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Constraint	Sa*sfac*on	Problems	
•  What	is	a	CSP?	

–  Finite	set	of	variables,	X1,	X2,	…,	Xn		
–  Nonempty	domain	of	possible	values	for	each:	D1,	...,	Dn		
–  Finite	set	of	constraints,	C1...Cm	

•  Each	constraint	Ci	limits	the	values	that	variables	can	take,	e.g.,	X1	≠	X2	
–  Each	constraint	Ci	is	a	pair:		Ci	=	(scope,	rela)on)	

•  Scope	=	tuple	of	variables	that	par*cipate	in	the	constraint	
•  Rela*on	=	list	of	allowed	combina*ons	of	variables	

	May	be	an	explicit	list	of	allowed	combina*ons	
	May	be	an	abstract	rela*on	allowing	membership	tes*g	&	lis*ng	

•  CSP	benefits	
–  Standard	representa*on	paVern	
–  Generic	goal	and	successor	func*ons	
–  Generic	heuris*cs	(no	domain-specific	exper*se	required)	



Example:	Sudoku	
•  Problem	specifica*on	

Variables: {A1, A2, A3, … I7, I8, I9}  
Domains:  { 1, 2, 3, … , 9 } 
Constraints: 

 each row, column “all different” 
 alldiff(A1,A2,A3…,A9), ... 
 each 3x3 block “all different” 
 alldiff(G7,G8,G9,H7,…I9), ... 

 
 
Task: solve (complete a partial solution) 
 
          check “well-posed”: exactly one solution? 
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CSPs:	What	is	a	Solu*on?	
•  State:	assignment	of	values	to	some	or	all	variables	

–  Assignment	is	complete	when	every	variable	has	an	assigned	value	
–  Assignment	is	par*al	when	one	or	more	variables	have	no	assigned	value	

•  Consistent	assignment	
–  An	assignment	that	does	not	violate	any	constraint	

•  A	solu*on	to	a	CSP	is	a	complete	and	consistent	assignment	
–  All	variables	are	assigned,	and	no	constraints	are	violated	

•  CSPs	may	require	a	solu*on	that	maximizes	an	objec*ve	
–  Linear	objec*ve	)	linear	programming	or	integer	linear	programming	
–  Ex:	“Weighted”	CSPs	

•  Examples	of	applica*ons	
–  Scheduling	the	*me	of	observa*ons	on	the	Hubble	Space	Telescope	
–  Airline	schedules	
–  Cryptography	
–  Computer	vision,	image	interpreta*on	



Example:	Map	Coloring	

Variables:   
Domains:  { red, green, blue } 
Constraints: bordering regions must have different colors: 
 
A solution is any setting of the variables that satisfies all the constraints, e.g., 



Example:	Map	Coloring	
•  Constraint	graph	

–  Ver*ces:	variables	
–  Edges:	constraints	

	(connect	involved	variables)	

•  Graphical	model	
–  Abstracts	the	problem	to	a	canonical	form	
–  Can	reason	about	problem	through	graph	connec*vity	
–  Ex:	Tasmania	can	be	solved	independently	(more	later)	

•  Binary	CSP	
–  Constraints	involve	at	most	two	variables	
–  Some*mes	called	“pairwise”	



Aside:	Graph	coloring	
•  More	general	problem	than	map	coloring	

•  Planar	graph:	
	graph	in	2D	plane	with	no		
				edge	crossings	

•  Guthrie’s	conjecture	(1852)	
	Every	planar	graph	can	be	colored	·	4	colors	

•  Proved	(using	a	computer)	in	1977		(Appel	&	Haken	1977)	



Varie*es	of	CSPs	
•  Discrete	variables	

–  Finite	domains,	size	d	)	O(dn)	complete	assignments	
•  Ex:	Boolean	CSPs:		Boolean	sa*sfiability	(NP-complete)	

–  Inifinite	domains	(integers,	strings,	etc.)	
•  Ex:	Job	scheduling,	variables	are	start/end	days	for	each	job	
•  Need	a	constraint	language,	e.g.,	StartJob_1	+	5	·	StartJob_3	
•  Infinitely	many	solu*ons	
•  Linear	constraints:	solvable	
•  Nonlinear:	no	general	algorithm	

