
First	Order	Logic	

CS171,	Fall	2016	
Introduc;on	to	Ar;ficial	Intelligence	

Prof.	Alexander	Ihler	
	

Outline	

•  New	ontology	
–  objects,	rela;ons,	proper;es,	func;ons.	

•  New	Syntax	
–  Constants,	predicates,	proper;es,	func;ons	

•  New	seman;cs	
–  meaning	of	new	syntax	

•  Inference	rules	for	Predicate	Logic	(FOL)	
–  Resolu;on	
–  Forward-chaining,	Backward-chaining	
–  Unifica;on	

•  Reading:	Russell	and	Norvig	Chapters	8	&	9	

Want	to	develop	a	beWer,	more	expressive	language:	
•  Needs	to	refer	to	objects	in	the	world,	
•  Needs	to	express	general	rules	

–  On(x,y)	à	~	clear(y)	
–  All	men	are	mortal	
–  Everyone	over	age	21	can	drink	
–  One	student	in	this	class	got	a	perfect	score	
–  Etc….	

•  First	order	logic,	or	“predicate	calculus”	allows	more	
expressiveness	

Building	a	more	expressive	language	

Seman;cs:	Worlds	

•  The	world	consists	of	objects	that	have	proper-es.	
–  There	are	rela-ons	and	func-ons	between	these	objects	
–  Objects		in	the	world,	individuals:	people,	houses,	
numbers,	colors,	baseball	games,	wars,	centuries	

•  Clock	A,	John,	7,	the-house	in	the	corner,	Tel-Aviv	
–  Func;ons	on	individuals:	

•  father-of,	best	friend,	third	inning	of,	one	more	than	

–  Rela;ons:	
•  brother-of,	bigger	than,	inside,	part-of,	has	color,	occurred	a]er	

–  Proper;es	(a	rela;on	of	arity	1):	
•  red,	round,	bogus,	prime,	mul;storied,	beau;ful	

Seman;cs:	Interpreta;on	
•  An	interpreta;on	of	a	sentence	(wff)	is	an	assignment	that	

maps		
–  Object	constants	to	objects	in	the	worlds,		
–  n-ary	func;on	symbols	to	n-ary	func;ons	in	the	world,	
–  n-ary	rela;on	symbols	to	n-ary	rela;ons	in	the	world	

•  Given	an	interpreta;on,	an	atom	has	the	value	“true”	if	it	
denotes	a	rela;on	that	holds	for	those	individuals	denoted	in	
the	terms.	Otherwise	it	has	the	value	“false”	
–  Example:	Block	world:	

•  A,B,C,floor,	On,	Clear	
–  World:	
–  On(A,B)	is	false,	Clear(B)	is	true,	On(C,F1)	is	true…	

•  Sentences	are	true	with	respect	to	a	model	and	an	interpreta;on	

•  Model	contains	objects	(domain	elements)	and	rela;ons	among	them	

•  Interpreta;on	specifies	referents	for	
constant	symbols	 	→	 	objects	

	
predicate	symbols	 	→	 	rela;ons	

	
func;on	symbols	 	→ 	func;onal	rela;ons	

	
	

•  An	atomic	sentence	predicate(term1,...,termn)	is	true	
	iff	the	objects	referred	to	by	term1,...,termn	
	are	in	the	rela;on	referred	to	by	predicate	

	

Truth	in	first-order	logic	

Seman;cs:	Models	
•  An	interpreta;on	sa;sfies	a	wff	(sentence)	if	the	wff	has	the	

value	“true”	under	the	interpreta;on.	
•  Model:	An	interpreta;on	that	sa;sfies	a	wff	is	a	model	of	that	

wff	
•  Validity:	Any	wff	that	has	the	value	“true”	under	all	

interpreta;ons	is	valid	
•  Any	wff	that	does	not	have	a	model	is	inconsistent	or	

unsa;sfiable	
•  If	a	wff	w	has	a	value	true	under	all	the	models	of	a	set	of	

sentences	KB	then	KB	logically	entails	w	

Example	of	models	(blocks	world)	
The	formulas:		
•  On(A,F1)	à	Clear(B)	
•  Clear(B)	and	Clear(C)	à	On(A,F1)	
•  Clear(B)	or	Clear(A)	
•  Clear(B)	
•  Clear(C)	
Possible	interpreta;ons	that	are	models:	

•  On	=	{<B,A>,<A,floor>,<C,floor>}	
•  Clear	=	{<C>,}	

Quan;fica;on	
•  Universal			and	existen;al			quan;fiers	allow	expressing	

general	rules	with	variables	
•  Universal	quan;fica;on	

–  All	cats	are	mammals	

–  It	is	equivalent		to	the	conjunc;on	of	all	the	sentences	obtained	by	
subs;tu;on	the	name	of	an	object	for	the	variable	x.	

