Last Modified: October 1, 2020

CS 175: Project in Al (in Minecraft): Fall 2020
Assignment 1: Finding the Shortest Path

Sameer Singh
https://canvas.eee.uci.edu/courses/30925

1 Task Description

In this assignment, you have to guide the player agent in Minecraft through a maze to reach the goal block. For
this exercise, we will assume that the agent can see the whole maze, i.e. it is completely observable. Given this
information, the agent has to reach the goal in the minimum number of moves.

This assignment is based heavily on in the Malmo Python tutorials, so please follow the
tutorials 1 through 5 to familiarize yourself with the API and the Malmo platform (tutorial 6 is not relevant yet).

1.1 Provided Source Code

We have provided two Python files. The most important one is [assignmentl.py| which contains the complete
code to setup the Malmo environment with different mazes, and have the agent run through it. The provided
implementation is incomplete, and the agent needs your help to solve the maze most efficiently. We have also
provided [priorit_dict.py|, a simple implementation of a heap-based priority queue. See the implementation
for details, and discuss on Campuswire if you have any doubts. You can ignore this implementation if you prefer.

1.2 Setup and Running the Code

Assuming you have installed Malmo and started working your way through the tutorials, all you need to do to run
this assignment is to copy the two files above to the [Python_Examples| folder, and after launching Minecraft, run
[python assignmentl.py| (Python 3 or higher). If everything run successfully, the agent should do nothing while
the timer counts down for each of the ten missions. The output in the terminal should look like the following:

Size of maze: 6

Waiting for the mission 1 to start

Mission 1 running.

Output (start,end) 1 : (None, None)

Output (path length) 1 : 0

OQutput (actions) 1 : []

Error: out of actions, but mission has not ended!
Error: out of actions, but mission has not ended!

Mission 1 ended

Size of maze: 6

Waiting for the mission 2 to start

Mission 2 running.

OQutput (start,end) 2 : (None, None)

Output (path length) 2 : 0

Output (actions) 2 : []

Error: out of actions, but mission has not ended!
Error: out of actions, but mission has not ended!

1.3 Overview of the Code

As mentioned before, much of this assignment is based on [tutorial_7.py], so please refer to the Malmo Tutorials
in the [Python_Examples| directory. The source code creates a series of increasing difficult mazes made of
diamond_block blocks as the floor, each with a start (emerald block) and an end (redstone_block) block. The
mission starts with the player at the start block, and ends when the player reaches the end block. Make sure you
are at least somewhat familiar with the whole source code, however the main control code that is relevant for
your implementation are in the following lines:

Assignment 1 UC Irvine

https://canvas.eee.uci.edu/courses/30925

CS 175: Project in Al (in Minecraft) Fall 2020

21 22 | 23 | 24| 25| 26| 27 (28|29 |30 | 31 3233 |34 |35|36|37|38]39]|40 |41

42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 52 | 53 | 54|55 |56 |57 |58]59]|60]| 61 62

63 | 64 | 65| 66 | 67 | 68 | 69 | 70 | 71 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 82 | 83

North

84 [85 | 86 | 87 | 88 |89 [90 | 91 | 92 | 93 | 94 | 95| 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104

105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 [118 | 119 | 120 | 121 | 122 | 123 | 124 | 125

West East 126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 | 134 [135 [136 | 137 | 138 | 139 [140 | 141 | 142 | 143 | 144 | 145 | 146

147 | 148 [149 | 150 | 151 | 152 | 153 | 154 | 155 | 156 | 157 | 158 | 159 | 160 | 161 | 162 | 163 | 164 | 165 | 166 | 167

168 | 169 | 170 | 171 | 172 | 173 | 174 | 175 | 176 | 177 | 178 | 179 | 180 | 181 | 182 | 183 | 184 | 185 | 186 | 187 | 188

189|190 [191 | 192 | 193 | 194 | 195 | 196 | 197 | 198 | 199 | 200 | 201 | 202 | 203 | 204 | 205 | 206 | 207 | 208 | 209

South

210|211 | 212 (213|214 | 215 | 216 | 217 | 218 | 219 | 220 | 221 | 222 | 223 | 224 | 225 | 226 | 227 | 228 | 229 | 230

231|232 (233|234 | 235|236 | 237 | 238 | 239 | 240 | 241 | 242 | 243 | 244 | 245 | 246 | 247 | 248 | 249 | 250 | 251

252 | 253 | 254 | 255 | 256 | 257 | 258 [259 | 260 | 261 | 262 | 263 | 264 | 265 | 266 | 267 | 268 | 269 | 270 | 271 | 272

N
N
@
N
N
N

275 | 276 | 277 | 278 [279 | 280 | 281 | 282 | 283 | 284 | 285 | 286 | 287 | 288 | 289 | 290 | 291 | 292 | 293

D emerald_block (start)

294 | 295 | 296 | 297 | 298 | 299 | 300 [F801Y 302 | 303 | 304 | 305 | 306 [307 | 308 [309 | 310 | 311 | 312 | 313 | 314

w
@

316 | 317 | 318 | 319 | 320 | 321 | 322 | 323 | 324 | 325 | 326 | 327 | 328 | 329 | 330 | 331 | 332 | 333 | 334 | 335

D redstone_block (end)

336 | 337 | 338 [339 | 340 | 341 | 342 | 343 | 344 | 345 | 346 | 347 | 348 | 349 | 350 | 351 | 352 | 353 | 354 | 355 | 356

