Bayesian Networks

CS171, Fall 2016
 Introduction to Artificial Intelligence
 Prof. Alexander Ihler

Why Bayesian Networks?

- Knowledge Representation \& Reasoning (Inference)
- Propositional Logic
- Knowledge Base : Propositional logic sentences
- Reasoning : KB |= Theory
- Find a model or Count models
- Probabilistic Reasoning
- Knowledge Base : Full joint probability over all random variables
- Reasoning: Compute $\operatorname{Pr}(K B \mid=$ Theory)
- Find the most probable assignments
- Compute marginal / conditional probability
- Why Bayesian Net?
- Manipulating full joint probability distribution is very hard!
- Exploit conditional independence properties of our distribution
- Bayesian Network captures conditional independence
- Graphical Representation (Probabilistic Graphical Models)
- Tool for Reasoning, Computation (Probabilistic Reasoning bases on the Graph)

Conditional independence

- Recall: chain rule of probability
$-p(x, y, z)=p(x) p(y \mid x) p(z \mid x, y)$
- Some of these models will be conditionally independent
- e.g., $p(x, y, z)=p(x) p(y \mid x) p(z \mid x)$
- Some models may have even more independence
- E.g., $p(x, y, z)=p(x) p(y) p(z)$

Bayesian networks

- Directed graphical model
- Nodes associated with variables
- "Draw" independence in conditional probability expansion
- Parents in graph are the RHS of conditional
- Ex: $p(x, y, z)=p(x) p(y \mid x) p(z \mid y)$

- Ex: $p(a, b, c, d)=p(a) p(b \mid a) p(c \mid a, b) p(d \mid b)$

Graph must be acyclic

Corresponds to an order over the variables
(chain rule)

Example

- Consider the following 5 binary variables:
$-B=a$ burglary occurs at your house
- $\mathrm{E}=$ an earthquake occurs at your house
- A = the alarm goes off
- J = John calls to report the alarm
- $\mathrm{M}=\mathrm{Mary}$ calls to report the alarm
- What is $P(B \mid M, J)$? (for example)
- We can use the full joint distribution to answer this question
- Requires $2^{5}=32$ probabilities
- Can we use prior domain knowledge to come up with a Bayesian network that requires fewer probabilities?

Constructing a Bayesian network

- Order the variables in terms of causality (may be a partial order)
- e.g., $\quad\{E, B\} \longrightarrow\{A\} \longrightarrow\{J, M\}$
- Now, apply the chain rule, and simplify based on assumptions

$$
\begin{aligned}
p(J, M, A, E, B) & =p(E, B) p(A \mid E, B) p(J, M \mid A, E, B) \\
& =p(E) p(B) p(A \mid E, B) p(J, M \mid A) \\
& =p(E) p(B) p(A \mid E, B) p(J \mid A) p(M \mid A)
\end{aligned}
$$

- These assumptions are reflected in the graph structure of the Bayesian network

Constructing a Bayesian network

- Given $p(J, M, A, E, B)=p(E) p(B) p(A \mid E, B) p(J \mid A) p(M \mid A)$
- Define probabilities: $1+1+4+2+2$
- Where do these come from?
- Expert knowledge; estimate from data; some combination

Constructing a Bayesian network

- Joint distribution

Full joint distribution: $2^{5}=32$ probabilities

Structured distribution: specify 10 parameters

E	B	A	J	M	P(...)
0	0	0	0	0	. 93674
0	0	0	0	1	. 00133
0	0	0	1	0	. 00005
0	0	0	1	1	. 00000
0	0	1	0	0	. 00003
0	0	1	0	1	. 00002
0	0	1	1	0	. 00003
0	0	1	1	1	. 00000
0	1	0	0	0	. 04930
0	1	0	0	1	. 00007
0	1	0	1	0	. 00000
0	1	0	1	1	. 00000
0	1	1	0	0	. 00027
0	1	1	0	1	. 00016
0	1	1	1	0	. 00025
0	1	1	1	1	. 00000

E	B	A	J	M	P(...)
1	0	0	0	0	. 00946
1	0	0	0	1	. 00001
1	0	0	1	0	. 00000
1	0	0	1	1	. 00000
1	0	1	0	0	. 00007
1	0	1	0	1	. 00004
1	0	1	1	0	. 00007
1	0	1	1	1	. 00000
1	1	0	0	0	. 00050
1	1	0	0	1	. 00000
1	1	0	1	0	. 00000
1	1	0	1	1	. 00000
1	1	1	0	0	. 00063
1	1	1	0	1	. 00037
1	1	1	1	0	. 00059
1	1	1	1	1	. 00000

Alarm network [Beinlich et al., 1989]

The "alarm" network: 37 variables, 509 parameters (rather than $2^{37}=10^{11}$!)