•  Con*nuous	variables	
–  Ex:	Building	an	airline	schedule	or	class	schedule	
–  Linear	constraints:	solvable	in	polynomial	*me	by	LP	methods	



Varie*es	of	constraints	
•  Unary	constraints	involve	a	single	variable,		

–  e.g.,	SA	≠	green	

•  Binary	constraints	involve	pairs	of	variables,	
–  e.g.,	SA	≠	WA	

•  Higher-order	constraints	involve	3	or	more	variables,	
–  Ex:	jobs	A,B,C	cannot	all	be	run	at	the	same	*me	
–  Can	always	be	expressed	using	mul*ple	binary	constraints	

•  Preference	(soo	constraints)	
–  Ex:	“red	is	beVer	than	green”	can	ooen	be	represented	by	a	cost	for	
each	variable	assignment	

–  Combines	op*miza*on	with	CSPs	
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Simplify…	
•  We	restrict	aVen*on	to:	

•  Discrete	&	finite	domains	
–  Variables	have	a	discrete,	finite	set	of	values	

•  No	objec*ve	func*on	
–  Any	complete	&	consistent	solu*on	is	OK	

•  Solu*on	
–  Find	a	complete	&	consistent	assignment	

•  Example:	Sudoku	puzzles	



Binary	CSPs	
CSPs	only	need	binary	constraints!	

•  Unary	constraints	
–  Just	delete	values	from	the	variable’s	domain	

•  Higher	order	(3	or	more	variables):	reduce	to	binary	
–  Simple	example:	3	variables	X,Y,Z	
–  Domains	Dx={1,2,3},	Dy={1,2,3},	Dz={1,2,3}	
–  Constraint	C[X,Y,Z]	=	{X+Y=Z}	=	{(1,1,2),(1,2,3),(2,1,3)}	

	(Plus	other	variables	&	constraints	elsewhere	in	the	CSP)	

–  Create	a	new	variable	W,	taking	values	as	triples	(3-tuples)	
–  Domain	of	W	is	Dw={(1,1,2),(1,2,3),(2,1,3)}	

•  Dw	is	exactly	the	tuples	that	sa*sfy	the	higher-order	constraint	
–  Create	three	new	constraints:	

•  C[X,W]	=	{	[1,(1,1,2)],	[1,(1,2,3)],	[2,(2,1,3)	}	
•  C[Y,W]	=	{	[1,(1,1,2)],	[2,(1,2,3)],	[1,(2,1,3)	}	
•  C[Z,W]	=	{	[2,(1,1,2)],	[3,(1,2,3)],	[3,(2,1,3)	}	
	Other	constraints	elsewhere	involving	X,Y,Z	are	unaffected	



•  Find	numeric	subs*tu*ons	that	make	an	equa*on	hold:	

Example:	Cryptarithme*c	problems	

									T			W			O	
+							T			W			O	
=		F			O			U				R	

									7				3				4	
+							7				3				4	
=		1			4				6				8	

For	example:	
	O		 	=		4		
	R		 	=		8	
	W	 	=		3	
	U	 	=		6	
	T	 	=		7	
	F	 	=		1	

Note:	not	unique	–	how	many	solu)ons?	

R	

U	

W	

T	

O	

F	

C2	

C3	

C1	

all-different	

O+O	=	R	+	10*C1	

W+W+C1	=	U	+	10*C2	

T+T+C2	=	O	+	10*C3	

C3	=	F	

Non-pairwise	CSP:	

C1	=	{0,1}	

C2	=	{0,1}	

C3	=	{0,1}	



•  Try	it	yourself	at	home:	

	(a	frequent	request	from	college	students	to	parents)	

Example:	Cryptarithme*c	problems	

										S				E			N			D	
+							M			O			R			E	
=		M		O			N			E			Y	



Random	binary	CSPs	
•  A random binary CSP is defined by a four-tuple (n, d, p1, p2) 

–  n	=	the	number	of	variables.	
–  d	=	the	domain	size	of	each	variable.	
–  p1	=	probability	a	constraint	exists	between	two	variables.	
–  p2	=	probability	a	pair	of	values	in	the	domains	of	two	variables	connected	by	a	

constraint	is	incompa*ble.	
•  Note	that	R&N	lists	compa*ble	pairs	of	values	instead.	
•  Equivalent	formula*ons;	just	take	the	set	complement.	

