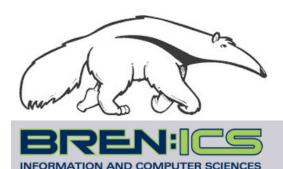
Constraint satisfaction problems

CS171, Fall 2016 Introduction to Artificial Intelligence Prof. Alexander Ihler



Constraint Satisfaction Problems

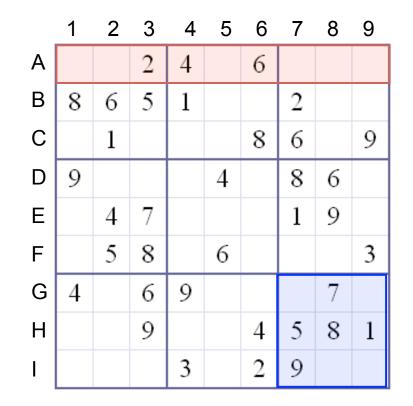
- What is a CSP?
 - Finite set of variables, X₁, X₂, ..., X_n
 - Nonempty domain of possible values for each: D_1 , ..., D_n
 - Finite set of constraints, C₁...C_m
 - Each constraint C_i limits the values that variables can take, e.g., $X_1 \neq X_2$
 - Each constraint C_i is a pair: $C_i = (scope, relation)$
 - Scope = tuple of variables that participate in the constraint
 - Relation = list of allowed combinations of variables May be an explicit list of allowed combinations May be an abstract relation allowing membership testig & listing
- CSP benefits
 - Standard representation pattern
 - Generic goal and successor functions
 - Generic heuristics (no domain-specific expertise required)

Example: Sudoku

Problem specification

```
Variables: {A1, A2, A3, ... I7, I8, I9}
Domains: { 1, 2, 3, ..., 9 }
Constraints:
```

```
each row, column "all different"
alldiff(A1,A2,A3...,A9), ...
each 3x3 block "all different"
alldiff(G7,G8,G9,H7,...I9), ...
```

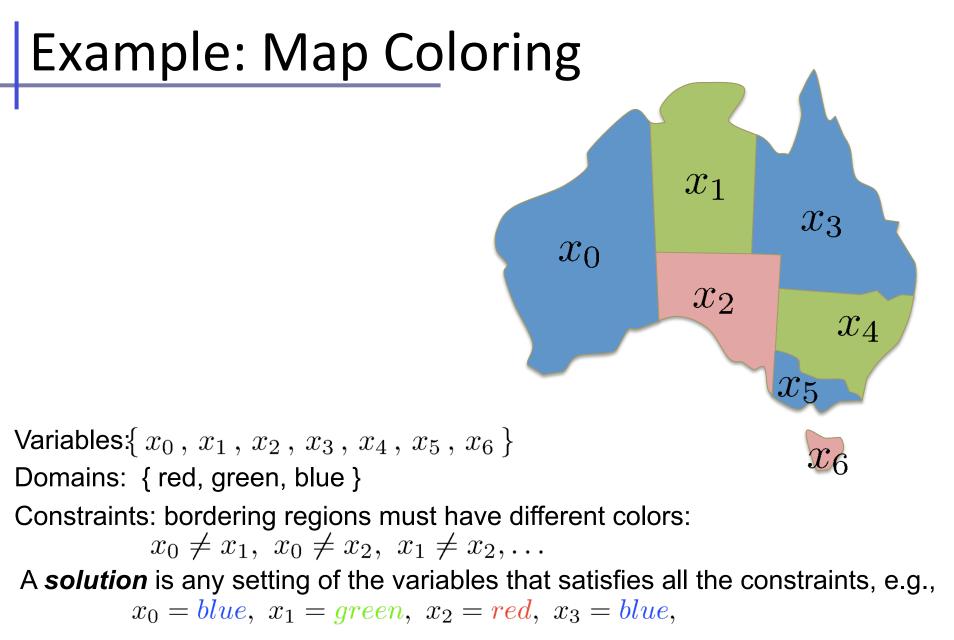


Task: solve (complete a partial solution)

```
check "well-posed": exactly one solution?
```

CSPs: What is a Solution?

