Senior Design Projects (EECS 159A, CSE 181A)

First Meeting

Outline

- Projects
- Stages of Projects
- Paper project
- Administration

What is Senior Project for EECS and CSE

2-quarter sequence

- EECS 159A, CSE 181A: planning + project work
- EECS 159B, CSE 181B: project work only

Purposes

- hands-on experience with solving a real problem
- multidisciplinary team work
- Consider broader impacts (economic, societal, environmental, etc), professionalism, ethics

Enrollment

Course Section	EECS 159A / CSE 181A	EECS 159B / CSE 181B
"Lecture" (where you get your grade)	Common instructor	Team's mentor
"Lab"	Team's mentor (get authorization code to enroll)	Common lab, lower floors of Engineering Tower

Steps Required for EECS 159A / CSE 181A

- 1. Form a team (3-4 people)
- 2. Ask a faculty to agree to be your mentor
- 3. Enroll in **lab** under your mentor's name
 - May need to get authorization code from mentor!
- 4. Course work for the course
 - Common project for the "lecture" portion
 - Team project with your mentor

Approach

First quarter ('A' course)

Paper Project - same topic for all

- Your own team project with mentor
- Second quarter ('B' course)
 - Continuation of team project with mentor
 - Mentor gives you the grade

The 'A' Course

- "Common Paper Project"
 - Lecture: Topics on project planning & issues
 - Momework: your team's approach & trade-offs
- "Real Project"
 - Schedule your own team meeting
 - Meet with mentor => Your responsibility!!
 - Design review: Poster, possibly demo
 - Project Plan for your project

The 'B' Course

- Entirely between you and your mentor
 - Execute your plan from 159A/181A
 - Arrange your own meetings & project updates
- TA help and lab space (TBA)
 - On the lower 4 floors of Engineering Tower
 - Shared by different engineering majors
 - Computing, mechanical, electrical, etc.

Teams

3-4 people per team from this course

Majors

- *preferably* from different majors (CSE, CpE EE)
- Skill sets are more important than majors

Team captain

- Contact window to mentor, administrator, etc.
- facilitator, not dictator!

Mentors

Any EECS or ICS faculty

most qualified to mentor EECS-CSE projects

- If no lab section, can request one be created by email at <u>engcasa@uci.edu</u>
- Non-EECS/ICS faculty
 - Yes, from other departments or schools!
 - mentor can email <u>engcasa@uci.edu</u> to create lab section
- What about non-UCI mentors?
 - Possible, but still need to team up with a UCI faculty

Roles of Mentor

- Interested in guiding your team
 - Interested in your project topic, or defines your project
 - wants to see you succeed by guiding you
 - high-level guidance, not detail-level debugging
- (bonus) providing resources
 - parts, boards, lab space, grad student, money..
 - NOT obligated!! They do this out of kindness
- Gives your grade on project (159B/181B)

Preparation before Approaching a Mentor

Prepare a "Group Resume"

- Introduce each member: major, skill set, work or undergrad-research experience, GPA
- Focus on the strengths of the team
- Discuss potential projects
 - something you may have been working on
 - should have some clues about how to make it
- Research about potential mentors
 - their research areas, previous senior projects, etc.

How to decide on a Mentor

- You have to like each other
 - talk to them in person to find out for yourself
 - management style: micro- or macro-managed?
- Mutual interest in project
 - You want to work on mentor's project, or
 - Mentor is interested in your project idea
- Make sure they are not overloaded!
 - Solution of the second structure of the second stru

Who defines the projects?

Faculty

In faculty's own area of research

faculty's area of curiosity

Students

In student's own area of interest or competence

External sources

- Design contest (e.g., TI, Freescale, conferences)
- Industry (local company) or institute (e.g., JPL)

Grading ('A' Course)

- So% Weekly assignments
 - Team formation, Paper project
- 30% Project plan and work w/ mentor
 - For your team's project with your mentor
 - Graded by your mentor
- 20% Class Participation
 - attendance, peer evaluation
- See syllabus at https://canvas.eee.uci.edu/ courses/2588/

Two Websites

- Canvas Site for EECS-CSE projects
 - https://canvas.eee.uci.edu/courses/2588/
 - If or assignments, course materials
- EECS-CSE Senior Projects Portal
 - http://srproj.eecs.uci.edu/
 - public project pages, by mentors and students
 - general forums (not limited to the class)

Lecture Topics

- 1. (9/23) Introduction: teams, mentors, paper project
- 2. (9/30) Application & Technology exploration
- 3. (10/7) Constraints, Requirements, and Objectives
- 4. (10/14) Technology Options
- 5. (10/21) Design Aspects
- 6. (10/28) Design Refinement
- 7. (11/4) Project Tasks
- 8. (11/11) Project Planning and tools
- 9. (11/18) Engineering standards, Ethics in engineering, IP
- 10. (12/2) Winter Design Review