•  Syntax:	if	w	is	a	wff	then	(forall	x)	w	is	a	wff.	

)()(xMammalxCatx →∀

,,,,
)()(

)()(
)()(

∧→

∧→

∧→

FelixMammalFelixCat
RebbekaMammalRebbekaCat

SpotMammalSpotCat

Quan;fica;on:	Universal	
•  Universal	quan;fica;on	8	:			a	universally	quan;fied	sentence	

is	true	if	it	is	true	for	every	object	in	the	model		
	 	Everyone	in	Irvine	has	a	tan:	

•  Roughly	equivalent	to	conjunc;on:	

A	common	mistake	

•  Typically,	“implies”	=	“)”	is	the	main	connec;ve	
operator	with	8

•  	Everyone	in	Irvine	has	a	tan:			
 8	x	:	InIrvine(x)) Tan(x)	

•  Operator	Æ	is	uncommon	
 8	x	:	InIrvine(x)	Æ Tan(x)	
	means	that	everyone	lives	in	Irvine	and	is	tan.	

Quan;fica;on:	Existen;al	
•  Existen;al	quan;fica;on				:					an	existen;ally	quan;fied	

sentence	is	true	in	case	one	of	the	disjunct	is	true	
	 	Spot	has	a	sister	who	is	a	cat:	

•  Roughly	quivalent	to	disjunc;on:	

•  We	can	mix	existen;al	and	universal	quan;fica;on.	

∃

)(),(xCatspotxxSister ∧∃

d)...Cat(Richarhard,Spot)Sister(Ric
Cat(Felix)ix,Spot)Sister(Fel

a)Cat(Rebeccecca,Spot)Sister(Reb
Cat(Spot)Spot)tSister(Spo

∧

∨∧

∨∧

∨∧,

A	common	mistake	

•  Typically,	“and”	=	“Æ”	is	the	main	connec;ve	
operator	with	9

•  	Spot	has	a	sister	who	is	a	cat:			
 9	x	:	Sister(x,Spot)	Æ	Cat(x)	

•  Operator)	is	uncommon	
 9	x	:	Sister(x,Spot))	Cat(x)	
	is	true	if	there	is	anyone	who	is	not	Spot’s	sister	

Proper;es	of	quan;fiers	
•  ∀x	∀y	is	the	same	as	∀y	∀x	

•  ∃x	∃y	is	the	same	as	∃y	∃x		

•  ∃x	∀y	is	not	the	same	as	∀y	∃x	

•  ∃x	∀y	Loves(x,y)	
–  “There	is	a	person	who	loves	everyone	in	the	world”	

•  ∀y	∃x	Loves(x,y)	
–  “Everyone	in	the	world	is	loved	by	at	least	one	person”	

	
•  Quan;fier	duality:	each	can	be	expressed	using	the	other	

	∀x	Likes(x,IceCream) 	¬∃x	¬Likes(x,IceCream)	
	∃x	Likes(x,Broccoli)	 	¬∀x	¬Likes(x,Broccoli)	

Equality	

•  term1	=	term2	is	true	under	a	given	
interpreta;on	if	and	only	if	term1	and	term2	
refer	to	the	same	object	

•  E.g.,	defini;on	of	Sibling	in	terms	of	Parent:	

∀x,y	Sibling(x,y)					⇔		
				[¬(x	=	y)	∧		∃m,f	¬	(m	=	f)	∧	Parent(m,x)	∧	
Parent(f,x)	∧	Parent(m,y)	∧		Parent(f,y)]	

Using	FOL	
•  The	kinship	domain:	

–  object	are	people	
–  Proper;es	include	gender	and	they	are	related	by	rela;ons	such	as	

parenthood,	brotherhood,marriage	
–  predicates:		Male,	Female	(unary)	Parent,Sibling,Daughter,Son...	
–  Func;on:		Mother	Father	

•  Brothers	are	siblings	
–  ∀x,y	Brother(x,y)	⇔	Sibling(x,y)	

