
First-Order Logic
Syntax

Common Sense Reasoning
Example, adapted from Lenat

You are told: John drove to the grocery store and bought a
pound of noodles, a pound of ground beef, and two pounds
of tomatoes.

•  Is John 3 years old?
•  Is John a child?
•  What will John do with the purchases?
•  Did John have any money?
•  Does John have less money after going to the store?
•  Did John buy at least two tomatoes?
•  Were the tomatoes made in the supermarket?
•  Did John buy any meat?
•  Is John a vegetarian?
•  Will the tomatoes fit in John’s car?

•  Can Propositional Logic support these inferences?

Outline for First-Order Logic (FOL, also called FOPC)

•  Propositional Logic is Useful --- but has Limited Expressive Power

•  First Order Predicate Calculus (FOPC), or First Order Logic (FOL).
–  FOPC has greatly expanded expressive power, though still limited.

•  New Ontology
–  The world consists of OBJECTS (for propositional logic, the world was facts).
–  OBJECTS have PROPERTIES and engage in RELATIONS and FUNCTIONS.

•  New Syntax
–  Constants, Predicates, Functions, Properties, Quantifiers.

•  New Semantics
–  Meaning of new syntax.

•  Knowledge engineering in FOL

•  Unification Inference in FOL

FOL Syntax: You will be expected to know

•  FOPC syntax
–  Syntax: Sentences, predicate symbols, function symbols, constant

symbols, variables, quantifiers
•  De Morgan’s rules for quantifiers

–  connections between ∀ and ∃
•  Nested quantifiers

–  Difference between “∀ x ∃ y P(x, y)” and “∃ x ∀ y P(x, y)”
–  ∀ x ∃ y Likes(x, y) --- “Everybody likes somebody.”
–  ∃ x ∀ y Likes(x, y) --- “Somebody likes everybody.”

•  Translate simple English sentences to FOPC and back
–  ∀ x ∃ y Likes(x, y) ⇔ “Everyone has someone that they like.”
–  ∃ x ∀ y Likes(x, y) ⇔ “There is someone who likes every person.”

Pros and cons of propositional logic

J  Propositional logic is declarative
- Knowledge and inference are separate

J Propositional logic allows partial/disjunctive/negated information
–  unlike most programming languages and databases

J  Propositional logic is compositional:
–  meaning of B1,1 ∧ P1,2 is derived from meaning of B1,1 and of P1,2

J Meaning in propositional logic is context-independent
–  unlike natural language, where meaning depends on context

L Propositional logic has limited expressive power
–  E.g., cannot say “Pits cause breezes in adjacent squares.“

•  except by writing one sentence for each square
–  Needs to refer to objects in the world,
–  Needs to express general rules

First-Order Logic (FOL), also called
First-Order Predicate Calculus (FOPC)

•  Propositional logic assumes the world contains facts.

•  First-order logic (like natural language) assumes the world contains

–  Objects: people, houses, numbers, colors, baseball games, wars, …
–  Functions: father of, best friend, one more than, plus, …

•  Function arguments are objects; function returns an object
–  Objects generally correspond to English NOUNS

–  Predicates/Relations/Properties: red, round, prime, brother of,
bigger than, part of, comes between, …

•  Predicate arguments are objects; predicate returns a truth value
–  Predicates generally correspond to English VERBS

•  First argument is generally the subject, the second the object
•  Hit(Bill, Ball) usually means “Bill hit the ball.”
•  Likes(Bill, IceCream) usually means “Bill likes IceCream.”
•  Verb(Noun1, Noun2) usually means “Noun1 verb noun2.”

Aside: First-Order Logic (FOL) vs. Second-Order Logic

•  First Order Logic (FOL) allows variables and general rules
–  “First order” because quantified variables represent objects.
–  “Predicate Calculus” because it quantifies over predicates on objects.

