAD modeling

3D printing

fitting, post processing

assembling

testing

design revision, fine tuning

Common Software Tasks
software block diagrams

defining API and data structures

writing header files

coding

testing

debugging

documentation

Common Management Tasks
settle on tools & method

problem statement

list requirements

evaluate solutions

budgeting

make purchases

document work

Organize project tasks

Given a problem

Identify what is ready solution vs. work that
needs to be done

Organize tasks by category

Figure out dependencies

True dependency vs. pseudo-dependency

Anticipate delays outside your control

Task Assignment and Scheduling

Now that we have SOW

Need to assign tasks to team members

Workload should be balanced

Tasks should match the person’s skill set

Need to schedule tasks on a timeline

Figure out dependencies among tasks

May need to work backwards from deadline!

Team Organization
Choose a “balanced” organization

individual: between technical & nontechnical
tasks

team: equitable workload among members

Hierarchy

Flat (1 level) preferred; no more than 2 levels

Assign responsibility to individuals  
=> that person makes decision in that aspect

Project Planning
Input: tasks and subtasks

Estimate the amount of time required

figure out dependencies between tasks

Place subtasks onto Gantt Chart

Optionally add arrows to show dependencies

Identify milestones

Goals that cut across tasks

Potential points for fall-back plans (Plan A, B, …)

Considerations for
Task Organization

Responsibilities vs. execution (in a small team)

The most-qualified person should be responsible

Most people should manage themselves

Integration Task

Could be its own task but involves everyone

Could integrate subsystems before entire system

Integration almost always takes longer than expected

Static vs. dynamic tasks

Allow enough slack for unexpected tasks to arise

Task Assignment
1 top-level task per one person

Top-level task includes all its
subtasks

Assignee = coordinator, likely also
doer

Check entries for ownership

put an [x] in rows within your own
column

Idea: letter encoding for status

need people, waiting on decision,
completed, …

Task Peter Ann Jose
1. Hardware X
1.1 Components x
1.2 PCB layout x
1.3 Enclosure x
1.4 … x
2. Firmware X
2.1 Architecture x
2.2 Driver & HAL x

Timeline
Time Granularity and Range

Usually good to plan by 1-week or 2-weeks

Day may be too fine-grained

Reference real calendar

Making Gantt Chart
X-axis: Time (by week or 2 weeks)

Y-axis: Tasks and subtasks
Task \ week of 9/27 10/11 10/25 11/8 11/15 11/29 12/13 12/27 1/10 1/24 2/7 2/21 3/6 3/20

1. Hardware

1.1 components

1.2 Enclosure

1.3 Schematic

1.4 PCB

1.5 Testing Integ

2. Firmware

2.1 FW Arch.

2.2 Driver & Hal

2.3 Bluetooth

2.4 Power Mgmt

2.5 Testing Integ

Milestones
Intermediate goals

Important achievements before completion

Cuts across tasks. Enabler for next (sub)phase of work

Potential decision points to switch to Plan B

Examples

Feasibility of wireless data transfer

Hardware board ready

First version of app ready for testing with board

First outdoor operation of sensors without enclosure

Integrating Milestones into  
Gantt Chart

Milestones for a task or across tasks

Task \ week of 9/27 10/11 10/25 11/8 11/15 11/29 12/13 12/27 1/10 1/24 2/7 2/21 3/6 3/20

1. Hardware

1.1 components

1.2 Enclosure

1.3 Schematic

1.4 PCB

1.5 Testing Integ

2. Firmware

2.1 FW Arch.

2.2 Driver & Hal

2.3 Bluetooth

2.4 Power Mgmt

2.5 Testing Integ

first hardware
board ready

feasibility of
wireless comm.

first outdoor
operationfirst version

of app ready

Plan B
Needed to combat uncertainty

Allows some deviation from ideal goal

But still showcase most of the proposed functions

e.g.: want to custom-make PCB, but doesn’t work

Plan B: Use eval. board in place of custom board

e.g.: power management causes noisy sensor data

Plan B: Disable power management

make sure the system functions correctly, manage power
later

Do’s & Don’t’s on Plan B
Identify your priorities

What is crucial, and what’s bonus?

Avoid doing a radically different Plan B

Encapsulate Plan B in statement of work

Better to build in enough slack into schedule

The rest of plan should remain stable

Try to isolate impact of Plan B on the rest of project

Keep the same milestones

Make Gantt chart appear “unconditional”

Task Dependencies
Need to do Task A before Task B

Example: hardware tasks

order components, make PCB first, before you
can solder components onto PCB

Example: software tasks

define API, write the code, before you can test
the code.

Sounds kind of obvious, but…

Pseudo-dependencies
Some dependencies are not real!

Example: want to make a custom board

Can’t start writing code until board is ready  
=> really? Think again!

Example: Testing Scanner
Communication

Can’t test scanner until gateway is ready  
=> really? Think again

Resource Dependencies
Example Resources

hardware board, compiler (limited license)

Solution: duplicate resources

one board not enough for parallel development 
=> buy more boards!

Solution: stand-in

Before custom board is ready, buy existing evaluation
board for the same processor to run code

No excuse for software and hardware people to blame
each other for stalling their progress!

Testing/Debugging tips

How to test a scanner before the
gateway is ready?

Several options

API stub routines in scanner code

Computer + RF module (over UART) as stand-
in gateway

Option 1: API Stubs
At a given level of abstraction, there are
corresponding routines on both sides

LINK

MAC

PHY

LINK

MAC

PHY

Scanner Gateway

send
recv

recv
send

API Stubs for testing
When the other side doesn't exist, replace
it with a file reading/writing (or GUI) stub!

Same idea works for SD card, scanner,
etc...

LINK

MAC

PHY

LINK

MAC

PHY

Scanner fake Gateway

send
recv

recv
send

file
R/W

Option 2: Computer+RF module

Works for serial port, maybe USB too

e.g., XBee, which uses AT commands

works for serial scanner as well

Can replace MCU board with PC

Hyperterminal to type in command

better option: Python+pyserial

Option 2: Computer + RF
module

PC as a stand-in for an MCU

PC RFUSB-
serial

terminal
or

python+
pyserial

AT
Cmds

RF
wireless

MCU

your scanner

fake gateway

scanner

Summary
Divide up project into tasks and subtasks

Assign tasks to responsible individuals

Define deliverables

Find dependency among subtasks and
across tasks

Identify and eliminate pseudo-dependencies

Estimate task effort, schedule tasks by week

Define milestones for synchronization