•  One's	mother	is	one's	female	parent	
–  ∀m,c	Mother(c)	=	m	⇔	(Female(m)	∧	Parent(m,c))	

•  “Sibling”	is	symmetric	
–  ∀x,y	Sibling(x,y)	⇔	Sibling(y,x)	

Using	FOL	
•  The	set	domain:		
•  ∀s	Set(s)	⇔	(s	=	{})	∨	(∃x,s2	Set(s2)	∧	s	=	{x|s2})	
•  ¬∃x,s	{x|s}	=	{}	
•  (Adjoining	an	element	already	in	the	set	has	no	effect)	
•  ∀x,s	x	∈	s	⇔	s	=	{x|s}	
•  (the	only	members	of	a	set	are	the	elements	that	were	adjoint	into	it)	
•  ∀x,s	x	∈	s	⇔	[∃y,s2}	(s	=	{y|s2}	∧	(x	=	y	∨	x	∈	s2))]	
•  ∀s1,s2	s1	⊆	s2	⇔	(∀x	x	∈	s1	⇒	x	∈	s2)	
•  ∀s1,s2	(s1	=	s2)	⇔	(s1	⊆	s2	∧	s2	⊆	s1)	
•  ∀x,s1,s2	x	∈	(s1	∩	s2)	⇔	(x	∈	s1	∧	x	∈	s2)	
•  ∀x,s1,s2	x	∈	(s1	∪	s2)	⇔	(x	∈	s1	∨	x	∈	s2)	

Objects are sets
Predicates: unary predicate “set:, binary predicate membership (x
is a member of set), “subset” (s1 is a subset of s2)
Functions: intersections, union, adjoining an eleiment to a set.

Knowledge	engineering	in	FOL	
•  Iden;fy	the	task	

•  Assemble	the	relevant	knowledge	

•  Decide	on	a	vocabulary	of	predicates,	func;ons,	and	constants	

•  Encode	general	knowledge	about	the	domain	

•  Encode	a	descrip;on	of	the	specific	problem	instance	

•  Pose	queries	to	the	inference	procedure	and	get	answers	

•  Debug	the	knowledge	base	

The	electronic	circuits	domain	

One-bit	full	adder	
	

The	electronic	circuits	domain	
•  Iden;fy	the	task	

–  Does	the	circuit	actually	add	properly?	(circuit	verifica;on)	

•  Assemble	the	relevant	knowledge	
–  Composed	of	wires	and	gates;	Types	of	gates	(AND,	OR,	XOR,	NOT)	
–  Irrelevant:	size,	shape,	color,	cost	of	gates	

•  Decide	on	a	vocabulary	
–  Alterna;ves:	

•  Type(X1)	=	XOR	
•  Type(X1,	XOR)	
•  XOR(X1)	

The	electronic	circuits	domain	
•  Encode	general	knowledge	of	the	domain	

–  ∀t1,t2	Connected(t1,	t2)	⇒	Signal(t1)	=	Signal(t2)	
–  ∀t	Signal(t)	=	1	∨	Signal(t)	=	0	

–  1	≠	0	

–  ∀t1,t2	Connected(t1,	t2)	⇒	Connected(t2,	t1)	

–  ∀g	Type(g)	=	OR	⇒	Signal(Out(1,g))	=	1	⇔	∃n	Signal(In(n,g))	=	1	
–  ∀g	Type(g)	=	AND	⇒	Signal(Out(1,g))	=	0	⇔	∃n	Signal(In(n,g))	=	0	
–  ∀g	Type(g)	=	XOR	⇒	Signal(Out(1,g))	=	1	⇔	Signal(In(1,g))	≠	Signal(In(2,g))	
–  ∀g	Type(g)	=	NOT	⇒	Signal(Out(1,g))	≠	Signal(In(1,g))	

The	electronic	circuits	domain	
•  Encode	the	specific	problem	instance	

–  Type(X1)	=	XOR	 	 	Type(X2)	=	XOR	
–  Type(A1)	=	AND	 	 	Type(A2)	=	AND	
–  Type(O1)	=	OR	

–  Connected(Out(1,X1),In(1,X2)) 	Connected(In(1,C1),In(1,X1))	
–  Connected(Out(1,X1),In(2,A2)) 	Connected(In(1,C1),In(1,A1))	
–  Connected(Out(1,A2),In(1,O1))	 	Connected(In(2,C1),In(2,X1))	
–  Connected(Out(1,A1),In(2,O1))	 	Connected(In(2,C1),In(2,A1))	
–  Connected(Out(1,X2),Out(1,C1))	 	Connected(In(3,C1),In(2,X2))	
–  Connected(Out(1,O1),Out(2,C1))	 	Connected(In(3,C1),In(1,A2))	
	

The	electronic	circuits	domain	

6.  Pose	queries	to	the	inference	procedure	
What	are	the	possible	sets	of	values	of	all	the	

terminals	for	the	adder	circuit?		
	