- State: assignment of values to some or all variables
 - Assignment is complete when every variable has an assigned value
 - Assignment is partial when one or more variables have no assigned value
- Consistent assignment
 - An assignment that does not violate any constraint
- A solution to a CSP is a complete and consistent assignment
 - All variables are assigned, and no constraints are violated
- CSPs may require a solution that maximizes an objective
 - Linear objective \Rightarrow linear programming or integer linear programming
 - Ex: "Weighted" CSPs
- Examples of applications
 - Scheduling the time of observations on the Hubble Space Telescope
 - Airline schedules
 - Cryptography
 - Computer vision, image interpretation



 $x_4 = green, \ x_5 = blue, \ x_6 = red$

Example: Map Coloring

- Constraint graph
 - Vertices: variables
 - Edges: constraints
 (connect involved variables)
- Graphical model
 - Abstracts the problem to a canonical form
 - Can reason about problem through graph connectivity

 x_1

 x_2

 x_0

 x_3

 x_5

 x_6

 x_4

- Ex: Tasmania can be solved independently (more later)
- Binary CSP
 - Constraints involve at most two variables
 - Sometimes called "pairwise"

Aside: Graph coloring

- More general problem than map coloring
- Planar graph: graph in 2D plane with no edge crossings
- Guthrie's conjecture (1852) Every planar graph can be colored \leq 4 colors
- Proved (using a computer) in 1977 (Appel & Haken 1977)

 x_1

 x_2

 x_0

 x_3

 x_5

 x_6

 x_4

Varieties of CSPs

- Discrete variables
 - Finite domains, size $d \Rightarrow O(d^n)$ complete assignments
 - Ex: Boolean CSPs: Boolean satisfiability (NP-complete)
 - Inifinite domains (integers, strings, etc.)
 - Ex: Job scheduling, variables are start/end days for each job
 - Need a constraint language, e.g., StartJob_1 + 5 ≤ StartJob_3
 - Infinitely many solutions
 - Linear constraints: solvable
 - Nonlinear: no general algorithm
- Continuous variables
 - Ex: Building an airline schedule or class schedule
 - Linear constraints: solvable in polynomial time by LP methods

Varieties of constraints

- Unary constraints involve a single variable,
 - e.g., SA ≠ green
- Binary constraints involve pairs of variables,
 e.g., SA ≠ WA
- Higher-order constraints involve 3 or more variables,
 - Ex: jobs A,B,C cannot all be run at the same time
 - Can always be expressed using multiple binary constraints
- **Preference** (soft constraints)
 - Ex: "red is better than green" can often be represented by a cost for each variable assignment
 - Combines optimization with CSPs

Simplify...

- We restrict attention to:
- Discrete & finite domains
 - Variables have a discrete, finite set of values
- No objective function
 - Any complete & consistent solution is OK
- Solution
 - Find a complete & consistent assignment
- Example: Sudoku puzzles

Binary CSPs

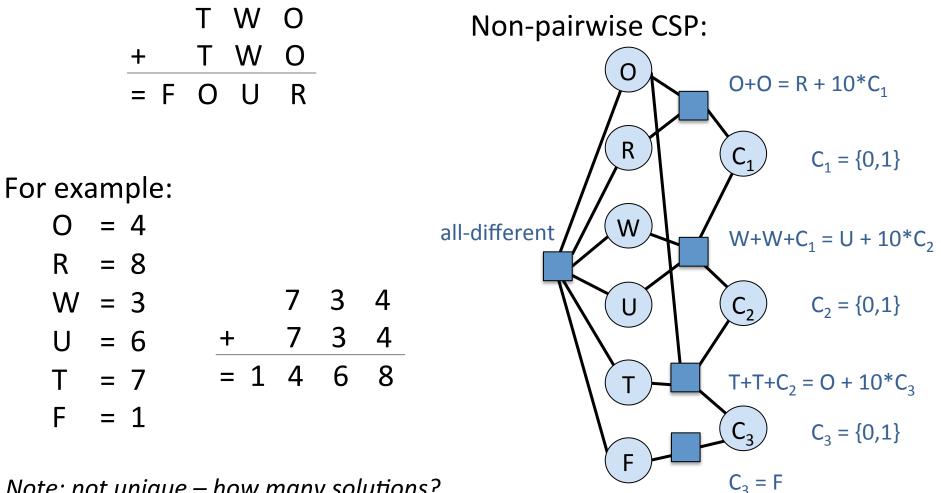
CSPs only need binary constraints!