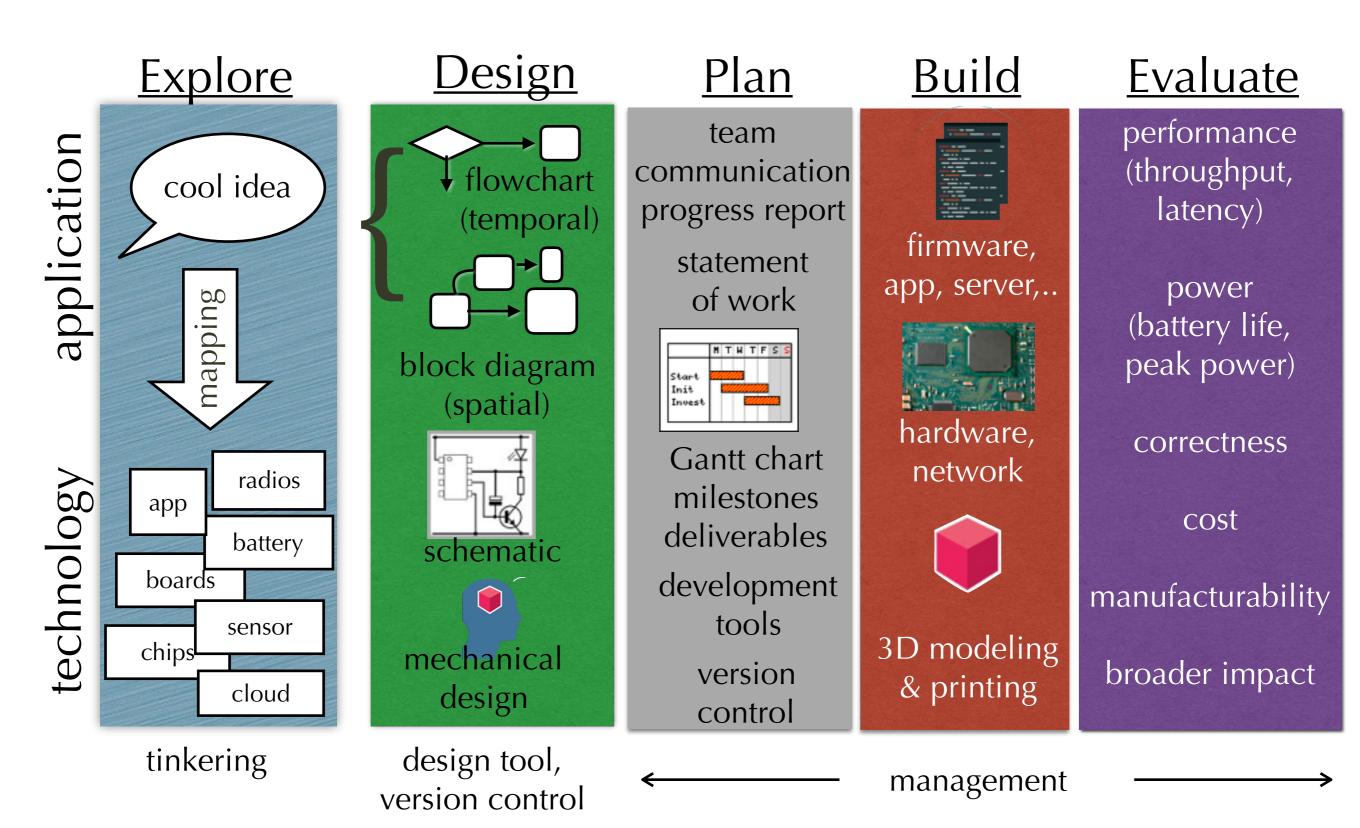
Weekly Assignments and due dates

- 1. (9/30) Team formation & mentor confirmation
- 2. (10/7) Technology exploration
- 3. (10/14) Constraints, requirements, objectives
- 4. (10/21) Detailed Technology options
- 5. (10/28) Design aspects: flowchart vs block diagram
- 6. (11/4) Design Refinement
- 7. (11/11) Project Tasks
- 8. (11/18) Project Planning and Management
- 9. 10. (12/2) Broader impacts, ethics, standards, IP, ...

Outline of Project Plan (due at end of quarter)

- Introduction: Motivation, Impacts
- Related work
- Problem statement
- Design plan
- Implementation plan
- Evaluation plan
- Project Plan, deliverables
- Conclusions

Funding


- By default, you pay for your project
- Get others to pay for your projects!
- Options
 - Dean's office
 - Profs (if relevant to ongoing projects)
 - UROP
 - other sources

Stages of a Project

Explore

- Conceptualization, tinkering, prototyping
- Design
 - Problem statement: requirements, constraints, objectives
 - top-down, define organization & interface, trade-offs
- Plan
 - tasks, schedule (Gantt chart), budget, tools to use
- Build (implement)
 - Build subsystems, integrate, test as you go
- Evaluate
 - Do individual parts work? Does whole system work? How well?

Project Phases

Common Paper Project

- Taking Attendance in a class
 - Ourrent practice: sign-in sheet.
 - Obvious problems: inconvenient, forgeable
- Migh-tech solution?
 - Embedded system vs. smartphone?
 - Local or server?