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Outline	
•  Represen9ng	uncertainty	is	useful	in	knowledge	bases	

–  Probability	provides	a	coherent	framework	for	uncertainty	

•  Review	of	basic	concepts	in	probability	
–  Emphasis	on	condi9onal	probability	&	condi9onal	independence	

•  Full	joint	distribu9ons	are	intractable	to	work	with	
–  Condi9onal	independence	assump9ons	allow	much	simpler	models	

•  Bayesian	networks	
–  A	useful	type	of	structured	probability	distribu9on	
–  Exploit	structure	for	parsimony,	computa9onal	efficiency	

•  Ra#onal	agents	cannot	violate	probability	theory	
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Uncertainty	
Let	ac9on	At	=	leave	for	airport	t	minutes	before	flight	
Will	At	get	me	there	on	9me?	
	
Problems:	

	1.	par9al	observability	(road	state,	other	drivers'	plans,	etc.)	
	2.	noisy	sensors	(traffic	reports)	
	3.	uncertainty	in	ac9on	outcomes	(flat	9re,	etc.)	
	4.	immense	complexity	of	modeling	and	predic9ng	traffic	

Hence	a	purely	logical	approach	either	
	1.	risks	falsehood:	“A25	will	get	me	there	on	9me”,	or	
	2.	leads	to	conclusions	that	are	too	weak	for	decision	making:	

“A25	will	get	me	there	on	9me	if	there's	no	accident	on	the	bridge	and	it	doesn't	
rain	and	my	9res	remain	intact,	etc.,	etc.”	

	
“A1440	should	get	me	there	on	9me	but	I'd	have	to	stay	overnight	in	the	airport.”	



Uncertainty	in	the	world	
•  Uncertainty	due	to	

–  Randomness	
–  Overwhelming	complexity	
–  Lack	of	knowledge	
–  …	

•  Probability	gives		
–  natural	way	to	describe	our	assump9ons		
–  rules	for	how	to	combine	informa9on	

•  Subjec9ve	probability	
–  Relate	to	agent’s	own	state	of	knowledge:		P(A25|no	accidents)=	0.05	
–  Not	asser9ons	about	the	world;	indicate	degrees	of	belief	
–  Change	with	new	evidence:		P(A25	|	no	accidents,	5am)	=	0.20	
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Probability	
•  P(a)	is	the	probability	of	proposi9on	“a”	

–  E.g.,	P(it	will	rain	in	London	tomorrow)	
–  The	proposi9on	a	is	actually	true	or	false	in	the	real-world	
–  P(a)	=	“prior”	or	marginal	or	uncondi9onal	probability	
–  Assumes	no	other	informa9on	is	available	
	

•  Axioms	of	probability:	
–  0		<=	P(a)		<=	1	
–  P(NOT(a))		=	1	–	P(a)	
–  P(true)		=		1	
–  P(false)	=		0	
–  P(A	OR	B)	=	P(A)	+	P(B)	–	P(A	AND	B)	

•  Any	agent	that	holds	degrees	of	beliefs	that	contradict	these	axioms	will	act	
sub-op9mally	in	some	cases	

–  e.g.,	de	Fineh	proved	that	there	will	be	some	combina9on	of	bets	that	forces	such	an	
unhappy	agent	to	lose	money	every	9me.	

•  Ra#onal	agents	cannot	violate	probability	theory.	
	

	



•  Rela#ve	Frequency:		 	Usually	taught	in	school	
–  P(a)	represents	the	frequency	that	event	a	will	happen	in	repeated	trials.	
–  Requires	event	a	to	have	happened	enough	9mes	for	data	to	be	collected.	

•  Degree	of	Belief:	 	 	A	more	general	view	of	probability	
–  P(a)	represents	an	agent’s	degree	of	belief	that	event	a	is	true.	
–  Can	predict	probabili9es	of	events	that	occur	rarely	or	have	not	yet	occurred.	
–  Does	not	require	new	or	different	rules,	just	a	different	interpreta9on.	

•  Examples:	
–  a	=	“life	exists	on	another	planet”	

•  What	is	P(a)?		We	will	all	assign	different	probabili9es	
–  a	=	“California	will	secede	from	the	US”	

•  What	is	P(a)?	
–  a	=	“over	50%	of	the	students	in	this	class	will	get	A’s”	

•  What	is	P(a)?	

