Constraint satisfaction problems

CS171, Fall 2016
Introduction to Artificial Intelligence
Prof. Alexander lhler

As ©
BREN:(IC=S UNIVERSITY of CALIFORNIA) TRVINE

FORMATION A

| Constraint Satisfaction Problems
. What is a CSP?

— Finite set of variables, X;, X,, ..., X_

— Nonempty domain of possible values for each: D, ..., D
— Finite set of constraints, C,...C_
* Each constraint C, limits the values that variables can take, e.g., X, = X,
— Each constraint C, is a pair: C = (scope, relation)
* Scope = tuple of variables that participate in the constraint
* Relation = list of allowed combinations of variables
May be an explicit list of allowed combinations
May be an abstract relation allowing membership testig & listing

n

* CSP benefits
— Standard representation pattern
— Generic goal and successor functions
— Generic heuristics (no domain-specific expertise required)

|Example: Sudoku
|

* Problem specification

Variables: {A1, A2, A3, ... |7, 18, 19}
Domains: {1,2,3, ...,9}
Constraints:
each row, column “all different”
alldiff(A1,A2,A3...,A9), ...
each 3x3 block “all different”
alldiff(G7,G8,G9,H7,...19), ...

- I O m m O O W »

Task: solve (complete a partial solution)

check “well-posed”: exactly one solution?

4 5 6

12| W

6

n

0

12

6

0

6

0

6

12

hn

\CSPS What is a Solution?

* State: assignment of values to some or all variables

— Assignment is complete when every variable has an assigned value

— Assignment is partial when one or more variables have no assigned value
* Consistent assignment

— An assignment that does not violate any constraint
* Asolution to a CSP is a complete and consistent assignment

— All variables are assigned, and no constraints are violated

* CSPs may require a solution that maximizes an objective

— Linear objective = linear programming or integer linear programming
— Ex: “Weighted” CSPs

* Examples of applications
— Scheduling the time of observations on the Hubble Space Telescope
— Airline schedules
— Cryptography
— Computer vision, image interpretation

|Example: Map Coloring
|

Variables{ x¢, ©1, 2, x3, T4, T5, T } !
Domains: { red, green, blue }
Constraints: bordering regions must have different colors:
To # T1, To F£ T2, T1F T2,...
A solution is any setting of the variables that satisfies all the constraints, e.g.,
xo = blue, x1 = green, xo = red, xz = blue,

T4 = qreen, T = blue, xg = red

| Example: Map Coloring

* Constraint graph
— Vertices: variables
— Edges: constraints
(connect involved variables)

* Graphical model
— Abstracts the problem to a canonical form

— Can reason about problem through graph connectivity
— Ex: Tasmania can be solved independently (more later)

* Binary CSP
— Constraints involve at most two variables

— Sometimes called “pairwise”

| Aside: Graph coloring
|

* More general problem than map coloring

* Planar graph:
graph in 2D plane with no

edge crossings

* Guthrie’s conjecture (1852) @
Every planar graph can be colored < 4 colors

* Proved (using a computer) in 1977 (Appel & Haken 1977)

|Varieties of CSPs
|

* Discrete variables

— Finite domains, size d = O(d") complete assignments
* Ex: Boolean CSPs: Boolean satisfiability (NP-complete)

— Inifinite domains (integers, strings, etc.)
* Ex: Job scheduling, variables are start/end days for each job
* Need a constraint language, e.g., StartJob 1+ 5 < StartJob 3
* Infinitely many solutions
* Linear constraints: solvable
* Nonlinear: no general algorithm

* Continuous variables
— Ex: Building an airline schedule or class schedule
— Linear constraints: solvable in polynomial time by LP methods

\Varletles of constraints

* Unary constraints involve a single variable,
— e.g., SA # green

* Binary constraints involve pairs of variables,
— e.g., SA # WA

* Higher-order constraints involve 3 or more variables,
— Ex: jobs A,B,C cannot all be run at the same time
— Can always be expressed using multiple binary constraints

* Preference (soft constraints)

— Ex: “red is better than green” can often be represented by a cost for
each variable assignment

— Combines optimization with CSPs

| Simplify...
|

* We restrict attention to:

Discrete & finite domains

— Variables have a discrete, finite set of values

No objective function

— Any complete & consistent solution is OK

Solution

— Find a complete & consistent assignment

e Example: Sudoku puzzles

\Blnary CSPs

CSPs only need binary constraints!

