
Analysis in Practice:
Compositional Analysis of Android
inter-app Security Vulnerabilities

FQ 2016

IN4MATX 221
Alireza	Sadeghi

Outline

2

Motivation

• Mobile	Security	Threats
• Android	Overview
• Inter-app	Vulnerability

COVERT

• Static	Analysis
• Formal	Verification
• Challenges
• Evaluation
• Demo

Outline

3

Motivation

• Mobile	Security	Threats
• Android	Overview
• Inter-app	Vulnerability

COVERT

• Static	Analysis
• Formal	Verification
• Challenges
• Evaluation
• Demo

The Rise of Mobile

2,000

1,600

1,200

800

400

0

In
te
rn
et
	U
se
rs
	(M

ill
io
ns
)

2008																				 2010																										 2012																										 2014																						 2016

Source:

4

The Rise of Mobile

Billion

unique global mobile users

Share of Mobile devices for U.S Internet usage

Billion

U.S. Mobile Revenue

hours/day

Time spent on mobile device by Americans

Sources:	TechCrunch,	CNN	Money,	Statista,	eMarketer

3.65 2:54

$400 55%

5

The Rise of Mobile
Security Threats

Source:

6

The Rise of Mobile
Security Threats

7

Android is the Primary Target

Source:

8

What makes Android so
vulnerable?

• Most Popular (Global over 80%, U.S.60%)

9

• Open Platform
10

What makes Android so
vulnerable?

• Security flaws in Android
11

What makes Android so
vulnerable?

Outline

12

Motivation

• Mobile	Security	Threats
• Android	Overview
• Inter-app	Vulnerability

COVERT

• Static	Analysis
• Formal	Verification
• Challenges
• Evaluation
• Demo

Android Apps: Components
Activity	
Provides	User	
Interface

Service
Executes	Background	
Processes

Content	Provider	
Data	Sharing

Broadcast	Receiver	
Responds	to	system-
wide	announcement	
messages

13

Android Apps: Intents

14

COMPONENT:	com.example.ExampleActivity
ACTION: ACTION_EDIT
DATA:	image/*
…
EXTRA:	(Key, Value)

Android Apps: Manifest

App	Configuration	(Manifest)

<Package>, <Version>
<Components>, <IntentFilters>
<Permissions>

15

Android Apps: Permissions

16

App	Configuration	(Manifest)

Static,	install-time Dynamic,	Run-time

<	v.	6 ≥	v.	6

Outline

17

Motivation

• Mobile	Security	Threats
• Android	Overview
• Inter-app	Vulnerability

COVERT

• Static	Analysis
• Formal	Verification
• Challenges
• Evaluation
• Demo

Inter-app vulnerability example:

privilege escalation

✖ No	SMS
Permission

SMS
Permission

✔

SMSService

18

Inter-app vulnerability example:

app collusion

19

Outline

20

Motivation

• Mobile	Security	Threats
• Android	Overview
• Inter-app	Vulnerability

COVERT

• Static	Analysis
• Formal	Verification
• Challenges
• Evaluation
• Demo

21

COVERT: Compositional Analysis of Inter-app Vulnerabilities

22

Static extraction of relevant elements

✖ No	SMS
Permission

SMS
Permission

✔

SMSService

1. Principal entities and properties defined in the manifest file

23

Static extraction of relevant elements

1. Principal entities and properties defined in the manifest file

24

Static extraction of relevant elements

✖ No	SMS
Permission

SMS
Permission

✔

SMSService

1. Principal entities and properties defined in the manifest file
2. Principal entities (e.g., Intent and Filters) that are latent in code

25

Static extraction of relevant elements

1. Principal entities and properties defined in the manifest file
2. Principal entities (e.g., Intent and Filters) that are latent in code

26

Static extraction of relevant elements

✖ No	SMS
Permission

SMS
Permission

✔

SMSService

1. Principal entities and properties defined in the manifest file
2. Principal entities (e.g., Intent and Filters) that are latent in code
3. Event-driven behavior of each app

27

Static extraction of relevant elements

✖ No	SMS
Permission

SMS
Permission

✔

SMSService

1. Principal entities and properties defined in the manifest file
2. Principal entities (e.g., Intent and Filters) that are latent in code
3. Event-driven behavior of each app
4. Sensitive Paths

28

Static extraction of relevant elements

29

Static Analysis
• Manual Security Assessment

– labor intensive
– error-prone

30

Static Analysis
• Static Analysis

– Automatically examines software for a specific
property (e.g., security) without executing the
program.