D diamond block 357 | 358 | 359 | 360 | 361 | 362 | 363 | 364 | 365 | 366 | 367 | 368 | 369 | 370 | 371 | 372 | 373 | 374 | 375 | 376 | 377

378|379 | 380 | 381 | 382 | 383 | 384 | 385 | 386 | 387 | 388 | 389 | 390 | 391 | 392 | 393 | 394 | 395 | 396 | 397 | 398

l:| air 399 | 400 | 401 | 402 | 403 | 404 | 405 | 406 | 407 | 408 | 409 | 410 | 411 | 412 | 413 | 414 | 415 | 416 | 417 | 418 | 419

420 | 421 | 422 | 423 | 424 | 425 | 426 | 427 | 428 | 429 | 430 | 431 | 432 | 433 | 434 | 435 | 436 | 437 | 438 | 439 | 440

Figure 1: Grid Layout: Layout of the two-dimensional grid laid out as a one-dimensional array. The location of
the maze, especially the start and end blocks, may be different in the assignment. The array contain string-values
representing the four types of possible blocks.

grid = load_grid(world_state)

start, end = find_start_end(grid) # implement this

path dijkstra_shortest_path(grid, start, end) # implement this
action_list = extract_action_list_from_path(path)

We first get the array of blocks that consists of the 2-dimensional maze from Malmo in [Load_grid|. Then, we want
to identify the start and the end blocks (each represented by an integer index into the array). Given the
start and the end blocks, and the whole maze, we want to compute the shortest path of blocks from the start to
the end, computed using Djikstra’s algorithm. Finally, we convert these list of blocks into Malmo actions that are
carried out by the agent. We provide the correct implementation of the first and the last functions, but leave the
correct implementation of the second and the third functions to you (more on this later).

1.4 Grid Layout

It is important for you to understand how the grid is laid out. We have requested the 21 x 21 grid of blocks
from the world that lie at the floor of the player, with the player at the center of it ((10, 10), if zero-indexed).
This two-dimensional is laid out as a single-dimensional array of strings (representing the type of the block) in
a row-major way (where row is the east-west direction), i.e. the (i, j) coordinate is represented by the index
j x 2141, where j is the east-west coordinate, and i is the north-south coordinate. For the precise indexing, see
the illustration in Figure 1.

Since the grid is represented by a single-dimensional array, you need to get the neighboring blocks of the
current block, represented by an integer index i. Looking at [extract_action_list_from_path|should give you
a hint; the blocks to the immediate left (west) and right (east) are of course represented by i — 1 and i + 1, while
the blocks in the north and south require jumping one whole row, thus i —21 and i + 21, respectively. The function
lextract_action_list_from_path|uses this to go the other way: if block i and j are next to each other on the
grid, the action to get from i to j is represented by j —1i, i.e. if j —i is +1, the move is [moveeast], if —1, the move
is [movewest], if —21, the move is [movenorth|, and if +21, the move is [movesouth|.

Note: The player is facing south, so do not get confused if is forward.

Assignment 1 UC Irvine

CS 175: Project in Al (in Minecraft) Fall 2020

2 What Do I Submit?

Here we’'ll describe what exactly you need to submit to the assignment on Canvas.

1.

Code: Finding Start and End Blocks (5 points): As a simple exercise, implement the [find_start_end|
function, that takes the grid as an array of string describing the block types, and returns the indices of the
start and the end block. This should only require, at maximum, a few lines of code. Submit this snippet as
your submission.

Output: Start and End Block Indices (5 points): Run the code with the above implemented, and look at
the output lines that start with [Output (start,end)|and paste them as your submission. There should be
10 lines, one for each mission.

Code: Shortest Path Implementation (50 points): Implement Dijkstra’s algorithm in order to find the
shortest path from the source to the destination. The set of possible actions from each block is one step in
north, south, east, or west directions, i.e. taking multiple or diagnol steps is not allowed. The path you
compute should be shortest in terms of number of moves (all of them cost the same), should be a list of
block indices (integers), should include both the start and the end blocks, and of course, should not contain
any air blocks. Submit the complete implementation of your function.

Output: Length of the Shortest Paths (30 points): Run the code with the above implemented, and look
at the output lines that start with [Output (path length)|and with [Output (actions)|and paste them
as your submission. There should be 20 lines, two for each mission.

. Comments: Any comments about your submission that you want to bring to our attention as we are grading

it. This is completely optional, I expect most of you to leave this empty.

Statement of Collaboration (10 points): It is mandatory to include a Statement of Collaboration with
respect to the guidelines below. Include the names of everyone involved in the discussions (especially
in-person ones), and what was discussed. You should also include the links to all online resources you used
for the assignment in this section.

All students are required to follow the academic honesty guidelines posted on the course website. For
programming assignments, in particular, I encourage the students to organize (perhaps using Campuswire) to
discuss the task description, assignment requirements, bugs in our/Malmo code, and the relevant technical content
before they start working on it. However, you should not discuss the specific solutions, and, as a guiding principle,
you are not allowed to take anything written or drawn away from these discussions (i.e. no photographs of the
blackboard, written notes, etc.). The same holds for online resources: you are allowed to read the description of
algorithms, but your code should be your own. Especially after you have started working on the assignment, try
to restrict the discussion to Campuswire as much as possible, so that there is no doubt as to the extent of your
collaboration.

Acknowledgements

This homework was originally created with help from Moshe Lichman.

Assignment 1 UC Irvine

	Task Description
	Provided Source Code
	Setup and Running the Code
	Overview of the Code
	Grid Layout

	What Do I Submit?