* Unary constraints
— Just delete values from the variable’s domain

* Higher order (3 or more variables): reduce to binary
— Simple example: 3 variables X,Y,Z
— Domains Dx={1,2,3}, Dy={1,2,3}, Dz={1,2,3}
— Constraint C[X,Y,Z] = {X+Y=2} ={(1,1,2),(1,2,3),(2,1,3)}
(Plus other variables & constraints elsewhere in the CSP)

— Create a new variable W, taking values as triples (3-tuples)
— Domain of W is Dw={(1,1,2),(1,2,3),(2,1,3)}

* Dw is exactly the tuples that satisfy the higher-order constraint
— Create three new constraints:

 C[IX,W]={1[1,(2,1,2)], [1,(2,2,3)], [2,(2,1,3) }

« Cy,w]={[1,(1,1,2)], [2,(1,2,3)], [1,(2,1,3) }

* C[Z,W]=1{12,(1,1,2)], [3,(1,2,3)], [3,(2,1,3) }

Other constraints elsewhere involving X,Y,Z are unaffected

‘Example: Cryptarithmetic problems
I

* Find numeric substitutions that make an equation hold:

T WO Non-pairwise CSP:
+ T WO
“FOU R 0+0 =R + 10*C,
C, =1{0,1}
For example:

O =4 all-different W+W+C, = U + 10*C,
R =38
W =3 /7 3 4 C,={0,1}
U =6 + 7 3 4
T =7 =14 6 8 T+T+C, = 0 + 10*C,
F =1

Note: not unique — how many solutions? C=

‘Example: Cryptarithmetic problems
I

* Try it yourself at home:

S
M
O

Z O m

N D
R E
E Y

T

M

(a frequent request from college students to parents)

(adapted from http://www.unitime.org/csp.php)

\Random binary CSPs

A random binary CSP is defined by a four-tuple (n, d, p4, p,)
— n =the number of variables.
— d = the domain size of each variable.
— p, = probability a constraint exists between two variables.
- p,= probablllty a pair of values in the domains of two variables connected by a

constraint is incompatible.
* Note that R&N lists compatible pairs of values instead.
* Equivalent formulations; just take the set complement.

* (n,d, py, p,) generate random binary constraints

* The so-called “model B” of Random CSP (n, d, n;, n,)

— nl=p,; n(n-1)/2 pairs of variables are randomly and uniformly selected and binary
constraints are posted between them.

— For each constraint, n, = p, d*2 randomly and uniformly selected pairs of values
are picked as incompatible.

* The random CSP as an optimization problem (minCSP).
— @Goal is to minimize the total sum of values for all variables.

| CSP as a standard search problem

A CSP can easily be expressed as a standard search problem.

* |Incremental formulation

Initial State: the empty assignment {}

Actions: Assign a value to an unassigned variable provided that it does not
violate a constraint

Goal test: the current assignment is complete
(by construction it is consistent)
Path cost. constant cost for every step (not really relevant)

BUT: solution is at depth n (# of variables)
For BFS: branching factor at top level is nd
next level: (n-1)d

Total: n!/ d"leaves! But there are only d” complete assignments!

« Aside: can also use complete-state formulation
— Local search techniques (Chapter 4) tend to work well

| Commutativity

I
« CSPs are commutative.

— Order of any given set of actions has no effect on the outcome.