•  (n, d, p1, p2) generate random binary constraints 

•  The so-called “model B” of Random CSP (n, d, n1, n2)  
–  n1	=	p1	n(n-1)/2	pairs	of	variables	are	randomly	and	uniformly	selected	and	binary	

constraints	are	posted	between	them.	
–  For	each	constraint,	n2	=	p2	d^2	randomly	and	uniformly	selected	pairs	of	values	

are	picked	as	incompa*ble.	

•  The random CSP as an optimization problem (minCSP). 
–  Goal	is	to	minimize	the	total	sum	of	values	for	all	variables.	

(adapted from http://www.unitime.org/csp.php) 



CSP as a standard search problem 
•  A CSP can easily be expressed as a standard search problem. 

•  Incremental formulation 
–  Initial State: the empty assignment {} 
–  Actions: Assign a value to an unassigned variable provided that it does not 

violate a constraint 
–  Goal test: the current assignment is complete  

 (by construction it is consistent) 
–  Path cost: constant cost for every step (not really relevant) 

•  Aside: can also use complete-state formulation 
–  Local search techniques (Chapter 4) tend to work well 

BUT:  solution is at depth n  (# of variables) 
For BFS:  branching factor at top level is nd 
             next level:  (n-1)d 
             … 
Total:  n! dn leaves!    But there are only dn complete assignments! 



Commutativity 
•  CSPs are commutative. 

–  Order of any given set of actions has no effect on the outcome. 
–  Example: choose colors for Australian territories, one at a time. 

•  [WA=red then NT=green]    same as    [NT=green then WA=red] 

 
•  All CSP search algorithms can generate successors by 

considering assignments for only a single variable at each 
node in the search tree 
   ⇒ there are dn irredundant leaves  

•  (Figure out later to which variable to assign which value.) 



Backtracking	search	
•  Similar	to	depth-first	search	

–  At	each	level,	pick	a	single	variable	to	expand	
–  Iterate	over	the	domain	values	of	that	variable	

•  Generate	children	one	at	a	*me,	one	per	value	
–  Backtrack	when	a	variable	has	no	legal	values	leo	

•  Uninformed	algorithm	
–  Poor	general	performance	



Backtracking	search	
func%on	BACKTRACKING-SEARCH(csp)	return	a	solu*on	or	failure	

	return	RECURSIVE-BACKTRACKING({}	,	csp)	
	
func%on	RECURSIVE-BACKTRACKING(assignment,	csp)	return	a	solu*on	or	failure	

	if	assignment	is	complete	then	return	assignment	
	var	←	SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp],assignment,csp)	
	for	each	value	in	ORDER-DOMAIN-VALUES(var,	assignment,	csp)	do	
	 	if	value	is	consistent	with	assignment	according	to	CONSTRAINTS[csp]			then	
	 	 	add	{var=value}	to	assignment		
	 	 	result	←	RECURSIVE-BACTRACKING(assignment,	csp)	
	 	 	if	result	≠	failure		then	return	result	
	 	 	remove	{var=value}	from	assignment	
	return	failure	

(R&N Fig. 6.5) 



Backtracking	search	
•  Expand	deepest	unexpanded	node	
•  Generate	only	one	child	at	a	*me.	
•  Goal-Test	when	inserted.	