∃i1,i2,i3,o1,o2	Signal(In(1,C_1))	=	i1	∧	Signal(In(2,C1))	=	i2	∧	Signal(In(3,C1))	=	i3	∧	
Signal(Out(1,C1))	=	o1	∧	Signal(Out(2,C1))	=	o2	

	
7.  Debug	the	knowledge	base	

	(May	have	omiWed	asser;ons	like	1	≠	0)	

Some	more	nota;on	
•  Instan;a;on:	specify	values	for	variables	

•  Ground	term	
–  A	term	without	variables	

•  Subs;tu;on	
–  Seyng	a	variable	equal	to	something	
–  	θ	=	{x	/	John,	y	/	Richard}	
–  Read	as	“x	:=	John,	y:=Richard”	

•  Write	a	subsitu;on	into	sentence	α	as	
Subst(θ,	α)			or	just	as		αθ	

Universal	instan;a;on	(UI)	
•  Every	instan;a;on	of	a	universally	quan;fied	sentence	is	

entailed	by	it:	
∀v	α	

Subst({v/g},	α)	
	for	any	variable	v	and	ground	term	g	

	
•  E.g.,	∀x	King(x)	∧	Greedy(x)	⇒	Evil(x)	yields:	

King(John)	∧	Greedy(John)	⇒		Evil(John)	
King(Richard)	∧	Greedy(Richard)	⇒	Evil(Richard)	
King(Father(John))	∧	Greedy(Father(John))	⇒	Evil(Father(John))	
.	
.	
.	

Existen;al	instan;a;on	(EI)	
•  For	any	sentence	α,	variable	v,	and	constant	symbol	
k	that	does	not	appear	elsewhere	in	the	knowledge	
base:	

∃v	α	
Subst({v/k},	α)	

•  E.g.,	∃x	Crown(x)	∧	OnHead(x,John)	yields:	

Crown(C1)	∧	OnHead(C1,John)	

	provided	C1	is	a	new	constant	symbol,	called	a	
Skolem	constant	

Reduc;on	to	proposi;onal	inference	

Suppose	the	KB	contains	just	the	following:	
∀x	King(x)	∧	Greedy(x)	⇒	Evil(x)	
King(John)	
Greedy(John)	
Brother(Richard,John)	

	

•  Instan-a-ng	the	universal	sentence	in	all	possible	ways,	we	have:	
King(John)	∧	Greedy(John)	⇒	Evil(John)	
King(Richard)	∧	Greedy(Richard)	⇒	Evil(Richard)	
King(John)	
Greedy(John)	
Brother(Richard,John)	

	
	

•  The	new	KB	is	proposi-onalized:	proposi-on	symbols	are	
	 		

	King(John),	Greedy(John),	Evil(John),	King(Richard),	etc.	
	
	

Reduc;on	contd.	
•  Every	FOL	KB	can	be	proposi;onalized	so	as	to	
preserve	entailment	

•  (A	ground	sentence	is	entailed	by	new	KB	iff	entailed	
by	original	KB)	

•  Idea:	proposi;onalize	KB	and	query,	apply	resolu;on,	
return	result	

•  Problem:	with	func;on	symbols,	there	are	infinitely	
many	ground	terms,	
–  e.g.,	Father(Father(Father(John)))	

Reduc;on	contd.	
Theorem:	Herbrand	(1930).	If	a	sentence	α	is	entailed	by	an	FOL	

KB,	it	is	entailed	by	a	finite	subset	of	the	proposi;onalized	KB	

Idea:	For	n	=	0	to	∞	do	
				create	a	proposi;onal	KB	by	instan;a;ng	with	depth-n	terms	
				see	if	α	is	entailed	by	this	KB	

	
Problem:	works	if	α	is	entailed,	loops	if	α	is	not	entailed	
	
Theorem:	Turing	(1936),	Church	(1936)	Entailment	for	FOL	is	

semidecidable	(algorithms	exist	that	say	yes	to	every	entailed	
sentence,	but	no	algorithm	exists	that	also	says	no	to	every	
nonentailed	sentence.)	