Interpreta9ons	of	probability	



Concepts	of	probability	
•  Uncondi#onal	Probability	

─  P(a),	the	probability	of	“a”	being	true,	or	P(a=True)	
─  Does	not	depend	on	anything	else	to	be	true	(uncondi#onal)	
─  Represents	the	probability	prior	to	further	informa9on	that	may	adjust	it	(prior)	
─  Also	some9mes	“marginal”	probability	(vs.	joint	probability)	

•  Condi#onal	Probability		
─  P(a|b),	the	probability	of	“a”	being	true,	given	that	“b”	is	true	
─  Relies	on	“b”	=		true	(condi#onal)	
─  Represents	the	prior	probability	adjusted	based	upon	new	informa9on	

“b”	(posterior)	
─  Can	be	generalized	to	more	than	2	random	variables:	

§  e.g.	P(a|b,	c,	d)	

•  Joint	Probability		
─  P(a,	b)	=	P(a	˄	b),	the	probability	of	“a”	and	“b”	both	being	true	
─  Can	be	generalized	to	more	than	2	random	variables:	

§  e.g.	P(a,	b,	c,	d)	



Random	variables	
•  Random	Variable:		

─  Basic	element	of	probability	asser9ons	
─  Similar	to	CSP	variable,	but	values	reflect	probabili9es	not	constraints.	

§  Variable:		A 	 		
§  Domain:		{a1,	a2,	a3} 	<--	events	/	outcomes	
	
	

•  Types	of	Random	Variables:	
–  Boolean	random	variables		:		{	true,	false	} 		

§  e.g.,	Cavity	(=	do	I	have	a	cavity?)	

–  Discrete	random	variables		:		one	value	from	a	set	of	values	
§  e.g.,	Weather	is	one	of		{sunny,	rainy,	cloudy	,snow}	
	

–  Con9nuous	random	variables		:		a	value	from	within	constraints	
§  e.g.,	Current	temperature	is	bounded	by	(10°,	200°)	

	
	
•  Domain	values	must	be	exhaus9ve	and	mutually	exclusive:	

–  One	of	the	values	must		always	be	the	case	(Exhaus#ve)	
–  Two	of	the	values	cannot	both	be	the	case		(Mutually	Exclusive)	



•  Ex:	Coin	flip	
–  Variable	=	R,	the	result	of	the	coin	flip	
–  Domain	=	{heads,	tails,	edge} 	 	<--	must	be	exhaus9ve	
–  P(R	=	heads)	=	0.4999 	 	}	
–  P(R	=	tails)	=	0.4999 	 	 	}	--	must	be	exclusive	
–  P(R	=	edge)	=	0.0002 	 	 	}	

•  Shorthand	is	ouen	used	for	simplicity:	
–  Upper-case	levers	for	variables,	lower-case	levers	for	values.	
–  e.g.	 	P(a) 	 	≡	P(A	=	a)			
	 	 	 	P(a|b)	 	≡	P(A	=	a	|	B	=	b)	

	 	 	P(a,	b)		 	≡	P(A	=	a,	B	=	b)	
	
•  Two	kinds	of	probability	proposi9ons:	

–  Elementary	proposi#ons	are	an	assignment	of	a	value	to	a	random	variable:	
§  e.g.,	Weather	=	sunny;	Cavity	=	false	(abbreviated	as	¬cavity)	
	

–  Complex	proposi#ons	are	formed	from	elementary	proposi9ons	and	standard	
logical	connec9ves	:	
§  e.g.,	Cavity	=	false	∨		Weather	=	sunny	

Random	variables	



Probability	Space	

Area = Probability of Event 

P(A) + P(רA) = 1 



AND	Probability	

Area = Probability of Event 

P(A, B) = P(A ˄ B) = P(A) + P(B) - P(A ˅ B) 

P(A ˄ B) 
= P(A) + P(B) 
   - P(A ˅ B) 



OR	Probability	

Area = Probability of Event 

P(A ˅B) = P(A) + P(B) – P(A ˄ B) 

P(A ˅ B)  
= P(A) + P(B) 
   − P(A ˄ B) 



Condi9onal	Probability	

Area = Probability of Event 

P(A | B) = P(A, B) / P(B) 

P(A ˄ B) = 
P(A) + P(B) 
- P(A ˅ B) 



Product	Rule	

Area = Probability of Event 

P(A,B) = P(A|B) P(B) 

