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Syntax 



Common Sense Reasoning 
Example, adapted from Lenat 

You are told:  John drove to the grocery store and bought a 
pound of noodles, a pound of ground beef, and two pounds 
of tomatoes. 

•  Is John 3 years old? 
•  Is John a child? 
•  What will John do with the purchases? 
•  Did John have any money? 
•  Does John have less money after going to the store? 
•  Did John buy at least two tomatoes? 
•  Were the tomatoes made in the supermarket? 
•  Did John buy any meat? 
•  Is John a vegetarian? 
•  Will the tomatoes fit in John’s car? 

•  Can Propositional Logic support these inferences? 



Outline for First-Order Logic (FOL, also called FOPC) 

•  Propositional Logic is Useful --- but has Limited Expressive Power 

•  First Order Predicate Calculus (FOPC), or First Order Logic (FOL). 
–  FOPC has greatly expanded expressive power, though still limited. 

•  New Ontology 
–  The world consists of OBJECTS (for propositional logic, the world was facts). 
–  OBJECTS have PROPERTIES and engage in RELATIONS and FUNCTIONS. 

•  New Syntax 
–  Constants, Predicates, Functions, Properties, Quantifiers. 

•  New Semantics 
–  Meaning of new syntax. 

•  Knowledge engineering in FOL 
 
•  Unification Inference in FOL 



FOL Syntax: You will be expected to know 

•  FOPC syntax  
–  Syntax: Sentences, predicate symbols, function symbols, constant 

symbols, variables, quantifiers 
•  De Morgan’s rules for quantifiers 

–  connections between ∀ and ∃ 
•  Nested quantifiers 

–  Difference between “∀ x ∃ y P(x, y)” and “∃ x ∀ y P(x, y)”  
–  ∀ x ∃ y Likes(x, y) --- “Everybody likes somebody.” 
–  ∃ x ∀ y Likes(x, y) --- “Somebody likes everybody.” 

•  Translate simple English sentences to FOPC and back 
–  ∀ x ∃ y Likes(x, y) ⇔ “Everyone has someone that they like.” 
–  ∃ x ∀ y Likes(x, y) ⇔ “There is someone who likes every person.” 



Pros and cons of propositional logic 

J  Propositional logic is declarative 
- Knowledge and inference are separate 

J Propositional logic allows partial/disjunctive/negated information 
–  unlike most programming languages and databases 

J  Propositional logic is compositional: 
–  meaning of B1,1 ∧ P1,2 is derived from meaning of B1,1 and of P1,2 

J Meaning in propositional logic is context-independent 
–  unlike natural language, where meaning depends on context 

L Propositional logic has limited expressive power 
–  E.g., cannot say “Pits cause breezes in adjacent squares.“ 

•  except by writing one sentence for each square 
–  Needs to refer to objects in the world, 
–  Needs to express general rules 



First-Order Logic (FOL), also called 
First-Order Predicate Calculus (FOPC) 

•  Propositional logic assumes the world contains facts. 
     
•  First-order logic (like natural language) assumes the world contains 
 

–  Objects: people, houses, numbers, colors, baseball games, wars, … 
–  Functions: father of, best friend, one more than, plus, … 

•  Function arguments are objects; function returns an object 
–  Objects generally correspond to English NOUNS 

–  Predicates/Relations/Properties: red, round, prime, brother of, 
bigger than, part of, comes between, … 

•  Predicate arguments are objects; predicate returns a truth value 
–  Predicates generally correspond to English VERBS 

•  First argument is generally the subject, the second the object 
•  Hit(Bill, Ball) usually means “Bill hit the ball.” 
•  Likes(Bill, IceCream) usually means “Bill likes IceCream.” 
•  Verb(Noun1, Noun2) usually means “Noun1 verb noun2.” 



Aside: First-Order Logic (FOL) vs. Second-Order Logic 

•  First Order Logic (FOL) allows variables and general rules 
–  “First order” because quantified variables represent objects. 
–  “Predicate Calculus” because it quantifies over predicates on objects. 

•  E.g., “Integral Calculus” quantifies over functions on numbers. 
•  Aside: Second Order logic 

–  “Second order” because quantified variables can also represent 
predicates and functions. 