- Unary constraints
 - Just delete values from the variable's domain
- Higher order (3 or more variables): reduce to binary
 - Simple example: 3 variables X,Y,Z
 - Domains Dx={1,2,3}, Dy={1,2,3}, Dz={1,2,3}
 - Constraint C[X,Y,Z] = {X+Y=Z} = {(1,1,2),(1,2,3),(2,1,3)}
 (Plus other variables & constraints elsewhere in the CSP)
 - Create a new variable W, taking values as triples (3-tuples)
 - Domain of W is Dw={(1,1,2),(1,2,3),(2,1,3)}
 - Dw is exactly the tuples that satisfy the higher-order constraint
 - Create three new constraints:
 - C[X,W] = { [1,(1,1,2)], [1,(1,2,3)], [2,(2,1,3) }
 - C[Y,W] = { [1,(1,1,2)], [2,(1,2,3)], [1,(2,1,3) }
 - C[Z,W] = { [2,(1,1,2)], [3,(1,2,3)], [3,(2,1,3) }

Other constraints elsewhere involving X,Y,Z are unaffected

Example: Cryptarithmetic problems

Find numeric substitutions that make an equation hold:



Note: not unique – how many solutions?

Example: Cryptarithmetic problems

• Try it yourself at home:

(a frequent request from college students to parents)

Random binary CSPs

- A random binary CSP is defined by a four-tuple (n, d, p_1 , p_2)
 - n = the number of variables.
 - d = the domain size of each variable.
 - p₁ = probability a constraint exists between two variables.
 - p_2 = probability a pair of values in the domains of two variables connected by a constraint is incompatible.
 - Note that R&N lists compatible pairs of values instead.
 - Equivalent formulations; just take the set complement.
- (n, d, p₁, p₂) generate random binary constraints
- The so-called "model B" of Random CSP (n, d, n₁, n₂)
 - $n1 = p_1 n(n-1)/2$ pairs of variables are randomly and uniformly selected and binary constraints are posted between them.
 - For each constraint, $n_2 = p_2 d^2$ randomly and uniformly selected pairs of values are picked as incompatible.
- The random CSP as an optimization problem (minCSP).
 - Goal is to minimize the total sum of values for all variables.

CSP as a standard search problem

- A CSP can easily be expressed as a standard search problem.
- Incremental formulation
 - Initial State: the empty assignment {}
 - Actions: Assign a value to an unassigned variable provided that it does not violate a constraint
 - Goal test: the current assignment is complete (by construction it is consistent)
 - Path cost: constant cost for every step (not really relevant)

```
BUT: solution is at depth n (# of variables)
For BFS: branching factor at top level is nd
next level: (n-1)d
```

Total: *n*! *d*^{*n*} leaves! But there are only *d*^{*n*} complete assignments!

- Aside: can also use complete-state formulation
 - Local search techniques (Chapter 4) tend to work well

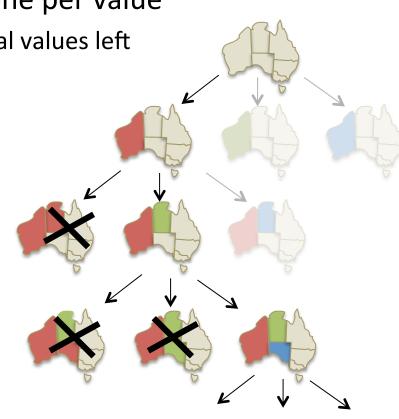
Commutativity

- CSPs are commutative.
 - Order of any given set of actions has no effect on the outcome.
 - Example: choose colors for Australian territories, one at a time.
 - [WA=red then NT=green] same as [NT=green then WA=red]
- All CSP search algorithms can generate successors by considering assignments <u>for only a single variable</u> at each node in the search tree

 \Rightarrow there are d^n irredundant leaves

• (Figure out later to which variable to assign which value.)

- Similar to depth-first search
 - At each level, pick a single variable to expand
 - Iterate over the domain values of that variable
- Generate children one at a time, one per value
 - Backtrack when a variable has no legal values left
- Uninformed algorithm
 - Poor general performance



(R&N Fig. 6.5)

Backtracking search

function BACKTRACKING-SEARCH(csp) return a solution or failure
return RECURSIVE-BACKTRACKING({}, csp)

function RECURSIVE-BACKTRACKING(assignment, csp) return a solution or failure
if assignment is complete then return assignment
var ← SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp],assignment,csp)
for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
 if value is consistent with assignment according to CONSTRAINTS[csp] then
 add {var=value} to assignment
 result ← RECURSIVE-BACTRACKING(assignment, csp)
 if result ≠ failure then return result
 remove {var=value} from assignment
 return failure

- Expand *deepest* unexpanded node
- Generate only one child at a time.
- Goal-Test when inserted.
 - For CSP, Goal-test at bottom

က်ကွက်လွှစ်လွှစ်

- Expand *deepest* unexpanded node
- Generate only one child at a time.
- Goal-Test when inserted.
 - For CSP, Goal-test at bottom

ක් බ රා ක රා ක රා

- Expand *deepest* unexpanded node
- Generate only one child at a time.
- Goal-Test when inserted.
 - For CSP, Goal-test at bottom