– Extracts abstract representation of the code (e.g.
Call Graph)

31

Static Analysis

32

Static vs. Dynamic analysis

• Static
– Sound but Conservative (Over-approximate)
– More False Positives

• Dynamic
– Unsound but Precise (Under-approximate)
– More False Negative

33

Challenges of Static Analysis of Android

✖ No	SMS
Permission

SMS
Permission

✔

SMSService

!

Event-Driven StructureC1

34

Challenges of Static Analysis of Android
Event-Driven StructureC1

User	event	(e.g.	Click)

System	event	
(e.g.	Location	Changed)

Component’s	life-cycle	event	
(e.g.	Location	Changed)

35

Challenges of Static Analysis of Android

✖ No	SMS
Permission

SMS
Permission

✔

SMSService

!

Multiple Entry Points C2

36

Challenges of Static Analysis of Android
Multiple Entry Points C2

Android POJO

37

Challenges of Static Analysis of Android

✖ No	SMS
Permission

SMS
Permission

✔

SMSService

!

Inter-component communicationC3

38

Challenges of Static Analysis of Android
Inter-component communicationC3

Implicit	Intent

Explicit	Intent

39

Challenges of Static Analysis of Android

✖ No	SMS
Permission

SMS
Permission

✔

SMSService

!

Modeling the underlying framework C4

40

Challenges of Static Analysis of Android
Modeling the underlying framework C4

GPS

SMS

Outline

41

Motivation

• Mobile	Security	Threats
• Android	Overview
• Inter-app	Vulnerability

COVERT

• Static	Analysis
• Formal	Verification
• Challenges
• Evaluation
• Demo

42

COVERT: Compositional Analysis of Inter-app Vulnerabilities

43

Formal Verification
• Mathematical proof

• Model of a system is expressed in a
formally precise notation on the basis
of mathematical concepts (e.g., set
theory)

44

Android specification in Alloy

• Formally codifies Android’s
architectural styles
– Signatures represent

the elements
– Fields represent the

relations
– Facts represent the

constraints

45

Specification of apps in Alloy

sented to the user when launching the app. In a signature
declaration, the keyword one specifies the declared signature to contain exactly one atom, thereby restricting
the signature to be unique. This naming scheme allows us to reuse the term MAIN when we want to declare
the main activity of each application. The next statement represents a permission example declared in a
similar way. For the sake of clarity, we use the permissions’ shorthand in our Alloy model. For example,
here we use CALL PHONE to model the particular permission of android.permission.CALL PHONE.

1 module MalApp
2
3 open appDeclaration
4
5 one sig MalApp extends Application{}{
6 no usesPermissions
7 no appPermissions
8 }
9

10 one sig CallerActivity extends Activity{}{
11 app in MalApp
12 intentFilter = IntentFilter1
13 no permissions
14 }
15
16 one sig IntentFilter1 extends IntentFilter{}{
17 actions = MAIN
18 categories = LAUNCHER
19 no data
20 }

Listing 5: Part of the generated specification for
Malicious app shown in Listing 1.

Listing 5 partially delineates the generated specifi-
cation for the malicious app shown in Listing 1. It
starts by importing the appDeclaration module (line 3),
and then the MalApp is declared as an extension of
the Application signature. This app does not declare
any permission neither as required (usesPermissions)
nor as enforced (appPermissions). The MalApp has a
Component of type Activity, named CallerActivity,
which declares an IntentFilter with MAIN and LAUNCHER
settings, marking it as the main activity of the app.

The code snippet of Listing 6 represents the gener-
ated specification for the Victim app shown in Listing 2.
The VicApp has access to the CALL PHONE permission
(line 6), but declares no permission requirement for other
apps to access its own Components (line 7). This app
specification then declares the PhoneActivity compo-
nent, the details of which is omitted in the interest of
space.

Application interactions in Android occur through
Intent messages. We record the interactions among app Components in a separate Alloy module, called
ICC. The code snippet shown in Listing 7 represents part of the generated specification for the ICC mod-
ule. After importing modules of the involved apps (lines 3–4), the specification in lines 6–12 models the
Intent of Listing 1, where the CallerActivity Component sends an explicit Intent to the PhoneActivity
Component, with specified action to be performed and with extra data.

6.4 Checking Android Application Models
The previous sections present a formal model of Android framework (Sec. 6.2), developed as a reusable
Alloy module to which extracted app models conform (Sec. 6.3). Here, we point to the essence of this
work: how one can use the power of proposed formal abstractions to perform the compositional analysis of
Android apps.