•  Proposi;onaliza;on	seems	to	generate	lots	of	irrelevant	
sentences.	

•  E.g.,	from:	
∀x	King(x)	∧	Greedy(x)	⇒	Evil(x)	
King(John)	
∀y	Greedy(y)	
Brother(Richard,John)	

•  Given	query	“evil(x)	it	seems	obvious	that	Evil(John),	but	
proposi;onaliza;on	produces	lots	of	facts	such	as	
Greedy(Richard)	that	are	irrelevant	

•  With	p	k-ary	predicates	and	n	constants,	there	are	p·nk	
instan;a;ons.	

Problems	with	proposi;onaliza;on	

Generalized	Modus	Ponens	(GMP)	
p1',	p2',	…	,	pn',	(p1	∧	p2	∧	…	∧	pn	⇒q)	
																									qθ	
p1'	is	King(John)		 	p1	is	King(x)		
p2'	is	Greedy(y)		 	p2	is	Greedy(x)		
θ	is	{x/John,y/John}	 	q	is	Evil(x)		
q	θ	is	Evil(John)	
	
	
•  GMP	used	with	KB	of	definite	clauses	(exactly	one	posi;ve	

literal)	

•  All	variables	assumed	universally	quan;fied	

where pi'θ = pi θ for all i

Soundness	of	GMP	
•  Need	to	show	that		

p1',	…,	pn',	(p1	∧	…	∧	pn	⇒	q)	╞	qθ	
	

	provided	that	pi'θ	=	piθ	for	all	I	
	
•  Lemma:	For	any	sentence	p,	we	have	p	╞	pθ	by	UI	
	

1.  (p1	∧	…	∧	pn	⇒	q)	╞	(p1	∧	…	∧	pn	⇒	q)θ	=	(p1θ	∧	…	∧	pnθ	⇒	qθ)	

2.  p1',	\;	…,	\;pn'	╞	p1'	∧	…	∧	pn'	╞	p1'θ	∧	…	∧	pn'θ		
3.  From	1	and	2,	qθ	follows	by	ordinary	Modus	Ponens	

Unifica;on	
•  We	can	get	the	inference	immediately	if	we	can	find	a	subs;tu;on	θ	such	

that	King(x)	and	Greedy(x)	match	King(John)	and	Greedy(y)	

θ	=	{x/John,y/John}	works	

•  Unify(α,β)	=	θ	if	αθ	=	βθ		

p	 	 	 	q 		 	 	θ			
Knows(John,x)	 	Knows(John,Jane)	 	{x/Jane}}	
Knows(John,x) 	Knows(y,OJ)	 	 	{x/OJ,y/John}}	
Knows(John,x)	 	Knows(y,Mother(y)) 	{y/John,x/Mother(John)}}	
Knows(John,x) 	Knows(x,OJ)	 	 	{fail}	
	

•  Standardizing	apart	eliminates	overlap	of	variables,	e.g.,	Knows(z17,OJ)	

Unifica;on	
•  We	can	get	the	inference	immediately	if	we	can	find	a	subs;tu;on	θ	such	

that	King(x)	and	Greedy(x)	match	King(John)	and	Greedy(y)	

θ	=	{x/John,y/John}	works	

•  Unify(α,β)	=	θ	if	αθ	=	βθ		

p	 	 	 	q 		 	 	θ			
Knows(John,x)	 	Knows(John,Jane)	 	{x/Jane}}	
Knows(John,x) 	Knows(y,OJ)	 	 	{x/OJ,y/John}}	
Knows(John,x)	 	Knows(y,Mother(y)) 	{y/John,x/Mother(John)}}	
Knows(John,x) 	Knows(x,OJ)	 	 	{fail}	
	

•  Standardizing	apart	eliminates	overlap	of	variables,	e.g.,	Knows(z17,OJ)	

Unifica;on	
•  We	can	get	the	inference	immediately	if	we	can	find	a	subs;tu;on	θ	such	

that	King(x)	and	Greedy(x)	match	King(John)	and	Greedy(y)	