•  E.g., can define “Transitive Relation,” which is beyond FOPC. 
•  Aside: In FOL we can state that a relationship is transitive 

–  E.g., BrotherOf is a transitive relationship 
–  ∀ x, y, z BrotherOf(x,y) ∧ BrotherOf(y,z) => BrotherOf(x,z)  

•  Aside: In Second Order logic we can define “Transitive” 
–  ∀ P, x, y, z Transitive(P) ó ( P(x,y) ∧ P(y,z) => P(x,z) ) 
–  Then we can state directly, Transitive(BrotherOf) 



FOL (or FOPC) Ontology: 
What kind of things exist in the world? 
What do we need to describe and reason about? 
Objects --- with their relations, functions, predicates, properties, and general rules.  

Reasoning 

Representation 
------------------- 
A Formal 
Symbol System 

Inference 
--------------------- 
Formal Pattern 
Matching 

Syntax 
--------- 
What is 
said 

Semantics 
------------- 
What it 
means 

Schema 
------------- 
Rules of 
Inference 

Execution 
------------- 
Search 
Strategy 



Syntax of FOL: Basic elements 

•  Constants   KingJohn, 2, UCI,...  

•  Predicates   Brother, >,... 

•  Functions   Sqrt, LeftLegOf,... 

•  Variables   x, y, a, b,... 

•  Quantifiers   ∀, ∃   

•  Connectives  ¬, ∧, ∨, ⇒, ⇔ (standard) 

•  Equality   = (but causes difficulties….) 



Syntax of FOL: Basic syntax elements are symbols 

•  Constant Symbols (correspond to English nouns) 
–  Stand for objects in the world. 

•  E.g., KingJohn, 2, UCI, ...  
 
•  Predicate Symbols (correspond to English verbs) 

–  Stand for relations (maps a tuple of objects to a truth-value) 
•  E.g., Brother(Richard, John), greater_than(3,2), ... 

–  P(x, y) is usually read as “x is P of y.” 
•  E.g., Mother(Ann, Sue) is usually “Ann is Mother of Sue.” 

•  Function Symbols (correspond to English nouns) 
–  Stand for functions (maps a tuple of objects to an object) 

•  E.g., Sqrt(3), LeftLegOf(John), ... 

•  Model (world) = set of domain objects, relations, functions 
•  Interpretation maps symbols onto the model (world) 

–  Very many interpretations are possible for each KB and world! 
–  Job of the KB is to rule out models inconsistent with our knowledge. 



Syntax : Relations, Predicates, Properties, Functions 

•  Mathematically, all the Relations, Predicates, 
Properties, and Functions CAN BE represented 
simply as sets of m-tuples of objects: 

•  Let W be the set of objects in the world. 
 
•  Let Wm = W x W x … (m times) … x W 

–  The set of all possible m-tuples of objects from the world 
 

•  An m-ary Relation is a subset of Wm. 
–  Example: Let W = {John, Sue, Bill} 
–  Then W2 = {<John, John>, <John, Sue>, …, <Sue, Sue>} 
–  E.g., MarriedTo = {<John, Sue>, <Sue, John>} 
–  E.g., FatherOf = {<John, Bill>} 

•  Analogous to a constraint in CSPs 
–  The constraint lists the m-tuples that satisfy it. 
–  The relation lists the m-tuples that participate in it. 



Syntax : Relations, Predicates, Properties, Functions 

•  A Predicate is a list of m-tuples making the predicate true. 
–  E.g., PrimeFactorOf = {<2,4>, <2,6>, <3,6>, <2,8>, <3,9>, …} 
–  This is the same as an m-ary Relation. 
–  Predicates (and properties) generally correspond to English verbs. 

•  A Property lists the m-tuples that have the property. 
–  Formally, it is a predicate that is true of tuples having that property. 
–  E.g., IsRed = {<Ball-5>, <Toy-7>, <Car-11>, …} 
–  This is the same as an m-ary Relation. 

•  A Function CAN BE represented as an m-ary relation 
–  the first (m-1) objects are the arguments and the mth is the value. 
–  E.g., Square = {<1, 1>, <2, 4>, <3, 9>, <4, 16>, …} 

•  An Object CAN BE represented as a function of zero 
arguments that returns the object. 
–  This is just a 1-ary relationship. 



