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|Why Bayesian Networks?
|

* Knowledge Representation & Reasoning (Inference)
— Propositional Logic
* Knowledge Base : Propositional logic sentences
* Reasoning : KB |= Theory
— Find a model or Count models
— Probabilistic Reasoning
* Knowledge Base : Full joint probability over all random variables

* Reasoning: Compute Pr ( KB |=Theory)
— Find the most probable assignments
— Compute marginal / conditional probability

* Why Bayesian Net?
— Manipulating full joint probability distribution is very hard!
— Exploit conditional independence properties of our distribution

— Bayesian Network captures conditional independence
* Graphical Representation (Probabilistic Graphical Models)
* Tool for Reasoning, Computation (Probabilistic Reasoning bases on the Graph)



| Conditional independence
I

* Recall: chain rule of probability
= pxy,z) = p(x) ply|x) p(z|x,y)

* Some of these models will be conditionally independent
— e.g, pxyz)=px) plylx) p(z]x)

* Some models may have even more independence
— E.g., p(xy,2z) = p(x) ply) p(z)

p(x) p(y[x) p(z|x,y)




\ Bayesian networks

Directed graphical model

Nodes associated with variables

— Parents in graph are the RHS of conditional

Ex: p(z,y,2) = p(z) ply|x)
= )—(2)

Ex: p(a,b,c,d) =

@
o]

p(z|y)

a)

p(c|

a,b) p(d|D)

“Draw” independence in conditional probability expansion

ﬁmph must be acyclic\
o

Corresponds to an order

over the variables
\(chain rule) /




Example from Russell & Norvig

\Example

* Consider the following 5 binary variables:
— B =a burglary occurs at your house
— E = an earthquake occurs at your house
— A =the alarm goes off
— J =John calls to report the alarm
— M = Mary calls to report the alarm

— Whatis P(B | M, J) ? (for example)

— We can use the full joint distribution to answer this question
* Requires 2° = 32 probabilities

* Can we use prior domain knowledge to come up with a Bayesian
network that requires fewer probabilities?



| Constructing a Bayesian network
|

* Order the variables in terms of causality (may be a partial order)
-eg, {E,B} — {A} — {J M}

* Now, apply the chain rule, and simplify based on assumptions
p(J,M,A,E,B)=p(E,B) p(A|E,B) p(J,M| A, E, B)
= p(E) p(B) p(A| E, B) p(J, M | A)
=p(E) p(B) p(A| E,B) p(J | A) p(M | A)

— These assumptions are reflected in the @

graph structure of the Bayesian network

oR0



| Constructing a Bayesian network
|

° Given p(J,M, A, E,B) =p(E) p(B) p(A| E, B) p(J | A) p(M | A)
* Define probabilities: 1 + 1 + 4 + 2 o+ 2

* Where do these come from?
— Expert knowledge; estimate from data; some combination
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| Constructing a Bayesian network
|

* Joint distribution

& @

\
Al

Full joint distribution:
2> = 32 probabilities

Structured distribution:
specify 10 parameters

0/0(0|0| 0| .93674
0/0(0/0| 1| .00133
0([0|0f[1]0| .00005
0/0f0Of1/ 1| .00000
0/0(1/0/0/| .00003
0(0|1/0|1| .00002
0/0(1/1/0/| .00003
0/0f1f1/ 1| .00000
0[1/0[0|0| .04930
0/1/0(/0/ 1| .00007
0/1/0(1,0/| .00000
O(1/0f[1]1| .00000
Oj1/1/0/ 0| .00027
O/|1/1/0/1/| .00016
Of1/1f[1]0| .00025
Oj1f1f(1, 1| .00000

1/0[/0[0(0 | .00946
1/0/0({01| .00001
1/0/0/1,0/| .00000
1/0({0({1,1| .00000
1/0(1(/0,0| .00007
1/]0/1/0(1/| .00004
1/0(1(1,0| .00007
1/0(1f1,1| .00000
1/1/0/0/0/| .00050
1/1/0(0, 1| .00000
1/1/{0(1,0| .00000
1{1/0/1,1/| .00000
1/1/{1(/0, 0| .00063
1/1({1({0, 1| .00037
1/1(1(1,0| .00059
1/1{1(1, 1| .00000




‘ Al a rm n etWO rk [Beinlich et al., 1989]
I

The “alarm” network: 37 variables, 509 parameters (rather than 237 = 10! I)




| Network structure and ordering

* The network structure depends on the conditioning order
— Suppose we choose ordering M, J, A, B, E

p(J|M) = p(J)? No

p(AIM,J) = p(A|M)? No
p(AIM, J) = p(AlJ)? No

p(B|A) = p(B)? No

@rglary

p(B|M, J, A) = p(B|A)? Yes &
p(E|M, J, A, B) = p(E|A, B)? Yes
p(E|A,B) =p(E|A)?  No

Earthqua@




| Network structure and ordering
I

* The network structure depends on the conditioning order
— Suppose we choose ordering M, J, A, B, E

|”

* “Non-causal” ordering
— Deciding independence is harder
— Selecting probabilities is harder

— Representation is less efficient

1+2+4+2+4=13 probabilities

Burglary
Earthquake



| Network structure and ordering

* The network structure depends on the conditioning order
— Suppose we choose ordering M, J, A, B, E

|”

* “Non-causal” ordering
— Deciding independence is harder
— Selecting probabilities is harder
— Representation is less efficient

— Some orders may not reveal any independence!
p(J, M, A, E, B) = p(M) p(J|M) p(E|M, J) p(B|M, J, E) p(A|M, J. E, B)



|Reasoning in Bayesian networks

I
* Suppose we observe J

— Observing J makes A more likely Earthquake Burglary

— A being more likely makes B more likely

* Suppose we observe A
— Makes M more likely

* Observe AandJ?
— Jdoesn’t add anything to M

— Observing A makes J, M independent

* How can we read independence directly from the graph?



|Reasoning in Bayesian networks
|

* How are J,M related given A?