•  E.g., “Integral Calculus” quantifies over functions on numbers.
•  Aside: Second Order logic

–  “Second order” because quantified variables can also represent
predicates and functions.

•  E.g., can define “Transitive Relation,” which is beyond FOPC.
•  Aside: In FOL we can state that a relationship is transitive

–  E.g., BrotherOf is a transitive relationship
–  ∀ x, y, z BrotherOf(x,y) ∧ BrotherOf(y,z) => BrotherOf(x,z)

•  Aside: In Second Order logic we can define “Transitive”
–  ∀ P, x, y, z Transitive(P) ó (P(x,y) ∧ P(y,z) => P(x,z))
–  Then we can state directly, Transitive(BrotherOf)

FOL (or FOPC) Ontology:
What kind of things exist in the world?
What do we need to describe and reason about?
Objects --- with their relations, functions, predicates, properties, and general rules.

Reasoning

Representation

A Formal
Symbol System

Inference

Formal Pattern
Matching

Syntax

What is
said

Semantics

What it
means

Schema

Rules of
Inference

Execution

Search
Strategy

Syntax of FOL: Basic elements

•  Constants KingJohn, 2, UCI,...

•  Predicates Brother, >,...

•  Functions Sqrt, LeftLegOf,...

•  Variables x, y, a, b,...

•  Quantifiers ∀, ∃

•  Connectives ¬, ∧, ∨, ⇒, ⇔ (standard)

•  Equality = (but causes difficulties….)

Syntax of FOL: Basic syntax elements are symbols

•  Constant Symbols (correspond to English nouns)
–  Stand for objects in the world.

•  E.g., KingJohn, 2, UCI, ...

•  Predicate Symbols (correspond to English verbs)

–  Stand for relations (maps a tuple of objects to a truth-value)
•  E.g., Brother(Richard, John), greater_than(3,2), ...

–  P(x, y) is usually read as “x is P of y.”
•  E.g., Mother(Ann, Sue) is usually “Ann is Mother of Sue.”

•  Function Symbols (correspond to English nouns)
–  Stand for functions (maps a tuple of objects to an object)

•  E.g., Sqrt(3), LeftLegOf(John), ...

•  Model (world) = set of domain objects, relations, functions
•  Interpretation maps symbols onto the model (world)

–  Very many interpretations are possible for each KB and world!
–  Job of the KB is to rule out models inconsistent with our knowledge.

Syntax : Relations, Predicates, Properties, Functions

•  Mathematically, all the Relations, Predicates,
Properties, and Functions CAN BE represented
simply as sets of m-tuples of objects:

•  Let W be the set of objects in the world.

•  Let Wm = W x W x … (m times) … x W

–  The set of all possible m-tuples of objects from the world

•  An m-ary Relation is a subset of Wm.
–  Example: Let W = {John, Sue, Bill}
–  Then W2 = {<John, John>, <John, Sue>, …, <Sue, Sue>}
–  E.g., MarriedTo = {<John, Sue>, <Sue, John>}
–  E.g., FatherOf = {<John, Bill>}

•  Analogous to a constraint in CSPs
–  The constraint lists the m-tuples that satisfy it.
–  The relation lists the m-tuples that participate in it.

Syntax : Relations, Predicates, Properties, Functions

•  A Predicate is a list of m-tuples making the predicate true.
–  E.g., PrimeFactorOf = {<2,4>, <2,6>, <3,6>, <2,8>, <3,9>, …}
–  This is the same as an m-ary Relation.
–  Predicates (and properties) generally correspond to English verbs.

•  A Property lists the m-tuples that have the property.
–  Formally, it is a predicate that is true of tuples having that property.
–  E.g., IsRed = {<Ball-5>, <Toy-7>, <Car-11>, …}
–  This is the same as an m-ary Relation.

•  A Function CAN BE represented as an m-ary relation
–  the first (m-1) objects are the arguments and the mth is the value.
–  E.g., Square = {<1, 1>, <2, 4>, <3, 9>, <4, 16>, …}

•  An Object CAN BE represented as a function of zero
arguments that returns the object.
–  This is just a 1-ary relationship.