P(A ˄ B) = 
P(A) + P(B) 
- P(A ˅ B) 



Using	the	Product	Rule	
•  Applies	to	any	number	of	variables:	

– P(a,	b,	c)	=	P(a,	b|c)	P(c)	=	P(a|b,	c)	P(b,	c)	
– P(a,	b,	c|d,	e)		=	P(a|b,	c,	d,	e)	P(b,	c|d,	e)	

•  Factoring:	(AKA	Chain	Rule	for	probabili9es)	
–  By	the	product	rule,	we	can	always	write:	

	 	P(a,	b,	c,	…	z)			=	P(a	|	b,	c,	….	z)	P(b,	c,	…	z)	
	

–  Repeatedly	applying	this	idea,	we	can	write:	
	 	 	P(a,	b,	c,	…	z)			=	P(a	|	b,	c,	….	z)	P(b	|	c,..	z)	P(c|	..	z)..P(z)	
	

–  This	holds	for	any	ordering	of	the	variables	



Sum	Rule	

Area = Probability of Event 

P(A) =  ΣB,C P(A,B,C) 



Using	the	Sum	Rule	

•  We	can	marginalize	variables	out	of	any	joint	distribu9on	by	simply	
summing	over	that	variable:	
–  	P(b)		=	Σa	Σc	Σd	P(a,	b,	c,	d)		
–  P(a,	d)	=	Σb	Σc		P(a,	b,	c,	d)		
	

•  For	Example:	Determine	probability	of	catching	a	fish	
–  Given	a	set	of	probabili9es	P(CatchFish,	Day,	Lake)	
–  Where:	

§  CatchFish	= 		{true,	false}	
§  Day	=	 	 	{mon,	tues,	wed,	thurs,	fri,	sat,	sun}	
§  Lake	=	 	 	{buel	lake,	ralph	lake,	crystal	lake}	

–  Need	to	find	P(CatchFish	=	True):	
§  P(CatchFish	=	true)		=	Σday	Σlake	P(CatchFish	=	true,	day,	lake)	

																																								
	
	

	



Bayes’	Rule	
P(B|A) =  P(A|B) P(B)  / P(A) 

Area = Probability of Event 

P(A ˄ B) = 
P(A) + P(B) 
- P(A ˅ B) 



Deriva9on	of	Bayes’	Rule	
•  Start	from	Product	Rule:	

– P(a,	b)	=	P(a|b)	P(b)		=	P(b|a)	P(a)	
	

•  Isolate	Equality	on	Right	Side:	
– P(a|b)	P(b)		=	P(b|a)	P(a)	

•  Divide	through	by	P(b):	
– P(a|b)	=	P(b|a)	P(a)	/	P(b) 	 	<--	Bayes’	Rule	



•  Product	Rule:		(aka	Chain	Rule)	
–  P(a,	b)	=	P(a|b)	P(b)		=	P(b|a)	P(a)	
–  Probability	of	“a”	and	“b”	occurring	is	the	same	as	probability	of	“a”	occurring	

given	“b”	is	true,	9mes	the	probability	of	“b”	occurring.	
§  e.g., 	P(	rain,	cloudy	)	=	P(rain	|	cloudy)	*	P(cloudy)	

	
•  Sum	Rule:		(aka	Law	of	Total	Probability)	

–  P(a)	=	 Σb	P(a,	b)	=		Σb		P(a|b)	P(b),			where	B	is	any	random	variable	
–  Probability	of	“a”	occurring	is	the	same	as	the	sum	of	all	joint	probabili9es	

including	the	event,	provided	the	joint	probabili9es	represent	all	possible	
events.	

–  Can	be	used	to	“marginalize”	out	other	variables	from	probabili9es,	resul9ng	
in	prior	probabili9es	also	being	called	marginal	probabili9es.	
§  e.g., 	P(rain)	=	ΣWindspeed	P(rain,	Windspeed)	
	 	where	Windspeed	=	{0-10mph,	10-20mph,	20-30mph,	etc.}	

	
•  Bayes’	Rule:	

-  P(b|a)	=		P(a|b)	P(b)		/	P(a)	
-  Acquired	from	rearranging	the	product	rule.	
-  Allows	conversion	between	condi9onals,	from		P(a|b)	to	P(b|a).	

§  e.g.,	 	b	=	disease,	a	=	symptoms	
							 	 	More	natural	to	encode	knowledge	as	P(a|b)	than	as	P(b|a).	