Syntax of FOL: Terms 

•  Term = logical expression that refers to an object 

•  There are two kinds of terms: 

–  Constant Symbols stand for (or name) objects: 
•  E.g., KingJohn, 2, UCI, Wumpus, ...  
 

–  Function Symbols map tuples of objects to an object: 
•  E.g., LeftLeg(KingJohn), Mother(Mary), Sqrt(x) 
•  This is nothing but a complicated kind of name 

–  No “subroutine” call, no “return value” 



Syntax of FOL: Atomic Sentences 

•  Atomic Sentences state facts (logical truth values). 
–  An atomic sentence is a Predicate symbol, optionally 

followed by a parenthesized list of any argument terms 
–  E.g., Married( Father(Richard), Mother(John) ) 
–  An atomic sentence asserts that some relationship (some 

predicate) holds among the objects that are its arguments. 

•  An Atomic Sentence is true in a given model if the 
relation referred to by the predicate symbol holds among 
the objects (terms) referred to by the arguments. 



Syntax of FOL: Atomic Sentences 

•  Atomic sentences in logic state facts that are true or false. 

•  Properties and m-ary relations do just that: 
     LargerThan(2, 3) is false. 
     BrotherOf(Mary, Pete) is false. 

  Married(Father(Richard), Mother(John)) could be true or false. 
 Properties and m-ary relations are Predicates that are true or false. 

 
•  Note: Functions refer to objects, do not state facts, and form no sentence:  

–  Brother(Pete) refers to John (his brother) and is neither true nor false. 
–  Plus(2, 3) refers to the number 5 and is neither true nor false. 

 

•  BrotherOf( Pete, Brother(Pete) ) is True.   

Binary relation 
is a truth value. 

Function refers to John, an object in the 
world, i.e., John is Pete’s brother. 
(Works well iff John is Pete’s only brother.) 



Syntax of FOL: Connectives & Complex Sentences 

•  Complex Sentences are formed in the same way, 
and are formed using the same logical connectives, 
as we already know from propositional logic 

 
•  The Logical Connectives: 

–  ⇔   biconditional 
–  ⇒   implication 
–  ∧   and 
–  ∨   or 
–  ¬   negation 

•  Semantics for these logical connectives are the same as 
we already know from propositional logic. 



Complex Sentences 

•  We make complex sentences with connectives (just like in 
propositional logic). 

 

( ( ), ) ( ( ))Brother LeftLeg Richard John Democrat Bush¬ ∨

binary  
relation 

function 

property 

objects 

connectives 



Examples 

•  Brother(Richard, John) ∧ Brother(John, Richard) 

•  King(Richard) ∨ King(John) 

•  King(John)  => ¬ King(Richard) 

•  LessThan(Plus(1,2) ,4) ∧ GreaterThan(1,2) 

 
 
(Semantics of complex sentences are the same as in propositional logic) 

  

 



Syntax of FOL: Variables 

•  Variables range over objects in the world. 

•  A variable is like a term because it represents an object. 

•  A variable may be used wherever a term may be used. 
–  Variables may be arguments to functions and predicates. 

•  (A term with NO variables is called a ground term.) 
•  (A variable not bound by a quantifier is called free.) 
 



Syntax of FOL: Logical Quantifiers 

•  There are two Logical Quantifiers: 
–  Universal: ∀ x P(x)   means “For all x, P(x).” 

•  The “upside-down A” reminds you of “ALL.” 
–  Existential: ∃ x P(x)   means “There exists x such that, P(x).” 

•  The “backward E” reminds you of “EXISTS.” 

•  Syntactic “sugar” --- we really only need one quantifier. 
–  ∀ x P(x) ≡ ¬∃ x ¬P(x) 
–  ∃ x P(x) ≡ ¬∀ x ¬P(x) 
–  You can ALWAYS convert one quantifier to the other. 

•  RULES: ∀ ≡ ¬∃¬  and  ∃ ≡ ¬∀¬ 

•  RULE: To move negation “in” across a quantifier, 
change the quantifier to “the other quantifier” 
and negate the predicate on “the other side.” 