Syntax of FOL: Terms

•  Term = logical expression that refers to an object

•  There are two kinds of terms:

–  Constant Symbols stand for (or name) objects:
•  E.g., KingJohn, 2, UCI, Wumpus, ...

–  Function Symbols map tuples of objects to an object:
•  E.g., LeftLeg(KingJohn), Mother(Mary), Sqrt(x)
•  This is nothing but a complicated kind of name

–  No “subroutine” call, no “return value”

Syntax of FOL: Atomic Sentences

•  Atomic Sentences state facts (logical truth values).
–  An atomic sentence is a Predicate symbol, optionally

followed by a parenthesized list of any argument terms
–  E.g., Married(Father(Richard), Mother(John))
–  An atomic sentence asserts that some relationship (some

predicate) holds among the objects that are its arguments.

•  An Atomic Sentence is true in a given model if the
relation referred to by the predicate symbol holds among
the objects (terms) referred to by the arguments.

Syntax of FOL: Atomic Sentences

•  Atomic sentences in logic state facts that are true or false.

•  Properties and m-ary relations do just that:
 LargerThan(2, 3) is false.
 BrotherOf(Mary, Pete) is false.

 Married(Father(Richard), Mother(John)) could be true or false.
 Properties and m-ary relations are Predicates that are true or false.

•  Note: Functions refer to objects, do not state facts, and form no sentence:

–  Brother(Pete) refers to John (his brother) and is neither true nor false.
–  Plus(2, 3) refers to the number 5 and is neither true nor false.

•  BrotherOf(Pete, Brother(Pete)) is True.

Binary relation
is a truth value.

Function refers to John, an object in the
world, i.e., John is Pete’s brother.
(Works well iff John is Pete’s only brother.)

Syntax of FOL: Connectives & Complex Sentences

•  Complex Sentences are formed in the same way,
and are formed using the same logical connectives,
as we already know from propositional logic

•  The Logical Connectives:

–  ⇔ biconditional
–  ⇒ implication
–  ∧ and
–  ∨ or
–  ¬ negation

•  Semantics for these logical connectives are the same as
we already know from propositional logic.

Complex Sentences

•  We make complex sentences with connectives (just like in
propositional logic).

((),) (())Brother LeftLeg Richard John Democrat Bush¬ ∨

binary
relation

function

property

objects

connectives

Examples

•  Brother(Richard, John) ∧ Brother(John, Richard)

•  King(Richard) ∨ King(John)

•  King(John) => ¬ King(Richard)

•  LessThan(Plus(1,2) ,4) ∧ GreaterThan(1,2)

(Semantics of complex sentences are the same as in propositional logic)

Syntax of FOL: Variables

•  Variables range over objects in the world.

•  A variable is like a term because it represents an object.

•  A variable may be used wherever a term may be used.
–  Variables may be arguments to functions and predicates.

•  (A term with NO variables is called a ground term.)
•  (A variable not bound by a quantifier is called free.)

Syntax of FOL: Logical Quantifiers

•  There are two Logical Quantifiers:
–  Universal: ∀ x P(x) means “For all x, P(x).”

•  The “upside-down A” reminds you of “ALL.”
–  Existential: ∃ x P(x) means “There exists x such that, P(x).”

•  The “backward E” reminds you of “EXISTS.”

•  Syntactic “sugar” --- we really only need one quantifier.
–  ∀ x P(x) ≡ ¬∃ x ¬P(x)
–  ∃ x P(x) ≡ ¬∀ x ¬P(x)
–  You can ALWAYS convert one quantifier to the other.

•  RULES: ∀ ≡ ¬∃¬ and ∃ ≡ ¬∀¬

•  RULE: To move negation “in” across a quantifier,
change the quantifier to “the other quantifier”
and negate the predicate on “the other side.”