θ	=	{x/John,y/John}	works	

•  Unify(α,β)	=	θ	if	αθ	=	βθ		

p	 	 	 	q 		 	 	θ			
Knows(John,x)	 	Knows(John,Jane)	 	{x/Jane}}	
Knows(John,x) 	Knows(y,OJ)	 	 	{x/OJ,y/John}}	
Knows(John,x)	 	Knows(y,Mother(y)) 	{y/John,x/Mother(John)}}	
Knows(John,x) 	Knows(x,OJ)	 	 	{fail}	
	

•  Standardizing	apart	eliminates	overlap	of	variables,	e.g.,	Knows(z17,OJ)	

Unifica;on	
•  We	can	get	the	inference	immediately	if	we	can	find	a	subs;tu;on	θ	such	

that	King(x)	and	Greedy(x)	match	King(John)	and	Greedy(y)	

θ	=	{x/John,y/John}	works	

•  Unify(α,β)	=	θ	if	αθ	=	βθ		

p	 	 	 	q 		 	 	θ			
Knows(John,x)	 	Knows(John,Jane)	 	{x/Jane}}	
Knows(John,x) 	Knows(y,OJ)	 	 	{x/OJ,y/John}}	
Knows(John,x)	 	Knows(y,Mother(y)) 	{y/John,x/Mother(John)}}	
Knows(John,x) 	Knows(x,OJ)	 	 	{fail}	
	

•  Standardizing	apart	eliminates	overlap	of	variables,	e.g.,	Knows(z17,OJ)	

Unifica;on	
•  We	can	get	the	inference	immediately	if	we	can	find	a	subs;tu;on	θ	such	

that	King(x)	and	Greedy(x)	match	King(John)	and	Greedy(y)	

θ	=	{x/John,y/John}	works	

•  Unify(α,β)	=	θ	if	αθ	=	βθ		

p	 	 	 	q 		 	 	θ			
Knows(John,x)	 	Knows(John,Jane)	 	{x/Jane}}	
Knows(John,x) 	Knows(y,OJ)	 	 	{x/OJ,y/John}}	
Knows(John,x)	 	Knows(y,Mother(y)) 	{y/John,x/Mother(John)}}	
Knows(John,x) 	Knows(x,OJ)	 	 	{fail}	
	

•  Standardizing	apart	eliminates	overlap	of	variables,	e.g.,	Knows(z17,OJ)	

Unifica;on	
•  To	unify	Knows(John,x)	and	Knows(y,z),	

	θ	=	{y/John,	x/z	}	or	θ	=	{y/John,	x/John,	z/John}	

•  The	first	unifier	is	more	general	than	the	second.	

•  There	is	a	single	most	general	unifier	(MGU)	that	is	
unique	up	to	renaming	of	variables.	

MGU	=	{	y/John,	x/z	}	
	

The	unifica;on	algorithm	

The	unifica;on	algorithm	

Example	knowledge	base	
•  The	law	says	that	it	is	a	crime	for	an	American	to	sell	weapons	

to	hos;le	na;ons.		The	country	Nono,	an	enemy	of	America,	
has	some	missiles,	and	all	of	its	missiles	were	sold	to	it	by	
Colonel	West,	who	is	American.	

•  Prove	that	Col.	West	is	a	criminal	

Example	knowledge	base	contd.	
...	it	is	a	crime	for	an	American	to	sell	weapons	to	hos;le	na;ons:	

American(x)	∧	Weapon(y)	∧	Sells(x,y,z)	∧	HosJle(z)	⇒	Criminal(x)	
	

Nono	…	has	some	missiles,	i.e.,	∃x	Owns(Nono,x)	∧	Missile(x):	
Owns(Nono,M1)	and	Missile(M1)	

	

…	all	of	its	missiles	were	sold	to	it	by	Colonel	West	
Missile(x)	∧	Owns(Nono,x)	⇒	Sells(West,x,Nono)	

	

Missiles	are	weapons:	
Missile(x)	⇒	Weapon(x)	

	

An	enemy	of	America	counts	as	"hos;le“:	
Enemy(x,America)	⇒	HosJle(x)	

	

West,	who	is	American	…	
American(West)	

	

The	country	Nono,	an	enemy	of	America	…	
Enemy(Nono,America)	

	

Forward	chaining	algorithm	

Forward	chaining	proof	

Forward	chaining	proof	

Missile(x) ∧ Owns(Nono,x) ⇒ Sells(West,x,Nono)