–  ¬∀ x P(x) ≡ ∃ x ¬P(x) 
–  ¬∃ x P(x) ≡ ∀ x ¬P(x) 

 
 



Universal Quantification ∀ 

•  ∀  means “for all” 

•  Allows us to make statements about all objects that have certain 
properties 

•  Can now state general rules: 

∀ x  King(x) => Person(x)   “All kings are persons.” 
 
∀ x  Person(x) => HasHead(x)   “Every person has a head.” 
                 
∀  i  Integer(i) => Integer(plus(i,1))   “If i is an integer then i+1 is an integer.” 

Note that  
∀  x  King(x) ∧ Person(x)   is not correct!   
This would imply that all objects x are Kings and are People 
 
∀  x  King(x) => Person(x) is the correct way to say this 

Note that => is the natural connective to use with ∀ . 
 
 
 

    



Universal Quantification ∀ 

•  Universal quantification is equivalent to: 
–  Conjunction of all sentences obtained by substitution of an 

object for the quantified variable. 

•  All Cats are Mammals. 
–  ∀x Cat(x) ⇒ Mammal(x) 

•  Conjunction of all sentences obtained by substitution of 
an object for the quantified variable: 
 Cat(Spot) ⇒ Mammal(Spot) ∧ 
 Cat(Rick) ⇒ Mammal(Rick) ∧ 
 Cat(LAX) ⇒ Mammal(LAX) ∧ 
 Cat(Shayama) ⇒ Mammal(Shayama) ∧ 
 Cat(France) ⇒ Mammal(France) ∧ 
 Cat(Felix) ⇒ Mammal(Felix) ∧ 
 … 

 
 
 

    



Existential Quantification ∃ 

•  ∃ x means “there exists an x such that….”  (at least one object x) 

•  Allows us to make statements about some object without naming it 

•  Examples: 

∃ x   King(x)   “Some object is a king.” 
 
∃ x   Lives_in(John, Castle(x))   “John lives in somebody’s castle.” 
 
∃ i    Integer(i) ∧  GreaterThan(i,0)   “Some integer is greater than zero.” 
                 
 

Note that ∧ is the natural connective to use with ∃ 
 
(And note that => is the natural connective to use with ∀ ) 
 
 
 
 

    



Existential Quantification ∃ 

•  Existential quantification is equivalent to: 
–  Disjunction of all sentences obtained by substitution of an 

object for the quantified variable. 

•  Spot has a sister who is a cat. 
–  ∃x Sister(x, Spot) ∧ Cat(x) 

•  Disjunction of all sentences obtained by substitution of 
an object for the quantified variable: 
 Sister(Spot, Spot) ∧ Cat(Spot) ∨ 
 Sister(Rick, Spot) ∧ Cat(Rick) ∨ 
 Sister(LAX, Spot) ∧ Cat(LAX) ∨ 
 Sister(Shayama, Spot) ∧ Cat(Shayama) ∨ 
 Sister(France, Spot) ∧ Cat(France) ∨ 
 Sister(Felix, Spot) ∧ Cat(Felix) ∨ 
 … 

 
 
 

    



Combining Quantifiers --- Order (Scope) 

The order of “unlike” quantifiers is important. 
 Like nested variable scopes in a programming language 
 Like nested ANDs and ORs in a logical sentence 

 
∀ x ∃ y  Loves(x,y)     

–  For everyone (“all x”) there is someone (“exists y”) whom they love. 
–  There might be a different y for each x (y is inside the scope of x) 

∃  y ∀ x  Loves(x,y) 
–  There is someone (“exists y”) whom everyone loves (“all x”). 
–  Every x loves the same y (x is inside the scope of y) 

Clearer with parentheses:  ∃ y ( ∀ x    Loves(x,y) ) 
 
The order of “like” quantifiers does not matter. 