–  ¬∀ x P(x) ≡ ∃ x ¬P(x)
–  ¬∃ x P(x) ≡ ∀ x ¬P(x)

Universal Quantification ∀

•  ∀ means “for all”

•  Allows us to make statements about all objects that have certain
properties

•  Can now state general rules:

∀ x King(x) => Person(x) “All kings are persons.”

∀ x Person(x) => HasHead(x) “Every person has a head.”

∀  i Integer(i) => Integer(plus(i,1)) “If i is an integer then i+1 is an integer.”

Note that
∀  x King(x) ∧ Person(x) is not correct!
This would imply that all objects x are Kings and are People

∀  x King(x) => Person(x) is the correct way to say this

Note that => is the natural connective to use with ∀ .

Universal Quantification ∀

•  Universal quantification is equivalent to:
–  Conjunction of all sentences obtained by substitution of an

object for the quantified variable.

•  All Cats are Mammals.
–  ∀x Cat(x) ⇒ Mammal(x)

•  Conjunction of all sentences obtained by substitution of
an object for the quantified variable:
 Cat(Spot) ⇒ Mammal(Spot) ∧
 Cat(Rick) ⇒ Mammal(Rick) ∧
 Cat(LAX) ⇒ Mammal(LAX) ∧
 Cat(Shayama) ⇒ Mammal(Shayama) ∧
 Cat(France) ⇒ Mammal(France) ∧
 Cat(Felix) ⇒ Mammal(Felix) ∧
 …

Existential Quantification ∃

•  ∃ x means “there exists an x such that….” (at least one object x)

•  Allows us to make statements about some object without naming it

•  Examples:

∃ x King(x) “Some object is a king.”

∃ x Lives_in(John, Castle(x)) “John lives in somebody’s castle.”

∃ i Integer(i) ∧ GreaterThan(i,0) “Some integer is greater than zero.”

Note that ∧ is the natural connective to use with ∃

(And note that => is the natural connective to use with ∀)

Existential Quantification ∃

•  Existential quantification is equivalent to:
–  Disjunction of all sentences obtained by substitution of an

object for the quantified variable.

•  Spot has a sister who is a cat.
–  ∃x Sister(x, Spot) ∧ Cat(x)

•  Disjunction of all sentences obtained by substitution of
an object for the quantified variable:
 Sister(Spot, Spot) ∧ Cat(Spot) ∨
 Sister(Rick, Spot) ∧ Cat(Rick) ∨
 Sister(LAX, Spot) ∧ Cat(LAX) ∨
 Sister(Shayama, Spot) ∧ Cat(Shayama) ∨
 Sister(France, Spot) ∧ Cat(France) ∨
 Sister(Felix, Spot) ∧ Cat(Felix) ∨
 …

Combining Quantifiers --- Order (Scope)

The order of “unlike” quantifiers is important.
 Like nested variable scopes in a programming language
 Like nested ANDs and ORs in a logical sentence

∀ x ∃ y Loves(x,y)

–  For everyone (“all x”) there is someone (“exists y”) whom they love.
–  There might be a different y for each x (y is inside the scope of x)

∃  y ∀ x Loves(x,y)
–  There is someone (“exists y”) whom everyone loves (“all x”).
–  Every x loves the same y (x is inside the scope of y)

Clearer with parentheses: ∃ y (∀ x Loves(x,y))

The order of “like” quantifiers does not matter.