Summary	of	probability	rules	



Joint	distribu9ons	
•  Can	fully	specify	a	probability	space	by	construc9ng	a	full	joint	distribu9on		
•  Example:	den9st	

–  T:	have	a	toothache	
–  D:	dental	probe	catches	
–  C:	have	a	cavity	

•  Joint	distribu9on	
–  Assigns	each	event	(T=t,	D=d,	C=c)	a	probability	
–  Probabili9es	sum	to	1.0	

•  Law	of	total	probability:	

										=		0.008	+	0.072	+	0.012	+	0.108							=	0.20	
–  Some	value	of	(T,D)	must	occur;	values	disjoint	
–  “Marginal	probability”	of	C;		“marginalize”	or	“sum	over”	T,D	
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T	 D	 C	 P(T,D,C)	
0	 0	 0	 0.576	
0	 0	 1	 0.008	
0	 1	 0	 0.144	
0	 1	 1	 0.072	
1	 0	 0	 0.064	
1	 0	 1	 0.012	
1	 1	 0	 0.016	
1	 1	 1	 0.108	

Example	from	Russell	&	Norvig	



The	effect	of	evidence	
•  Example:	den9st	

–  T:	have	a	toothache	
–  D:	dental	probe	catches	
–  C:	have	a	cavity	

•  Recall			p(C=1)	=	0.20	
•  Suppose	we	observe	D=0,	T=0?	

•  Observe	D=1,	T=1?	
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T	 D	 C	 P(T,D,C)	
0	 0	 0	 0.576	
0	 0	 1	 0.008	
0	 1	 0	 0.144	
0	 1	 1	 0.072	
1	 0	 0	 0.064	
1	 0	 1	 0.012	
1	 1	 0	 0.016	
1	 1	 1	 0.108	

Example	from	Russell	&	Norvig	

=	0.012	=	
0.008	

0.576	+	0.008	

=	0.871	=	
0.108	

0.016	+	0.108	

Called	posterior	probabili[es	



The	effect	of	evidence	
•  Example:	den9st	

–  T:	have	a	toothache	
–  D:	dental	probe	catches	
–  C:	have	a	cavity	

•  Combining	these	rules:	
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T	 D	 C	 P(T,D,C)	
0	 0	 0	 0.576	
0	 0	 1	 0.008	
0	 1	 0	 0.144	
0	 1	 1	 0.072	
1	 0	 0	 0.064	
1	 0	 1	 0.012	
1	 1	 0	 0.016	
1	 1	 1	 0.108	=	0.60	

Example	from	Russell	&	Norvig	

=	
0.012	+	0.108	

0.064	+	0.012	+	0.016	+	0.108	

Called	the	probability	of	evidence	0.20	



Compu9ng	posteriors	
•  Some9mes	easiest	to	normalize	last	
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T	 D	 C	 P(T,D,C)	
0	 0	 0	 0.576	
0	 0	 1	 0.008	
0	 1	 0	 0.144	
0	 1	 1	 0.072	
1	 0	 0	 0.064	
1	 0	 1	 0.012	
1	 1	 0	 0.016	
1	 1	 1	 0.108	

D	 C	 F(D,C)	
0	 0	 0.064	
0	 1	 0.012	
1	 0	 0.016	
1	 1	 0.108	

C	 G(C)	
0	 0.08	
1	 0.120	

C	 P(C|T=1)	
0	 0.40	
1	 0.60	

Assign	T=1	
Sum	over	D	 Normalize	



Independence	
•  X,	Y	independent:	

–  p(X=x,Y=y)	=	p(X=x)	p(Y=y)					for	all	x,y	
–  Shorthand:	p(X,Y)	=	P(X)	P(Y)	
–  Equivalent:		p(X|Y)	=	p(X)			or		p(Y|X)	=	p(Y)										(if	p(Y),	p(X)	>	0)	
–  Intui9on:		knowing	X	has	no	informa9on	about	Y	(or	vice	versa)	
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A	 B	 C	 P(A,B,C)	
0	 0	 0	 .4	*	.7	*	.1	

0	 0	 1	 .4	*	.7	*	.9	

0	 1	 0	 .4	*	.3	*	.1	

0	 1	 1	 …	

1	 0	 0	 		
1	 0	 1	 		
1	 1	 0	 		
1	 1	 1	 		

Joint:	A	 P(A)	
0	 0.4	
1	 0.6	

B	 P(B)	
0	 0.7	
1	 0.3	

C	 P(C)	
0	 0.1	
1	 0.9	

Independent	probability	distribu9ons:	

This	reduces	representa9on	size!	