 Like nested ANDs and ANDs in a logical sentence 
  ∀x ∀y P(x, y) ≡ ∀y ∀x P(x, y) 
  ∃x ∃y P(x, y) ≡ ∃y ∃x P(x, y) 



Connections between Quantifiers 

•  Asserting that all x have property P is the same as asserting 
that does not exist any x that does not have the property P 

    ∀ x  Likes(x, CS-171 class)  ó    ¬ ∃ x  ¬ Likes(x, CS-171 class) 
 
•  Asserting that there exists an x with property P is the same as 

asserting that not all x do not have the property P 

  ∃ x  Likes(x, IceCream)  ó    ¬ ∀ x  ¬ Likes(x, IceCream)  
 
In effect: 
  - ∀ is a conjunction over the universe of objects 
  - ∃ is a disjunction over the universe of objects 
         Thus, DeMorgan’s rules can be applied 



De Morgan’s Law for Quantifiers 

( )
( )
( )
( )

x P x P
x P x P
x P x P
x P x P

∀ ≡¬∃ ¬

∃ ≡¬∀ ¬

¬∀ ≡∃ ¬

¬∃ ≡∀ ¬

( )
( )

( )
( )

P Q P Q
P Q P Q

P Q P Q
P Q P Q

∧ ≡ ¬ ¬ ∨ ¬

∨ ≡ ¬ ¬ ∧ ¬

¬ ∧ ≡ ¬ ∨ ¬

¬ ∨ ≡ ¬ ∧ ¬

De Morgan’s Rule Generalized De Morgan’s Rule 

Rule is simple: if you bring a negation inside a disjunction or a conjunction, 
always switch between them (or àand, and à or). 



Aside:  More syntactic sugar --- uniqueness 

•  ∃! x is “syntactic sugar” for “There exists a unique x” 
–  “There exists one and only one x” 
–  “There exists exactly one x” 
–  Sometimes ∃! is written as ∃1 

•  For example, ∃! x PresidentOfTheUSA(x) 
–  “There is exactly one PresidentOfTheUSA.” 

•  This is just syntactic sugar: 
–  ∃! x P(x) is the same as ∃ x P(x) ∧ (∀ y P(y) => (x = y) ) 



Equality 

•  term1 = term2 is true under a given interpretation if and only if 
term1 and term2 refer to the same object 

 

•  E.g., definition of Sibling in terms of Parent: 
 

∀x,y Sibling(x,y) ⇔ 
   [¬(x = y) ∧ 

 ∃m,f  ¬ (m = f) ∧ Parent(m,x) ∧ Parent(f,x) 
           ∧ Parent(m,y) ∧  Parent(f,y)] 

 
Equality can make reasoning much more difficult! 

 (See R&N, section 9.5.5, page 353) 
You may not know when two objects are equal. 

 E.g., Ancients did not know (MorningStar = EveningStar = Venus) 
You may have to prove x = y before proceeding 

 E.g., a resolution prover may not know 2+1 is the same as 1+2 



Syntactic Ambiguity 

•  FOPC provides many ways to represent the same thing. 
•  E.g., “Ball-5 is red.” 

–  HasColor(Ball-5, Red) 
•  Ball-5 and Red are objects related by HasColor. 

–  Red(Ball-5) 
•  Red is a unary predicate applied to the Ball-5 object. 

–  HasProperty(Ball-5, Color, Red) 
•  Ball-5, Color, and Red are objects related by HasProperty. 

–  ColorOf(Ball-5) = Red 
•  Ball-5 and Red are objects, and ColorOf() is a function. 

–  HasColor(Ball-5(), Red()) 
•  Ball-5() and Red() are functions of zero arguments that both 

return an object, which objects are related by HasColor. 
–  … 

•  This can GREATLY confuse a pattern-matching reasoner. 
–  Especially if multiple people collaborate to build the KB, and they 

all have different representational conventions. 



Syntactic Ambiguity --- Partial Solution 

•  FOL can be TOO expressive, can offer TOO MANY choices 

•  Likely confusion, especially for teams of Knowledge Engineers 

•  Different team members can make different representation 
choices 
–  E.g., represent “Ball43 is Red.” as: 

•   a predicate (= verb)?  E.g., “Red(Ball43)” ? 
•   an object (= noun)?  E.g., “Red = Color(Ball43))” ? 
•  a property (= adjective)?  E.g., “HasProperty(Ball43, Red)” ? 