 Like nested ANDs and ANDs in a logical sentence
 ∀x ∀y P(x, y) ≡ ∀y ∀x P(x, y)
 ∃x ∃y P(x, y) ≡ ∃y ∃x P(x, y)

Connections between Quantifiers

•  Asserting that all x have property P is the same as asserting
that does not exist any x that does not have the property P

 ∀ x Likes(x, CS-171 class) ó ¬ ∃ x ¬ Likes(x, CS-171 class)

•  Asserting that there exists an x with property P is the same as

asserting that not all x do not have the property P

 ∃ x Likes(x, IceCream) ó ¬ ∀ x ¬ Likes(x, IceCream)

In effect:
 - ∀ is a conjunction over the universe of objects
 - ∃ is a disjunction over the universe of objects
 Thus, DeMorgan’s rules can be applied

De Morgan’s Law for Quantifiers

()
()
()
()

x P x P
x P x P
x P x P
x P x P

∀ ≡¬∃ ¬

∃ ≡¬∀ ¬

¬∀ ≡∃ ¬

¬∃ ≡∀ ¬

()
()

()
()

P Q P Q
P Q P Q

P Q P Q
P Q P Q

∧ ≡ ¬ ¬ ∨ ¬

∨ ≡ ¬ ¬ ∧ ¬

¬ ∧ ≡ ¬ ∨ ¬

¬ ∨ ≡ ¬ ∧ ¬

De Morgan’s Rule Generalized De Morgan’s Rule

Rule is simple: if you bring a negation inside a disjunction or a conjunction,
always switch between them (or àand, and à or).

Aside: More syntactic sugar --- uniqueness

•  ∃! x is “syntactic sugar” for “There exists a unique x”
–  “There exists one and only one x”
–  “There exists exactly one x”
–  Sometimes ∃! is written as ∃1

•  For example, ∃! x PresidentOfTheUSA(x)
–  “There is exactly one PresidentOfTheUSA.”

•  This is just syntactic sugar:
–  ∃! x P(x) is the same as ∃ x P(x) ∧ (∀ y P(y) => (x = y))

Equality

•  term1 = term2 is true under a given interpretation if and only if
term1 and term2 refer to the same object

•  E.g., definition of Sibling in terms of Parent:

∀x,y Sibling(x,y) ⇔
 [¬(x = y) ∧

 ∃m,f ¬ (m = f) ∧ Parent(m,x) ∧ Parent(f,x)
 ∧ Parent(m,y) ∧ Parent(f,y)]

Equality can make reasoning much more difficult!

 (See R&N, section 9.5.5, page 353)
You may not know when two objects are equal.

 E.g., Ancients did not know (MorningStar = EveningStar = Venus)
You may have to prove x = y before proceeding

 E.g., a resolution prover may not know 2+1 is the same as 1+2

Syntactic Ambiguity

•  FOPC provides many ways to represent the same thing.
•  E.g., “Ball-5 is red.”

–  HasColor(Ball-5, Red)
•  Ball-5 and Red are objects related by HasColor.

–  Red(Ball-5)
•  Red is a unary predicate applied to the Ball-5 object.

–  HasProperty(Ball-5, Color, Red)
•  Ball-5, Color, and Red are objects related by HasProperty.

–  ColorOf(Ball-5) = Red
•  Ball-5 and Red are objects, and ColorOf() is a function.

–  HasColor(Ball-5(), Red())
•  Ball-5() and Red() are functions of zero arguments that both

return an object, which objects are related by HasColor.
–  …

•  This can GREATLY confuse a pattern-matching reasoner.
–  Especially if multiple people collaborate to build the KB, and they

all have different representational conventions.

Syntactic Ambiguity --- Partial Solution

•  FOL can be TOO expressive, can offer TOO MANY choices

•  Likely confusion, especially for teams of Knowledge Engineers

•  Different team members can make different representation
choices
–  E.g., represent “Ball43 is Red.” as:

•  a predicate (= verb)? E.g., “Red(Ball43)” ?
•  an object (= noun)? E.g., “Red = Color(Ball43))” ?
•  a property (= adjective)? E.g., “HasProperty(Ball43, Red)” ?