ග් ග ග ග ග ග

- Expand *deepest* unexpanded node
- Generate only one child at a time.
- Goal-Test when inserted.
 - For CSP, Goal-test at bottom

 $\dot{}$

Future= green dotted circles Frontier=white nodes Expanded/active=gray nodes Forgotten/reclaimed= black nodes

රා ම රා ම ම ම

- Expand *deepest* unexpanded node
- Generate only one child at a time.
- Goal-Test when inserted.
 - For CSP, Goal-test at bottom

රා ම රා ම රා

- Expand *deepest* unexpanded node
- Generate only one child at a time.
- Goal-Test when inserted.
 - For CSP, Goal-test at bottom

රා ම රා ම ම

- Expand *deepest* unexpanded node
- Generate only one child at a time.
- Goal-Test when inserted.
 - For CSP, Goal-test at bottom

റ് 📐

ග් බ බ

- Expand *deepest* unexpanded node
- Generate only one child at a time.
- Goal-Test when inserted.
 - For CSP, Goal-test at bottom

- Expand *deepest* unexpanded node
- Generate only one child at a time.
- Goal-Test when inserted.
 - For CSP, Goal-test at bottom

- Expand *deepest* unexpanded node
- Generate only one child at a time.
- Goal-Test when inserted.
 - For CSP, Goal-test at bottom

🔞 🎃 🏠 🍻

- Expand *deepest* unexpanded node
- Generate only one child at a time.
- Goal-Test when inserted.
 - For CSP, Goal-test at bottom

- Expand *deepest* unexpanded node
- Generate only one child at a time.
- Goal-Test when inserted.
 - For CSP, Goal-test at bottom

(R&N Fig. 6.5)

Backtracking search

function BACKTRACKING-SEARCH(csp) return a solution or failure
return RECURSIVE-BACKTRACKING({}, csp)

function RECURSIVE-BACKTRACKING(assignment, csp) return a solution or failure
if assignment is complete then return assignment
var ← SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp],assignment,csp)
for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
 if value is consistent with assignment according to CONSTRAINTS[csp] then
 add {var=value} to assignment
 result ← RECURSIVE-BACTRACKING(assignment, csp)
 if result ≠ failure then return result
 remove {var=value} from assignment
 return failure

Improving Backtracking O(exp(n))

- Make our search more "informed" (e.g. heuristics)
 - General purpose methods can give large speed gains
 - CSPs are a generic formulation; hence heuristics are more "generic" as well
- Before search:
 - Reduce the search space
 - Arc-consistency, path-consistency, i-consistency
 - Variable ordering (fixed)
- During search:
 - Look-ahead schemes:
 - Detecting failure early; reduce the search space if possible
 - Which variable should be assigned next?
 - Which value should we explore first?
 - Look-back schemes:
 - Backjumping
 - Constraint recording
 - Dependency-directed backtracking

Look-ahead: Variable and value orderings

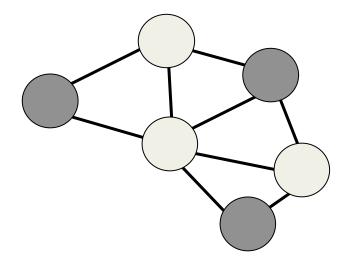
- Intuition:
 - Apply propagation at each node in the search tree (reduce future branching)
 - Choose a variable that will detect failures early
 - Choose value least likely to yield a dead-end
- Forward-checking
 - (check each unassigned variable separately)
- Maintaining arc-consistency (MAC)
 - (apply full arc-consistency)

(low branching factor)

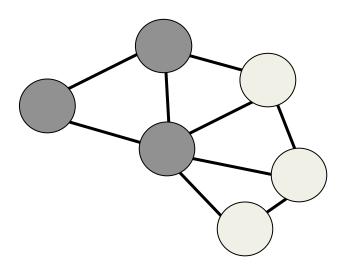
(find solution early if possible)