Missile(x) ⇒ Weapon(x)

Enemy(x,America) ⇒ Hostile(x)

Forward	chaining	proof	

American(x) ∧ Weapon(y) ∧ Sells(x,y,z) ∧ Hostile(z) ⇒ Criminal(x)

*American(x) ∧ Weapon(y) ∧ Sells(x,y,z) ∧ Hostile(z) ⇒ Criminal(x)
*Owns(Nono,M1) and Missile(M1)
*Missile(x) ∧ Owns(Nono,x) ⇒ Sells(West,x,Nono)

*Missile(x) ⇒ Weapon(x)
*Enemy(x,America) ⇒ Hostile(x)
*American(West)
*Enemy(Nono,America)

Forward	chaining	proof	

Proper;es	of	forward	chaining	
•  Sound	and	complete	for	first-order	definite	clauses	

•  Datalog	=	first-order	definite	clauses	+	no	func-ons	
•  FC	terminates	for	Datalog	in	finite	number	of	itera-ons	

•  May	not	terminate	in	general	if	α	is	not	entailed	

•  This	is	unavoidable:	entailment	with	definite	clauses	is	
semidecidable	

Efficiency	of	forward	chaining	
Incremental	forward	chaining:	no	need	to	match	a	rule	on	

itera;on	k	if	a	premise	wasn't	added	on	itera;on	k-1	
⇒	match	each	rule	whose	premise	contains	a	newly	added	posi;ve	

literal	
	

Matching	itself	can	be	expensive:	
Database	indexing	allows	O(1)	retrieval	of	known	facts	
	

–  e.g.,	query	Missile(x)	retrieves	Missile(M1)	

Forward	chaining	is	widely	used	in	deduc;ve	databases	

Hard	matching	example	

•  Colorable()	is	inferred	iff	the	CSP	has	a	solu-on	
•  CSPs	include	3SAT	as	a	special	case,	hence	matching	is	

NP-hard	

Diff(wa,nt) ∧ Diff(wa,sa) ∧ Diff(nt,q) ∧
Diff(nt,sa) ∧ Diff(q,nsw) ∧ Diff(q,sa) ∧
Diff(nsw,v) ∧ Diff(nsw,sa) ∧ Diff(v,sa) ⇒
Colorable()

Diff(Red,Blue) Diff (Red,Green)
Diff(Green,Red) Diff(Green,Blue)
Diff(Blue,Red) Diff(Blue,Green)

Backward	chaining	example	

Backward	chaining	example	

Backward	chaining	example	

Backward	chaining	example	

Backward	chaining	example	

Backward	chaining	example	

Backward	chaining	example	

Backward	chaining	example	

Backward	chaining	algorithm	
	
	
	
	
	
	
	
SUBST(COMPOSE(θ1,	θ2),	p)	=	SUBST(θ2,	SUBST(θ1,	p))	

Proper;es	of	backward	chaining	

•  Depth-first	recursive	proof	search:	space	is	
linear	in	size	of	proof	

•  Incomplete	due	to	infinite	loops	
⇒	fix	by	checking	current	goal	against	every	goal	on	
stack	

•  Inefficient	due	to	repeated	subgoals	(both	
success	and	failure)	
⇒	fix	using	caching	of	previous	results	(extra	space)	

•  Widely	used	for	logic	programming	

Logic	programming:	Prolog	
•  Algorithm	=	Logic	+	Control	

•  Basis:	backward	chaining	with	Horn	clauses	+	bells	&	whistles	
	Widely	used	in	Europe,	Japan	(basis	of	5th	Genera;on	project)	
	Compila;on	techniques	⇒	60	million	LIPS	

•  Program	=	set	of	clauses	=	head :- literal1, … literaln.	

criminal(X) :- american(X), weapon(Y), sells(X,Y,Z), hostile(Z).

•  Depth-first,	le]-to-right	backward	chaining	
•  Built-in	predicates	for	arithme;c	etc.,	e.g.,	X is Y*Z+3	
•  Built-in	predicates	that	have	side	effects	(e.g.,	input	and	output		

•  predicates,	assert/retract	predicates)	
•  Closed-world	assump;on	("nega;on	as	failure")	

–  e.g.,	given	alive(X) :- not dead(X).
–  alive(joe)	succeeds	if	dead(joe)	fails	

Prolog	
•  Appending	two	lists	to	produce	a	third:	
 append([],Y,Y).
 append([X|L],Y,[X|Z]) :- append(L,Y,Z).