•  PARTIAL SOLUTION:
–  An upon-agreed ontology that settles these questions
–  Ontology = what exists in the world & how it is represented
–  The Knowledge Engineering teams agrees upon an ontology

BEFORE they begin encoding knowledge

More fun with sentences

•  “All persons are mortal.”
•  [Use: Person(x), Mortal (x)]

More fun with sentences

•  “All persons are mortal.”
•  [Use: Person(x), Mortal (x)]

•  ∀x Person(x) ⇒ Mortal(x)
•  ∀x ¬Person(x) ˅ Mortal(x)
•  Common Mistakes:
•  ∀x Person(x) ∧ Mortal(x)
• 

More fun with sentences

•  “Fifi has a sister who is a cat.”
•  [Use: Sister(Fifi, x), Cat(x)]
• 

More fun with sentences

•  “Fifi has a sister who is a cat.”
•  [Use: Sister(Fifi, x), Cat(x)]
• 
•  ∃x Sister(Fifi, x) ∧ Cat(x)
•  Common Mistakes:
•  ∃x Sister(Fifi, x) ⇒ Cat(x)

More fun with sentences

•  “For every food, there is a person who eats that food.”
•  [Use: Food(x), Person(y), Eats(y, x)]
• 
• 

More fun with sentences

•  “For every food, there is a person who eats that food.”
•  [Use: Food(x), Person(y), Eats(y, x)]
• 
•  ∀x ∃y Food(x) ⇒ [Person(y) ∧ Eats(y, x)]
•  ∀x Food(x) ⇒ ∃y [Person(y) ∧ Eats(y, x)]
•  ∀x ∃y ¬Food(x) ˅ [Person(y) ∧ Eats(y, x)]
•  ∀x ∃y [¬Food(x) ˅ Person(y)] ∧ [¬ Food(x) ˅ Eats(y, x)]
•  ∀x ∃y [Food(x) ⇒ Person(y)] ∧ [Food(x) ⇒ Eats(y, x)]
•  Common Mistakes:
•  ∀x ∃y [Food(x) ∧ Person(y)] ⇒ Eats(y, x)
•  ∀x ∃y Food(x) ∧ Person(y) ∧ Eats(y, x)
• 

More fun with sentences

•  “Every person eats every food.”
•  [Use: Person (x), Food (y), Eats(x, y)]

More fun with sentences

•  “Every person eats every food.”
•  [Use: Person (x), Food (y), Eats(x, y)]
• 
•  ∀x ∀y [Person(x) ∧ Food(y)] ⇒ Eats(x, y)
•  ∀x ∀y ¬Person(x) ˅ ¬Food(y) ˅ Eats(x, y)
•  ∀x ∀y Person(x) ⇒ [Food(y) ⇒ Eats(x, y)]
•  ∀x ∀y Person(x) ⇒ [¬Food(y) ˅ Eats(x, y)]
•  ∀x ∀y ¬Person(x) ˅ [Food(y) ⇒ Eats(x, y)]
•  Common Mistakes:
•  ∀x ∀y Person(x) ⇒ [Food(y) ∧ Eats(x, y)]
•  ∀x ∀y Person(x) ∧ Food(y) ∧ Eats(x, y)

More fun with sentences

•  “All greedy kings are evil.”
•  [Use: King(x), Greedy(x), Evil(x)]

More fun with sentences

•  “All greedy kings are evil.”
•  [Use: King(x), Greedy(x), Evil(x)]
• 
•  ∀x [Greedy(x) ∧ King(x)] ⇒ Evil(x)
•  ∀x ¬Greedy(x) ˅ ¬King(x) ˅ Evil(x)
•  ∀x Greedy(x) ⇒ [King(x) ⇒ Evil(x)]
•  Common Mistakes:
•  ∀x Greedy(x) ∧ King(x) ∧ Evil(x)

More fun with sentences

•  “Everyone has a favorite food.”
•  [Use: Person(x), Food(y), Favorite(y, x)]