1 module VicApp
2
3 open appDeclaration
4
5 one sig VicApp extends Application{}{
6 usesPermissions = CALL PHONE
7 no appPermissions
8 }
9

10 one sig PhoneActivity extends Activity{}{...}

Listing 6: Part of the generated specification for
Victim app shown in Listing 2.

To that end, we propose to use assertions as a means
of modeling security properties required to be checked.
These assertions express properties that are expected
to hold in the extracted specifications. Consider the
privilege escalation as one of the most important inter-
application vulnerabilities. (Recall that Sec. 2 delineates
an example of such a vulnerability.) Listing 8 expresses
the privilege escalation assertion. In short, the assertion
states that the dst component (victim) has access to a
permission (usesPermission) that is missing in the src
component (malicious), and that permission is not being

9

sented to the user when launching the app. In a signature
declaration, the keyword one specifies the declared signature to contain exactly one atom, thereby restricting
the signature to be unique. This naming scheme allows us to reuse the term MAIN when we want to declare
the main activity of each application. The next statement represents a permission example declared in a
similar way. For the sake of clarity, we use the permissions’ shorthand in our Alloy model. For example,
here we use CALL PHONE to model the particular permission of android.permission.CALL PHONE.

1 module MalApp
2
3 open appDeclaration
4
5 one sig MalApp extends Application{}{
6 no usesPermissions
7 no appPermissions
8 }
9

10 one sig CallerActivity extends Activity{}{
11 app in MalApp
12 intentFilter = IntentFilter1
13 no permissions
14 }
15
16 one sig IntentFilter1 extends IntentFilter{}{
17 actions = MAIN
18 categories = LAUNCHER
19 no data
20 }

Listing 5: Part of the generated specification for
Malicious app shown in Listing 1.

Listing 5 partially delineates the generated specifi-
cation for the malicious app shown in Listing 1. It
starts by importing the appDeclaration module (line 3),
and then the MalApp is declared as an extension of
the Application signature. This app does not declare
any permission neither as required (usesPermissions)
nor as enforced (appPermissions). The MalApp has a
Component of type Activity, named CallerActivity,
which declares an IntentFilter with MAIN and LAUNCHER
settings, marking it as the main activity of the app.

The code snippet of Listing 6 represents the gener-
ated specification for the Victim app shown in Listing 2.
The VicApp has access to the CALL PHONE permission
(line 6), but declares no permission requirement for other
apps to access its own Components (line 7). This app
specification then declares the PhoneActivity compo-
nent, the details of which is omitted in the interest of
space.

Application interactions in Android occur through
Intent messages. We record the interactions among app Components in a separate Alloy module, called
ICC. The code snippet shown in Listing 7 represents part of the generated specification for the ICC mod-
ule. After importing modules of the involved apps (lines 3–4), the specification in lines 6–12 models the
Intent of Listing 1, where the CallerActivity Component sends an explicit Intent to the PhoneActivity
Component, with specified action to be performed and with extra data.

6.4 Checking Android Application Models
The previous sections present a formal model of Android framework (Sec. 6.2), developed as a reusable
Alloy module to which extracted app models conform (Sec. 6.3). Here, we point to the essence of this
work: how one can use the power of proposed formal abstractions to perform the compositional analysis of
Android apps.

1 module VicApp
2
3 open appDeclaration
4
5 one sig VicApp extends Application{}{
6 usesPermissions = CALL PHONE
7 no appPermissions
8 }
9

10 one sig PhoneActivity extends Activity{}{...}

Listing 6: Part of the generated specification for
Victim app shown in Listing 2.

To that end, we propose to use assertions as a means
of modeling security properties required to be checked.
These assertions express properties that are expected
to hold in the extracted specifications. Consider the
privilege escalation as one of the most important inter-
application vulnerabilities. (Recall that Sec. 2 delineates
an example of such a vulnerability.) Listing 8 expresses
the privilege escalation assertion. In short, the assertion
states that the dst component (victim) has access to a
permission (usesPermission) that is missing in the src
component (malicious), and that permission is not being

9

enforced in the source code of the victim component, nor by the application embodying the victim compo-
nent. Recall from Section 5 that there are two ways of checking permissions in Android.

1 module ICC
2
3 open VicApp
4 open MalApp
5
6 one sig intent1 extends Intent{}{
7 sender = CallerActivity
8 component = PhoneActivity
9 action = PHONE CALL

10 no categories
11 extraData = Yes
12 }
13 ...

Listing 7: Part of the generated inter-component
communication module.