- P(M) =00117 Earthquake
— P(M|A) =07
~ P(M[AJ) =0.7 \

— Conditionally independent
(we actually know this by construction!)

Burglary

* Proof:
p(J, Mla) o< > " p(e) p(b) p(ale,b) p(J]a) p(M]a)

e,b
= (Y- ple,b,a)) p(I|a) p(M]a)
e,b

= p(a) p(J]a) p(M|a)

= Cq fa(J) ga(M)



|Reasoning in Bayesian networks

* How are J,B related given A?
— P(B) =0.001 Earthquake Burglary
— P(B|]A) =0.3735
— P(B|AJ) =0.3735
— Conditionally independent




|Reasoning in Bayesian networks

I
* How are E,B related?

— P(B) =0.001 Earthquake Burglary
— P(B|E) =0.001
— (Marginally) independent

* What about given A?
— P(B|A) =0.3735
— P(B|A,E) =0.0032
— Not conditionally independent!
— The “causes” of A become coupled by observing its value

— Sometimes called “explaining away”



| D-Separation
|

* Prove sets X,Y independent given Z?
* Check all undirected paths from Xto Y

* A pathis “inactive” if it passes through:

(1) A “chain” with an observed variable @
(2) A “split” with an observed variable @@\@

(3) A “vee” with only unobserved
variables below it

* If all paths are inactive, conditionally independent!



| Markov blanket
|

A node is conditionally independent
of all other nodes in the network
given its Markov blanket (in gray)




Graphs and Independence
|
I

* @Graph structure allows us to infer independence in p(.)
— X,Y d-separated given Z?

* Adding edges
— Fewer independencies inferred, but still valid to represent p(.)
— Complete graph: can represent any distribution p(.)
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Example: Car diagnosis

Initial evidence: car won't start
Testable variables (green), “broken, so fix it” variables (orange)
Hidden variables (gray) ensure sparse structure, reduce parameters

alternator fanbelt
broke broke

flat blocked broke

dead

AIMAZ2e Chapter 14.1-3 19



Compact conditional distributions contd.

Noisy-OR distributions model multiple noninteracting causes

1) Parents U ... Uy include all causes (can add leak node)

2) Independent failure probability ¢; for each cause alone

=, B o Dl = 111 o0

Cold Flu  Malaria| P(Fever)| P(—Fever)

F F F 0.0 1.0

F F T 0.9 0.1

F T F 0.8 0.2

F T T 0.98 02 =02 % U.1

T F F 0.4 0.6

T F T 0.94 0.06 = 0.6 x 0.1

T T F 0.88 0.12 =0.6 x 0.2

T T T 0.988 QL1120 e 12 % Ul

Number of parameters linear in number of parents

AIMA2e Chapter 14.1-3 22



|Naive Bayes Model
|

P(C| Xq,....X,) = a IT P(X.| C) P (C)
Features X are conditionally independent given the class variable C

Widely used in machine learning
e.g., spam email classification: X's = counts of words in emails

Probabilities P(C) and P(Xi | C) can easily be estimated from labeled data



| Naive Bayes Model (2)

P(C| X,,...X,) = a IT P(X.|C) P (C)
<Learning Naive Bayes Model>

Probabilities P(C) and P(Xi | C) can easily be estimated from labeled data

P(C = cj) = #(Examples with class label cj) / #(Examples)
P(Xi = xik | C = ¢j)
= #(Examples with Xi value xik and class label cj)
| #(Examples with class label cj)

Usually easiest to work with logs
log [ P(C | X4,...X,) ]
=loga+ X [logP(X;|C) +logP (C)]

DANGER: Suppose ZERO examples with Xi value xik and class label ¢j ?
An unseen example with Xi value xik will NEVER predict class label ¢j !

Practical solutions: Pseudocounts, e.g., add 1 to every #() , etc.
Theoretical solutions: Bayesian inference, beta distribution, etc.




|Hidden Markov Models

I
Hidden

Observed

* Two key assumptions

— Hidden state sequence is Markov

— Observations o_t is conditionally independent given state x_t
* Widely used in:

— speech recognition, protein sequence models, ...
* Bayesian network is a tree, so inference is linear in n

— Exploit graph structure for efficient computation (as in CSPs)



\You should know...

Basic concepts and vocabulary of Bayesian networks.
— Nodes represent random variables.

— Directed arcs represent (informally) direct influences.

— Conditional probability tables, P( Xi | Parents(Xi) ).

Given a Bayesian network:
— Write down the full joint distribution it represents.

Given a full joint distribution in factored form:
— Draw the Bayesian network that represents it.

Given a variable ordering and some background assertions of
conditional independence among the variables:

— Write down the factored form of the full joint distribution, as
simplified by the conditional independence assertions.



|Summary
|

Bayesian networks represent a joint distribution using a graph

The graph encodes a set of conditional independence
assumptions

Answering queries (or inference or reasoning) in a Bayesian
network amounts to efficient computation of appropriate
conditional probabilities

Probabilistic inference is intractable in the general case

— But can be carried out in linear time for certain classes of Bayesian
networks