Independence	
•  X,	Y	independent:	

–  p(X=x,Y=y)	=	p(X=x)	p(Y=y)					for	all	x,y	
–  Shorthand:	p(X,Y)	=	P(X)	P(Y)	
–  Equivalent:		p(X|Y)	=	p(X)			or		p(Y|X)	=	p(Y)										(if	p(Y),	p(X)	>	0)	
–  Intui9on:		knowing	X	has	no	informa9on	about	Y	(or	vice	versa)	

	

(c)	Alexander	Ihler	 30	

A	 P(A)	
0	 0.4	
1	 0.6	

A	 B	 C	 P(A,B,C)	
0	 0	 0	 0.028	

0	 0	 1	 0.252	

0	 1	 0	 0.012	

0	 1	 1	 0.108	

1	 0	 0	 0.042		
1	 0	 1	 0.378		
1	 1	 0	 0.018		
1	 1	 1	 0.162		

B	 P(B)	
0	 0.7	
1	 0.3	

C	 P(C)	
0	 0.1	
1	 0.9	

Independent	probability	distribu9ons:	

Joint:	

This	reduces	representa9on	size!	
	
Note:	it	is	hard	to	“read”	independence		
				from	the	joint	distribu9on.	
				We	can	“test”	for	it,	however.	



Condi9onal	Independence	
•  X,	Y	independent	given	Z	

–  p(X=x,Y=y|Z=z)	=	p(X=x|Z=z)	p(Y=y|Z=z)					for	all	x,y,z	
–  Equivalent:		p(X|Y,Z)	=	p(X|Z)			or		p(Y|X,Z)	=	p(Y|Z)				 	 	(if	all	>	0)	
–  Intui9on:	X	has	no	addi9onal	info	about	Y	beyond	Z’s	

•  Example	

X	=	height																								p(height|reading,	age)	=	p(height|age)	
Y	=	reading	ability										p(reading|height,	age)	=	p(reading|age)	
Z	=	age	
	

Height	and	reading	ability	are	dependent	(not	independent),	but	are	
condi9onally	independent	given	age	
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Condi9onal	Independence	
•  X,	Y	independent	given	Z	

–  p(X=x,Y=y|Z=z)	=	p(X=x|Z=z)	p(Y=y|Z=z)					for	all	x,y,z	
–  Equivalent:		p(X|Y,Z)	=	p(X|Z)			or		p(Y|X,Z)	=	p(Y|Z)	
–  Intui9on:	X	has	no	addi9onal	info	about	Y	beyond	Z’s	

•  Example:	Den9st	
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T	 D	 C	 P(T,D,C)	
0	 0	 0	 0.576	
0	 0	 1	 0.008	
0	 1	 0	 0.144	
0	 1	 1	 0.072	
1	 0	 0	 0.064	
1	 0	 1	 0.012	
1	 1	 0	 0.016	
1	 1	 1	 0.108	

T	 D	 C	 P(T|D,C)	
0	 0	 0	 0.90	
0	 0	 1	 0.40	
0	 1	 0	 0.90	
0	 1	 1	 0.40	
1	 0	 0	 0.10	
1	 0	 1	 0.60	
1	 1	 0	 0.10	
1	 1	 1	 0.60	

Joint	prob:	 Condi9onal	prob:	

Again,	hard	to	“read”	from	the		
				joint	probabili9es;	only	from	
				the	condi9onal	probabili9es.	
	
Like	independence,	reduces	
				representa9on	size!	



(c)	Alexander	Ihler	 33	



Conclusions…	
•  Represen9ng	uncertainty	is	useful	in	knowledge	bases.	

•  Probability	provides	a	framework	for	managing	uncertainty.	

•  Using	a	full	joint	distribu9on	and	probability	rules,	we	can	derive	
any	probability	rela9onship	in	a	probability	space.	

•  Number	of	required	probabili9es	can	be	reduced	through	
independence	and	condi9onal	independence	rela9onships	
	

•  Probabili9es	allow	us	to	make	bever	decisions	by	using	decision	
theory	and	expected	u9li9es.	
	

•  Ra#onal	agents	cannot	violate	probability	theory.	

	