•  query:			 	append(A,B,[1,2]) ?													

•  answers:	 	A=[] B=[1,2]

 A=[1] B=[2]

 A=[1,2] B=[]

Resolu;on:	brief	summary	
•  Full	first-order	version:	

l1	∨	···	∨	lk,										m1	∨	···	∨	mn	
(l1	∨	···	∨	li-1	∨	li+1	∨	···	∨	lk	∨	m1	∨	···	∨	mj-1	∨	mj+1	∨	···	∨	mn)θ	

	where	Unify(li,	¬mj)	=	θ.	

•  The	two	clauses	are	assumed	to	be	standardized	apart	so	that	they	share	
no	variables.	

•  For	example,	
																									¬Rich(x)	∨	Unhappy(x)		

				Rich(Ken)	
											Unhappy(Ken)	

	with	θ	=	{x/Ken}	

•  Apply	resolu;on	steps	to	CNF(KB	∧	¬α);	complete	for	FOL	

Conversion	to	CNF	
•  Everyone	who	loves	all	animals	is	loved	by	someone:	

∀x	[∀y	Animal(y)	⇒	Loves(x,y)]	⇒	[∃y	Loves(y,x)]	

1.	Eliminate	bicondi;onals	and	implica;ons	
∀x	[¬∀y	¬Animal(y)	∨	Loves(x,y)]	∨	[∃y	Loves(y,x)]	

	

2.	Move	¬	inwards:	¬∀x	p	≡	∃x	¬p,		¬	∃x	p	≡	∀x	¬p	
∀x	[∃y	¬(¬Animal(y)	∨	Loves(x,y))]	∨	[∃y	Loves(y,x)]		
∀x	[∃y	¬¬Animal(y)	∧	¬Loves(x,y)]	∨	[∃y	Loves(y,x)]		
∀x	[∃y	Animal(y)	∧	¬Loves(x,y)]	∨	[∃y	Loves(y,x)]		

	

Conversion	to	CNF	contd.	
3.  Standardize	variables:	each	quan;fier	should	use	a	different	

one	

∀x	[∃y	Animal(y)	∧	¬Loves(x,y)]	∨	[∃z	Loves(z,x)]	
		

	

4.  Skolemize:	a	more	general	form	of	existen;al	instan;a;on.	
Each	existen;al	variable	is	replaced	by	a	Skolem	func;on	of	the	enclosing	

universally	quan;fied	variables:	
	∀x	[Animal(F(x))	∧	¬Loves(x,F(x))]	∨	Loves(G(x),x)	

5.  Drop	universal	quan;fiers:	
	[Animal(F(x))	∧	¬Loves(x,F(x))]		∨	Loves(G(x),x)	

	
	

6.  Distribute	∨	over	∧	:	
	[Animal(F(x))	∨	Loves(G(x),x)]	∧	[¬Loves(x,F(x))	∨	Loves(G(x),x)]	

Example	knowledge	base	contd.	
...	it	is	a	crime	for	an	American	to	sell	weapons	to	hos;le	na;ons:	

American(x)	∧	Weapon(y)	∧	Sells(x,y,z)	∧	HosJle(z)	⇒	Criminal(x)	
	

Nono	…	has	some	missiles,	i.e.,	∃x	Owns(Nono,x)	∧	Missile(x):	
Owns(Nono,M1)	and	Missile(M1)	
	

…	all	of	its	missiles	were	sold	to	it	by	Colonel	West	
Missile(x)	∧	Owns(Nono,x)	⇒	Sells(West,x,Nono)	
	

Missiles	are	weapons:	
Missile(x)	⇒	Weapon(x)	
	

An	enemy	of	America	counts	as	"hos;le“:	
Enemy(x,America)	⇒	HosJle(x)	
	

West,	who	is	American	…	
American(West)	
	

The	country	Nono,	an	enemy	of	America	…	
Enemy(Nono,America)	

	

Resolu;on	proof:	definite	clauses	

~

Conver;ng		to	clause	form	

),(
)27,(

)28,()27,(
)(),(

),()28,()27,()()(,

ABS
BI

AIAI
BPAP

yxSyIxIyPxPyx

¬

∨

→∧∧∧∀

Prove I(A,27)

Example: Resolution Refutation Prove I(A,27)

Example: Answer Extraction