The specified assertion relies on the specification of
an intentResolver function, shown in Listing 9. The
Component, Intent and IntentFilter signatures are spec-
ified such that they have all the necessary attributes re-
quired for Intent resolution. We thus describe intent-
resolver as a function augmenting the aforementioned
androidDeclaration module. This function takes as in-
put an Intent and returns a set of components that may
handle the Intent under consideration. Given the Intent
is explicit, it should be delivered to the recipient identi-
fied by the component field of the Intent (line 3). Oth-
erwise, the resolver checks components’ IntentFilters to
find those whose elements are matched against the given
Intent. Specifically, an implicit Intent must pass a matching test with respect to each of the action, data, and
categories elements on the IntentFilters bound to a component (as stated in lines 6–9). Seeing that a compo-
nent can define multiple IntentFilters, an Intent that does not match one of a component’s IntentFilters may
match another (lines 4–5).

1 assert privilegeEscalation{
2 no disj src, dst: Component, i:Intent|
3 (src in i.sender) && (dst in intentResolver[i]) &&
4 (some p: dst.app.usesPermissions |
5 not (p in src.app.usesPermissions) &&
6 not ((p in dst.permissions) ||(p in dst.app.appPermissions)))
7 }

Listing 8: Privilege escalation specification in
Alloy.

1 fun intentResolver(i:Intent): set Component{
2 {c:Component| some i.component
3 implies {c = i.component}
4 else { some f: IntentFilter|
5 f.˜intentFilter in c
6 && i.action in f.actions
7 && i.categories in f.categories
8 && (i.data.uri = f.data.uri
9 && i.data.type = f.data.type) } }

10 }

Listing 9: Intent resolver specification in Alloy.

If an assertion does not hold, the analyzer reports it
as a counterexample, along with the information useful
in finding the root cause of the violation. Counterex-
ample is a particular model instance that makes the as-
sertion false. Given our running example, the analyzer
automatically generates the following counterexample:

It states that the VicApp/PhoneActivity compo-
nent has access to the CALL PHONE permission, and is
resolved as the receiver of intent1, which is being sent
by the MalApp/CallerActivity component lacking
access to the CALL PHONE permission. The generated
counterexample confirms that the composition of Vic-
tim and Malicious apps violates the privilege escala-
tion.

The preliminary work that has been conducted in
preparation for this proposal provides substantial sup-
porting evidence for analyzing one of the most signif-
icant inter-application vulnerabilities. Having laid a
foundation with preliminary work, hard and important issues must now be addressed. The fundamental
question is given the state-of-the-art formal analyzers and advanced program analysis techniques, which
portion of software security vulnerabilities, and in particular of those due to interaction of multiple ap-
plications, could be uncovered automatically? Recent research [11, 15, 23] has studied and developed a
comprehensive list of inter-application security vulnerabilities in Android apps that will serve as a good
basis for this research.

... // omitted details of model instances
privilegeEscalation src={MalApp/CallerActivity}
privilegeEscalation dst={VicApp/PhoneActivity}
privilegeEscalation i={intent1}
privilegeEscalation p={appDeclaration/CALL PHONE}

The choice of Alloy as a lightweight formal method for
this work was motivated by the desire for fully automatic
yet compositional analysis of multiple apps. Apart from its
capability to automatically analyze complex constraint sys-

10

Each	app’s	behavior	is	
specified	declaratively,	

independent	of	other	apps

46

Specification of privilege escalation
in Alloy

An	assertion	states	a	
security	property	that	is	
checked	in	the	extracted	

specifications	

Benign App
Specification
Benign App
Specification

Alloy
Analyzer

SAT
Solver

Satisfiable?M ⊨ S ⋀ ¬P
App

Specifications
M

YES / No

Android
Specification

S

Check assertions using Alloy Analyzer

Vulnerability	
Assertion

P

Given Android specification S, app specifications M, and vulnerability assertion P,
assert whether M does not satisfy P under S

47

enforced in the source code of the victim component, nor by the application embodying the victim compo-
nent. Recall from Section 5 that there are two ways of checking permissions in Android.

1 module ICC
2
3 open VicApp
4 open MalApp
5
6 one sig intent1 extends Intent{}{
7 sender = CallerActivity
8 component = PhoneActivity
9 action = PHONE CALL

10 no categories
11 extraData = Yes
12 }
13 ...

Listing 7: Part of the generated inter-component
communication module.