–  For	CSP,	Goal-test	at	boVom	
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Improving	Backtracking						 	O(exp(n))	
•  Make	our	search	more	“informed”	(e.g.	heuris*cs)	

–  General	purpose	methods	can	give	large	speed	gains	
–  CSPs	are	a	generic	formula*on;	hence	heuris*cs	are	more	“generic”	as	well	

•  Before	search:	
–  Reduce	the	search	space	
–  Arc-consistency,	path-consistency,	i-consistency	
–  Variable	ordering	(fixed)	

•  During	search:	
–  Look-ahead	schemes:		

•  Detec*ng	failure	early;	reduce	the	search	space	if	possible	
•  Which	variable	should	be	assigned	next?	
•  Which	value	should	we	explore	first?			

–  Look-back	schemes:	
•  Backjumping	
•  Constraint	recording	
•  Dependency-directed	backtracking	



Look-ahead:	Variable	and	value	orderings	
•  Intui*on:		

–  Apply	propaga*on	at	each	node	in	the	search	tree 	(reduce	future	branching)	
–  Choose	a	variable	that	will	detect	failures	early						 	(low	branching	factor)	
–  Choose	value	least	likely	to	yield	a	dead-end										 	(find	solu*on	early	if	possible)	

•  Forward-checking		
–  (check	each	unassigned	variable	separately)	

•  Maintaining	arc-consistency	(MAC)		
–  (apply	full	arc-consistency)	
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Dependence	on	variable	ordering	
•  Example:	coloring	

Color  WA, Q, V first: 
   9 ways to color 
   none inconsistent (yet) 
   only 3 lead to solutions… 

Color  WA, SA, NT first: 
   6 ways to color 
   all lead to solutions 
   no backtracking 



Dependence	on	variable	ordering	
•  Another	graph	coloring	example:	



Minimum	remaining	values	(MRV)	
•  A	heuris*c	for	selec*ng	the	next	variable	

–  a.k.a.	most	constrained	variable	(MCV)	heuris*c	

–  choose	the	variable	with	the	fewest	legal	values	

–  will	immediately	detect	failure	if	X	has	no	legal	values	

–  (Related	to	forward	checking,	later)	
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Degree	heuris*c	
•  Another	heuris*c	for	selec*ng	the	next	variable	

–  a.k.a.	most	constraining	variable	heuris*c	

–  Select	variable	involved	in	the	most	constraints	on	other	
unassigned	variables	

–  Useful	as	a	*e-breaker	among	most	constrained	variables	

What about the order to try values? 



Least	Constraining	Value	
•  Heuris*c	for	selec*ng	what	value	to	try	next	
•  Given	a	variable,	choose	the	least	constraining	value:	

–  the	one	that	rules	out	the	fewest	values	in	the	remaining	
variables	

– Makes	it	more	likely	to	find	a	solu*on	early	
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Variable	and	value	orderings	
•  Minimum	remaining	values	for	variable	ordering	
•  Least	constraining	value	for	value	ordering	

–  Why	do	we	want	these?		Is	there	a	contradic*on?	

•  Intui*on:		
–  Choose	a	variable	that	will	detect	failures	early						 	(low	branching	factor)	
–  Choose	value	least	likely	to	yield	a	dead-end										 	(find	solu*on	early	if	possible)	

•  MRV	for	variable	selec*on	reduces	current	branching	factor	
–  Low	branching	factor	throughout	tree	=	fast	search	
–  Hopefully,	when	we	get	to	variables	with	currently	many	values,	forward	checking	

or	arc	consistency	will	have	reduced	their	domains	&	they’ll	have	low	branching	too	

•  LCV	for	value	selec*on	increases	the	chance	of	success	
–  If	we’re	going	to	fail	at	this	node,	we’ll	have	to	examine	every	value	anyway	
–  If	we’re	going	to	succeed,	the	earlier	we	do,	the	sooner	we	can	stop	searching	
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Summary 
•  CSPs  

–  special kind of problem: states defined by values of a fixed set of variables, 
goal test defined by constraints on variable values 

•  Backtracking = depth-first search with one variable assigned per node 

•  Heuristics 
–  Variable ordering and value selection heuristics help significantly 

•  Variable ordering (selection) heuristics 
–  Choose variable with Minimum Remaining Values (MRV) 
–  Degree Heuristic – break ties after applying MRV 

•  Value ordering (selection) heuristic 
–  Choose Least Constraining Value 