Dependence on variable ordering

Example: coloring



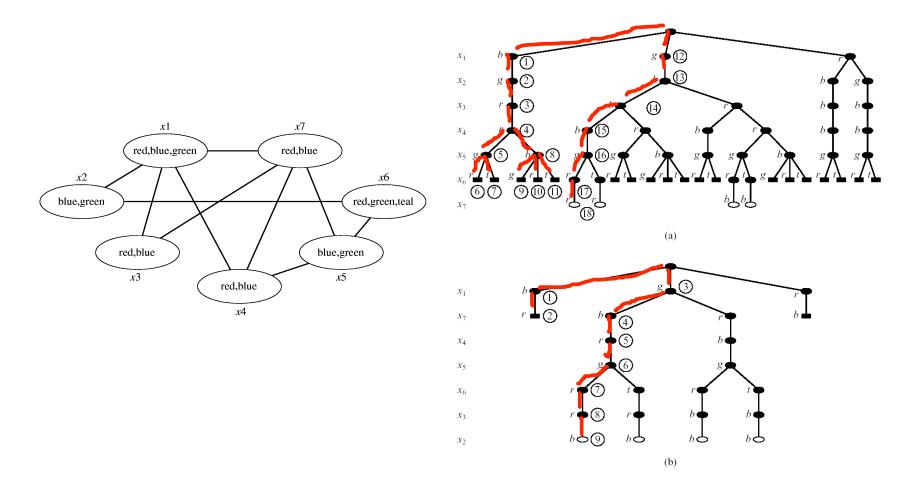
Color WA, Q, V first: 9 ways to color none inconsistent (yet) only 3 lead to solutions...



Color WA, SA, NT first: 6 ways to color all lead to solutions no backtracking

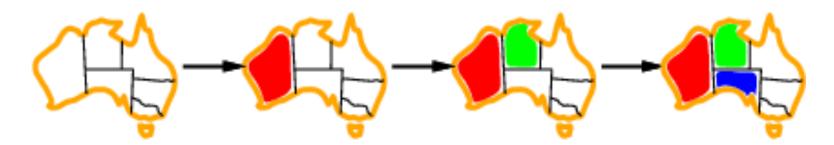
Dependence on variable ordering

Another graph coloring example:



Minimum remaining values (MRV)

- A heuristic for selecting the next variable
 - a.k.a. most constrained variable (MCV) heuristic

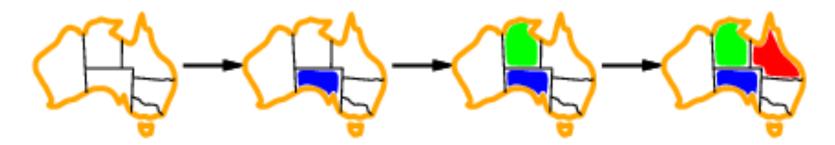


choose the variable with the fewest legal values

- will immediately detect failure if X has no legal values
- (Related to forward checking, later)

Degree heuristic

- Another heuristic for selecting the next variable
 - a.k.a. most constraining variable heuristic

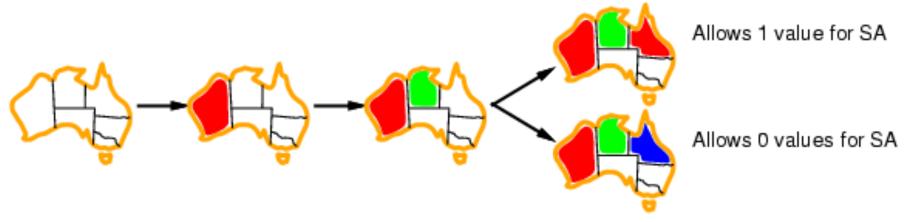


- Select variable involved in the most constraints on other unassigned variables
- Useful as a tie-breaker among most constrained variables

What about the order to try values?

Least Constraining Value

- Heuristic for selecting what value to try next
- Given a variable, choose the least constraining value:
 - the one that rules out the fewest values in the remaining variables



Makes it more likely to find a solution early

Variable and value orderings

- Minimum remaining values for variable ordering
- Least constraining value for value ordering
 - Why do we want these? Is there a contradiction?
- Intuition:
 - Choose a variable that will detect failures early
 - Choose value least likely to yield a dead-end

(low branching factor)(find solution early if possible)

- MRV for variable selection reduces current branching factor
 - Low branching factor throughout tree = fast search
 - Hopefully, when we get to variables with currently many values, forward checking or arc consistency will have reduced their domains & they'll have low branching too
- LCV for value selection increases the chance of success
 - If we're going to fail at this node, we'll have to examine every value anyway
 - If we're going to succeed, the earlier we do, the sooner we can stop searching

Summary

- CSPs
 - special kind of problem: states defined by values of a fixed set of variables, goal test defined by constraints on variable values
- Backtracking = depth-first search with one variable assigned per node
- Heuristics
 - Variable ordering and value selection heuristics help significantly
- Variable ordering (selection) heuristics
 - Choose variable with Minimum Remaining Values (MRV)
 - Degree Heuristic break ties after applying MRV
- Value ordering (selection) heuristic
 - Choose Least Constraining Value