— Example: choose colors for Australian territories, one at a time.
* [WA=red then NT=green] same as [NT=green then WA=red]

« All CSP search algorithms can generate successors by

considering assignments for only a single variable at each
node in the search tree

= there are d" irredundant leaves

 (Figure out later to which variable to assign which value.)

| Backtracking search
|

* Similar to depth-first search
— At each level, pick a single variable to expand
— Iterate over the domain values of that variable

* Generate children one at a time, one per value
— Backtrack when a variable has no legal values left

v
 Uninformed algorithm ‘ |
— Poor general performance L \L
4

N\

< x @«

N

(R&N Fig. 6.5)

| Backtracking search

function BACKTRACKING-SEARCH(csp) return a solution or failure
return RECURSIVE-BACKTRACKING({}, csp)

function RECURSIVE-BACKTRACKING(assignment, csp) return a solution or failure
if assignment is complete then return assignment
var <— SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp],assignment,csp)
for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
if value is consistent with assignment according to CONSTRAINTS[csp] then

add {var=value} to assignment
result <— RECURSIVE-BACTRACKING(assignment, csp)

if result = failure then return result
remove {var=value} from assignment
return failure

| Backtracking search
|

* Expand deepest unexpanded node
* Generate only one child at a time.
* Goal-Test when inserted.

— For CSP, Goal-test at bottom

®

Future= green dotted circles
Frontier=white nodes
Expanded/active=gray nodes
Forgotten/reclaimed= black nodes

22

| Backtracking search
|

* Expand deepest unexpanded node
* Generate only one child at a time.
* Goal-Test when inserted.

— For CSP, Goal-test at bottom

Future= green dotted circles
Frontier=white nodes
Expanded/active=gray nodes
Forgotten/reclaimed= black nodes

23

| Backtracking search
|

* Expand deepest unexpanded node
* Generate only one child at a time.
* Goal-Test when inserted.

— For CSP, Goal-test at bottom

Future= green dotted circles
Frontier=white nodes
Expanded/active=gray nodes
Forgotten/reclaimed= black nodes

24

| Backtracking search
|

* Expand deepest unexpanded node
* Generate only one child at a time.
* Goal-Test when inserted.

— For CSP, Goal-test at bottom

Future= green dotted circles
Frontier=white nodes
Expanded/active=gray nodes
Forgotten/reclaimed= black nodes

25

| Backtracking search
|

* Expand deepest unexpanded node
* Generate only one child at a time.
* Goal-Test when inserted.

— For CSP, Goal-test at bottom

Future= green dotted circles
Frontier=white nodes
Expanded/active=gray nodes
Forgotten/reclaimed= black nodes

26

| Backtracking search
|

* Expand deepest unexpanded node
* Generate only one child at a time.
* Goal-Test when inserted.

— For CSP, Goal-test at bottom

Future= green dotted circles
Frontier=white nodes
Expanded/active=gray nodes
Forgotten/reclaimed= black nodes

27

| Backtracking search
|

* Expand deepest unexpanded node
* Generate only one child at a time.
* Goal-Test when inserted.

— For CSP, Goal-test at bottom

Future= green dotted circles
Frontier=white nodes
Expanded/active=gray nodes
Forgotten/reclaimed= black nodes

28

| Backtracking search
|

* Expand deepest unexpanded node
* Generate only one child at a time.
* Goal-Test when inserted.

— For CSP, Goal-test at bottom

Future= green dotted circles
Frontier=white nodes
Expanded/active=gray nodes
Forgotten/reclaimed= black nodes

29

| Backtracking search
|

* Expand deepest unexpanded node
* Generate only one child at a time.
* Goal-Test when inserted.

— For CSP, Goal-test at bottom

Future= green dotted circles
Frontier=white nodes
Expanded/active=gray nodes
Forgotten/reclaimed= black nodes

30

| Backtracking search
|

* Expand deepest unexpanded node
* Generate only one child at a time.
* Goal-Test when inserted.

— For CSP, Goal-test at bottom

Future= green dotted circles
Frontier=white nodes
Expanded/active=gray nodes
Forgotten/reclaimed= black nodes

31

| Backtracking search
|

* Expand deepest unexpanded node
* Generate only one child at a time.
* Goal-Test when inserted.

— For CSP, Goal-test at bottom

Future= green dotted circles
Frontier=white nodes
Expanded/active=gray nodes
Forgotten/reclaimed= black nodes

32

| Backtracking search
|

* Expand deepest unexpanded node
* Generate only one child at a time.
* Goal-Test when inserted.