The specified assertion relies on the specification of
an intentResolver function, shown in Listing 9. The
Component, Intent and IntentFilter signatures are spec-
ified such that they have all the necessary attributes re-
quired for Intent resolution. We thus describe intent-
resolver as a function augmenting the aforementioned
androidDeclaration module. This function takes as in-
put an Intent and returns a set of components that may
handle the Intent under consideration. Given the Intent
is explicit, it should be delivered to the recipient identi-
fied by the component field of the Intent (line 3). Oth-
erwise, the resolver checks components’ IntentFilters to
find those whose elements are matched against the given
Intent. Specifically, an implicit Intent must pass a matching test with respect to each of the action, data, and
categories elements on the IntentFilters bound to a component (as stated in lines 6–9). Seeing that a compo-
nent can define multiple IntentFilters, an Intent that does not match one of a component’s IntentFilters may
match another (lines 4–5).

1 assert privilegeEscalation{
2 no disj src, dst: Component, i:Intent|
3 (src in i.sender) && (dst in intentResolver[i]) &&
4 (some p: dst.app.usesPermissions |
5 not (p in src.app.usesPermissions) &&
6 not ((p in dst.permissions) ||(p in dst.app.appPermissions)))
7 }

Listing 8: Privilege escalation specification in
Alloy.

1 fun intentResolver(i:Intent): set Component{
2 {c:Component| some i.component
3 implies {c = i.component}
4 else { some f: IntentFilter|
5 f.˜intentFilter in c
6 && i.action in f.actions
7 && i.categories in f.categories
8 && (i.data.uri = f.data.uri
9 && i.data.type = f.data.type) } }

10 }

Listing 9: Intent resolver specification in Alloy.

If an assertion does not hold, the analyzer reports it
as a counterexample, along with the information useful
in finding the root cause of the violation. Counterex-
ample is a particular model instance that makes the as-
sertion false. Given our running example, the analyzer
automatically generates the following counterexample:

It states that the VicApp/PhoneActivity compo-
nent has access to the CALL PHONE permission, and is
resolved as the receiver of intent1, which is being sent
by the MalApp/CallerActivity component lacking
access to the CALL PHONE permission. The generated
counterexample confirms that the composition of Vic-
tim and Malicious apps violates the privilege escala-
tion.

The preliminary work that has been conducted in
preparation for this proposal provides substantial sup-
porting evidence for analyzing one of the most signif-
icant inter-application vulnerabilities. Having laid a
foundation with preliminary work, hard and important issues must now be addressed. The fundamental
question is given the state-of-the-art formal analyzers and advanced program analysis techniques, which
portion of software security vulnerabilities, and in particular of those due to interaction of multiple ap-
plications, could be uncovered automatically? Recent research [11, 15, 23] has studied and developed a
comprehensive list of inter-application security vulnerabilities in Android apps that will serve as a good
basis for this research.

... // omitted details of model instances
privilegeEscalation src={MalApp/CallerActivity}
privilegeEscalation dst={VicApp/PhoneActivity}
privilegeEscalation i={intent1}
privilegeEscalation p={appDeclaration/CALL PHONE}

The choice of Alloy as a lightweight formal method for
this work was motivated by the desire for fully automatic
yet compositional analysis of multiple apps. Apart from its
capability to automatically analyze complex constraint sys-

10

48

Alloy Analyzer finds a violation

Outline

49

Motivation

• Mobile	Security	Threats
• Android	Overview
• Inter-app	Vulnerability

COVERT

• Static	Analysis
• Formal	Verification
• Challenges
• Evaluation
• Demo

50

More Challenges

• Obfuscation

51

More Challenges

• Reflection

52

More Challenges

• Native Code

53

More Challenges

• Dynamic Code

54

Obfuscation + Reflection + Encryption

FakeInstaller Malware Family

Outline

55

Motivation

• Mobile	Security	Threats
• Android	Overview
• Inter-app	Vulnerability

COVERT

• Static	Analysis
• Formal	Verification
• Challenges
• Evaluation
• Demo

56

Is COVERT effective in practice?

• 4,000 Android apps from four repositories
– Google Play (1,000 most popular + 600 random)
– F-Droid (1,100 apps)
– Malgenome (1,200 random)
– Bazaar (100 most popular)

• Partitioned into 80 non-overlapping bundles, each comprising 50 apps

• Total number of detected vulnerabilities: 385
– Intent hijack: 97
– Activity/Service launch: 124
– Information leakage: 128
– Privilege escalation: 36

• Manual analysis revealed 61% true positive rate in real-world apps

57

Accuracy compared to other tools

• Experiment Set:
– Benchmark Apps

Legend

True Positive
False Positive
False Negative

58

What is the performance of
COVERT?

COVERT analyzes 95% of apps in less than 2 minutes

59

Performance compared to other tools

• Experiment Set:
– Real Apps

60

Demo …