•  PARTIAL SOLUTION: 
–  An upon-agreed ontology that settles these questions 
–  Ontology = what exists in the world & how it is represented 
–  The Knowledge Engineering teams agrees upon an ontology 

BEFORE they begin encoding knowledge 













More fun with sentences 

•   “All persons are mortal.”  
•     [Use: Person(x), Mortal (x) ] 



More fun with sentences 

•   “All persons are mortal.”  
•     [Use: Person(x), Mortal (x) ] 

•   ∀x Person(x) ⇒ Mortal(x) 
•   ∀x ¬Person(x) ˅ Mortal(x) 
•  Common Mistakes: 
•   ∀x Person(x) ∧ Mortal(x) 
•    



More fun with sentences 

•  “Fifi has a sister who is a cat.” 
•     [Use: Sister(Fifi, x), Cat(x) ] 
•    



More fun with sentences 

•  “Fifi has a sister who is a cat.” 
•     [Use: Sister(Fifi, x), Cat(x) ] 
•    
•   ∃x Sister(Fifi, x) ∧ Cat(x)  
•  Common Mistakes: 
•   ∃x Sister(Fifi, x) ⇒ Cat(x)  



More fun with sentences 

•  “For every food, there is a person who eats that food.” 
•  [Use: Food(x), Person(y), Eats(y, x) ] 
•    
•    



More fun with sentences 

•  “For every food, there is a person who eats that food.” 
•  [Use: Food(x), Person(y), Eats(y, x) ] 
•    
•   ∀x ∃y Food(x) ⇒ [ Person(y) ∧ Eats(y, x) ]  
•   ∀x Food(x) ⇒ ∃y [ Person(y) ∧ Eats(y, x) ]  
•   ∀x ∃y ¬Food(x) ˅ [ Person(y) ∧ Eats(y, x) ]  
•   ∀x ∃y [ ¬Food(x) ˅  Person(y) ] ∧ [¬ Food(x) ˅  Eats(y, x) ]  
•   ∀x ∃y [ Food(x) ⇒ Person(y) ] ∧ [ Food(x) ⇒ Eats(y, x) ] 
•  Common Mistakes: 
•   ∀x ∃y [ Food(x) ∧ Person(y) ] ⇒ Eats(y, x)  
•   ∀x ∃y Food(x) ∧ Person(y) ∧ Eats(y, x)  
•    



More fun with sentences 

•  “Every person eats every food.” 
•    [Use: Person (x), Food (y), Eats(x, y) ] 



More fun with sentences 

•  “Every person eats every food.” 
•    [Use: Person (x), Food (y), Eats(x, y) ] 
•    
•   ∀x ∀y [ Person(x) ∧ Food(y) ] ⇒ Eats(x, y)  
•   ∀x ∀y ¬Person(x) ˅ ¬Food(y) ˅ Eats(x, y)   
•   ∀x ∀y Person(x) ⇒ [ Food(y) ⇒ Eats(x, y) ]   
•   ∀x ∀y Person(x) ⇒ [ ¬Food(y) ˅ Eats(x, y) ]  
•   ∀x ∀y ¬Person(x) ˅ [ Food(y) ⇒ Eats(x, y) ] 
•  Common Mistakes: 
•   ∀x ∀y Person(x) ⇒ [Food(y) ∧ Eats(x, y) ] 
•   ∀x ∀y Person(x) ∧ Food(y) ∧ Eats(x, y)  



More fun with sentences 

•   “All greedy kings are evil.” 
•     [Use: King(x), Greedy(x), Evil(x) ] 



More fun with sentences 

•   “All greedy kings are evil.” 
•     [Use: King(x), Greedy(x), Evil(x) ] 
•    
•   ∀x [ Greedy(x) ∧ King(x) ] ⇒ Evil(x)  
•   ∀x ¬Greedy(x) ˅ ¬King(x) ˅ Evil(x)  
•   ∀x Greedy(x) ⇒ [ King(x) ⇒ Evil(x) ] 
•  Common Mistakes: 
•   ∀x Greedy(x) ∧ King(x) ∧ Evil(x)  



More fun with sentences 

•  “Everyone has a favorite food.” 
•    [Use: Person(x), Food(y), Favorite(y, x) ] 