More fun with sentences

•  “Everyone has a favorite food.”
•  [Use: Person(x), Food(y), Favorite(y, x)]
• 
•  ∀x ∃y Person(x) ⇒ [Food(y) ∧ Favorite(y, x)]
•  ∀x Person(x) ⇒ ∃y [Food(y) ∧ Favorite(y, x)]
•  ∀x ∃y ¬Person(x) ˅ [Food(y) ∧ Favorite(y, x)]
•  ∀x ∃y [¬Person(x) ˅ Food(y)] ∧ [¬Person(x) ˅

Favorite(y, x)]
•  ∀x ∃y [Person(x) ⇒ Food(y)] ∧ [Person(x) ⇒

Favorite(y, x)]
•  Common Mistakes:
•  ∀x ∃y [Person(x) ∧ Food(y)] ⇒ Favorite(y, x)
•  ∀x ∃y Person(x) ∧ Food(y) ∧ Favorite(y, x)

More fun with sentences

•  “There is someone at UCI who is smart.”
•  [Use: Person(x), At(x, UCI), Smart(x)]
• 

More fun with sentences

•  “There is someone at UCI who is smart.”
•  [Use: Person(x), At(x, UCI), Smart(x)]
• 
•  ∃x Person(x) ∧ At(x, UCI) ∧ Smart(x)
•  Common Mistakes:
•  ∃x [Person(x) ∧ At(x, UCI)] ⇒ Smart(x)
• 

More fun with sentences

•  “Everyone at UCI is smart.”
•  [Use: Person(x), At(x, UCI), Smart(x)]

More fun with sentences

•  “Everyone at UCI is smart.”
•  [Use: Person(x), At(x, UCI), Smart(x)]
• 
•  ∀x [Person(x) ∧ At(x, UCI)] ⇒ Smart(x)
•  ∀x ¬[Person(x) ∧ At(x, UCI)] ˅ Smart(x)
•  ∀x ¬Person(x) ˅ ¬At(x, UCI) ˅ Smart(x)
•  Common Mistakes:
•  ∀x Person(x) ∧ At(x, UCI) ∧ Smart(x)
•  ∀x Person(x) ⇒ [At(x, UCI) ∧ Smart(x)]
• 

More fun with sentences

•  “Every person eats some food.”
•  [Use: Person (x), Food (y), Eats(x, y)]
• 

More fun with sentences

•  “Every person eats some food.”
•  [Use: Person (x), Food (y), Eats(x, y)]
• 
•  ∀x ∃y Person(x) ⇒ [Food(y) ∧ Eats(x, y)]
•  ∀x Person(x) ⇒ ∃y [Food(y) ∧ Eats(x, y)]
•  ∀x ∃y ¬Person(x) ˅ [Food(y) ∧ Eats(x, y)]
•  ∀x ∃y [¬Person(x) ˅ Food(y)] ∧ [¬Person(x) ˅ Eats(x,

y)]
•  Common Mistakes:
•  ∀x ∃y [Person(x) ∧ Food(y)] ⇒ Eats(x, y)
•  ∀x ∃y Person(x) ∧ Food(y) ∧ Eats(x, y)
• 

More fun with sentences

•  “Some person eats some food.”
•  [Use: Person (x), Food (y), Eats(x, y)]
• 

More fun with sentences

•  “Some person eats some food.”
•  [Use: Person (x), Food (y), Eats(x, y)]
• 
•  ∃x ∃y Person(x) ∧ Food(y) ∧ Eats(x, y)
•  Common Mistakes:
•  ∃x ∃y [Person(x) ∧ Food(y)] ⇒ Eats(x, y)

Summary

•  First-order logic:
–  Much more expressive than propositional logic
–  Allows objects and relations as semantic primitives
–  Universal and existential quantifiers

•  Syntax: constants, functions, predicates, equality, quantifiers

•  Nested quantifiers
–  Order of unlike quantifiers matters (the outer scopes the inner)

•  Like nested ANDs and ORs
–  Order of like quantifiers does not matter

•  like nested ANDS and ANDs

•  Translate simple English sentences to FOPC and back