— For CSP, Goal-test at bottom

Future= green dotted circles
Frontier=white nodes
Expanded/active=gray nodes
Forgotten/reclaimed= black nodes

33

(R&N Fig. 6.5)

| Backtracking search

function BACKTRACKING-SEARCH(csp) return a solution or failure
return RECURSIVE-BACKTRACKING({}, csp)

function RECURSIVE-BACKTRACKING(assignment, csp) return a solution or failure
if assignment is complete then return assignment
var <— SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp],assignment,csp)
for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
if value is consistent with assignment according to CONSTRAINTS[csp] then

add {var=value} to assignment
result <— RECURSIVE-BACTRACKING(assignment, csp)

if result = failure then return result
remove {var=value} from assignment
return failure

Improving Backtracking O(exp(n))

* Make our search more “informed” (e.g. heuristics)
— General purpose methods can give large speed gains
— CSPs are a generic formulation; hence heuristics are more “generic” as well

* Before search:
— Reduce the search space
— Arc-consistency, path-consistency, i-consistency
— Variable ordering (fixed)

* During search:

— Look-ahead schemes:
* Detecting failure early; reduce the search space if possible
* Which variable should be assigned next?
* Which value should we explore first?
— Look-back schemes:
* Backjumping
* Constraint recording
* Dependency-directed backtracking

Look-ahead: Variable and value orderings

I
* |Intuition:

— Apply propagation at each node in the search tree (reduce future branching)
— Choose a variable that will detect failures early (low branching factor)
— Choose value least likely to yield a dead-end (find solution early if possible)

* Forward-checking

— (check each unassigned variable separately)
* Maintaining arc-consistency (MAC)

— (apply full arc-consistency)

36

| Dependence on variable ordering
|

* Example: coloring

Color WA, Q, V first: Color WA, SA, NT first:
9 ways to color 6 ways to color
none inconsistent (yet) all lead to solutions

only 3 lead to solutions... no backtracking

| Dependence on variable ordering
|

* Another graph coloring example:

| Minimum remaining values (MRV)
I

* A heuristic for selecting the next variable
— a.k.a. most constrained variable (MCV) heuristic

Nw _"‘11

—d
SEa =

|

SEA oS

— choose the variable with the fewest legal values

— will immediately detect failure if X has no legal values

— (Related to forward checking, later)

39

| Degree heuristic
|

* Another heuristic for selecting the next variable
— a.k.a. most constraining variable heuristic

_\
— Select variable involved in the most constraints on other
unassigned variables

— Useful as a tie-breaker among most constrained variables

What about the order to try values?

40

| Least Constraining Value
|

* Heuristic for selecting what value to try next

* Given a variable, choose the least constraining value:
— the one that rules out the fewest values in the remaining

variables
“ [% Allows 1 value for SA
_LL_ﬂ_.‘_L_ﬂ_.‘_igﬂ<
N Ny it “ % Allows 0 values for SA

— Makes it more likely to find a solution early

41

Variable and value orderings

Minimum remaining values for variable ordering
Least constraining value for value ordering

— Why do we want these? Is there a contradiction?

Intuition:

— Choose a variable that will detect failures early (low branching factor)
— Choose value least likely to yield a dead-end (find solution early if possible)

MRV for variable selection reduces current branching factor
— Low branching factor throughout tree = fast search
— Hopefully, when we get to variables with currently many values, forward checking
or arc consistency will have reduced their domains & they’ll have low branching too
LCV for value selection increases the chance of success
— If we’re going to fail at this node, we’ll have to examine every value anyway
— If we're going to succeed, the earlier we do, the sooner we can stop searching

|Summary
|

- CSPs

— special kind of problem: states defined by values of a fixed set of variables,
goal test defined by constraints on variable values

- Backtracking = depth-first search with one variable assigned per node

* Heuristics
— Variable ordering and value selection heuristics help significantly

« Variable ordering (selection) heuristics
— Choose variable with Minimum Remaining Values (MRV)
— Degree Heuristic — break ties after applying MRV

« Value ordering (selection) heuristic
— Choose Least Constraining Value