More fun with sentences 

•  “Everyone has a favorite food.” 
•    [Use: Person(x), Food(y), Favorite(y, x) ] 
•    
•   ∀x ∃y Person(x) ⇒ [ Food(y) ∧ Favorite(y, x) ]  
•   ∀x Person(x) ⇒ ∃y [ Food(y) ∧ Favorite(y, x) ]  
•   ∀x ∃y ¬Person(x) ˅ [ Food(y) ∧ Favorite(y, x) ]  
•   ∀x ∃y [ ¬Person(x) ˅ Food(y) ] ∧ [ ¬Person(x) ˅ 

Favorite(y, x) ]  
•   ∀x ∃y [Person(x) ⇒ Food(y) ] ∧ [ Person(x) ⇒ 

Favorite(y, x) ] 
•  Common Mistakes: 
•   ∀x ∃y [ Person(x) ∧ Food(y) ] ⇒ Favorite(y, x) 
•   ∀x ∃y Person(x) ∧ Food(y) ∧ Favorite(y, x) 



More fun with sentences 

•  “There is someone at UCI who is smart.”  
•   [Use: Person(x), At(x, UCI), Smart(x) ] 
•    



More fun with sentences 

•  “There is someone at UCI who is smart.”  
•   [Use: Person(x), At(x, UCI), Smart(x) ] 
•    
•   ∃x Person(x) ∧ At(x, UCI) ∧ Smart(x) 
•  Common Mistakes: 
•   ∃x [ Person(x) ∧ At(x, UCI) ] ⇒ Smart(x) 
•    



More fun with sentences 

•  “Everyone at UCI is smart.” 
•     [Use: Person(x), At(x, UCI), Smart(x) ] 



More fun with sentences 

•  “Everyone at UCI is smart.” 
•     [Use: Person(x), At(x, UCI), Smart(x) ] 
•    
•   ∀x [Person(x) ∧ At(x, UCI) ] ⇒ Smart(x)  
•   ∀x ¬[Person(x) ∧ At(x, UCI) ] ˅ Smart(x)  
•   ∀x ¬Person(x) ˅ ¬At(x, UCI) ˅ Smart(x) 
•  Common Mistakes: 
•   ∀x Person(x) ∧ At(x, UCI) ∧ Smart(x)  
•   ∀x Person(x) ⇒ [At(x, UCI) ∧ Smart(x) ] 
•    



More fun with sentences 

•  “Every person eats some food.” 
•    [Use: Person (x), Food (y), Eats(x, y) ] 
•    



More fun with sentences 

•  “Every person eats some food.” 
•    [Use: Person (x), Food (y), Eats(x, y) ] 
•    
•   ∀x ∃y Person(x) ⇒ [ Food(y) ∧ Eats(x, y) ]  
•   ∀x Person(x) ⇒ ∃y [ Food(y) ∧ Eats(x, y) ]  
•   ∀x ∃y ¬Person(x) ˅ [ Food(y) ∧ Eats(x, y) ]  
•   ∀x ∃y [ ¬Person(x) ˅ Food(y) ] ∧ [ ¬Person(x) ˅ Eats(x, 

y) ]  
•  Common Mistakes: 
•   ∀x ∃y [ Person(x) ∧ Food(y)  ] ⇒ Eats(x, y) 
•   ∀x ∃y Person(x) ∧ Food(y) ∧ Eats(x, y) 
•    



More fun with sentences 

•   “Some person eats some food.” 
•    [Use: Person (x), Food (y), Eats(x, y) ] 
•    



More fun with sentences 

•   “Some person eats some food.” 
•    [Use: Person (x), Food (y), Eats(x, y) ] 
•    
•   ∃x ∃y Person(x) ∧ Food(y) ∧ Eats(x, y) 
•  Common Mistakes: 
•   ∃x ∃y [ Person(x) ∧ Food(y) ] ⇒ Eats(x, y) 



Summary 

•  First-order logic: 
–  Much more expressive than propositional logic 
–  Allows objects and relations as semantic primitives 
–  Universal and existential quantifiers 

•  Syntax: constants, functions, predicates, equality, quantifiers 

•  Nested quantifiers 
–  Order of unlike quantifiers matters (the outer scopes the inner) 

•  Like nested ANDs and ORs 
–  Order of like quantifiers does not matter 

•  like nested ANDS and ANDs 

•  Translate simple English sentences to FOPC and back 
 