Network structure and ordering

- The network structure depends on the conditioning order
- Suppose we choose ordering M, J, A, B, E

Network structure and ordering

- The network structure depends on the conditioning order
- Suppose we choose ordering M, J, A, B, E
- "Non-causal" ordering
- Deciding independence is harder
- Selecting probabilities is harder
- Representation is less efficient
$1+2+4+2+4=13$ probabilities

Earthquake

Network structure and ordering

- The network structure depends on the conditioning order
- Suppose we choose ordering M, J, A, B, E
- "Non-causal" ordering
- Deciding independence is harder
- Selecting probabilities is harder
- Representation is less efficient

- Some orders may not reveal any independence!
$p(J, M, A, E, B)=p(M) p(J \mid M) p(E \mid M, J) p(B \mid M, J, E) p(A \mid M, J, E, B)$

Reasoning in Bayesian networks

- Suppose we observe J
- Observing J makes A more likely
- A being more likely makes B more likely
- Suppose we observe A
- Makes M more likely
- Observe A and J?
- J doesn't add anything to M
- Observing A makes J, M independent
- How can we read independence directly from the graph?

Reasoning in Bayesian networks

- How are J,M related given A?

$$
\begin{array}{ll}
-P(M) & =0.0117 \\
-P(M \mid A) & =0.7 \\
-P(M \mid A, J) & =0.7
\end{array}
$$

- Conditionally independent
(we actually know this by construction!)
- Proof:

$$
\begin{aligned}
p(J, M \mid a) & \propto \sum_{e, b} p(e) p(b) p(a \mid e, b) p(J \mid a) p(M \mid a) \\
& =\left(\sum_{e, b} p(e, b, a)\right) p(J \mid a) p(M \mid a) \\
& =p(a) p(J \mid a) p(M \mid a) \\
& =c_{a} \quad f_{a}(J) g_{a}(M)
\end{aligned}
$$

Reasoning in Bayesian networks

- How are J,B related given A?
$\begin{array}{ll}-P(B) & =0.001 \\ -P(B \mid A) & =0.3735 \\ -P(B \mid A, J) & =0.3735\end{array}$
- Conditionally independent
- Proof:

$$
\begin{aligned}
p(J, B \mid a) & \propto \sum_{e, m} p(e) p(B) p(a \mid e, B) p(J \mid a) p(m \mid a) \\
& =\left(\sum_{e} p(e, B, a)\right) p(J \mid a)\left(\sum_{m} p(m \mid a)\right) \\
& =p(B, a) p(J \mid a) \\
& =f_{a}(B) g_{a}(J)
\end{aligned}
$$

Reasoning in Bayesian networks

- How are E,B related?
$-P(B) \quad=0.001$
$-P(B \mid E)=0.001$
- (Marginally) independent
- What about given A?
$-P(B \mid A)=0.3735$
- $P(B \mid A, E)=0.0032$

- Not conditionally independent!
- The "causes" of A become coupled by observing its value
- Sometimes called "explaining away"

D-Separation

- Prove sets X, Y independent given Z ?
- Check all undirected paths from X to Y
- A path is "inactive" if it passes through:
(1) A "chain" with an observed variable

(2) A "split" with an observed variable
(3) A "vee" with only unobserved variables below it
 variables below it
- If all paths are inactive, conditionally independent!

Markov blanket

A node is conditionally independent of all other nodes in the network given its Markov blanket (in gray)

Graphs and Independence

- Graph structure allows us to infer independence in $p($.
- X,Y d-separated given Z?
- Adding edges
- Fewer independencies inferred, but still valid to represent p(.)
- Complete graph: can represent any distribution p(.)

Example: Car diagnosis

Initial evidence: car won't start
Testable variables (green), "broken, so fix it" variables (orange)
Hidden variables (gray) ensure sparse structure, reduce parameters

Compact conditional distributions contd.

Noisy-OR distributions model multiple noninteracting causes

1) Parents $U_{1} \ldots U_{k}$ include all causes (can add leak node)
2) Independent failure probability q_{i} for each cause alone

$$
\Rightarrow P\left(X \mid U_{1} \ldots U_{j}, \neg U_{j+1} \ldots \neg U_{k}\right)=1-\prod_{i=1}^{j} q_{i}
$$

Cold	Flu	Malaria	$P($ Fever $)$	$P(\neg$ Fever $)$
F	F	F	$\mathbf{0 . 0}$	1.0
F	F	T	0.9	$\mathbf{0 . 1}$
F	T	F	0.8	$\mathbf{0 . 2}$
F	T	T	0.98	$0.02=0.2 \times 0.1$
T	F	F	0.4	$\mathbf{0 . 6}$
T	F	T	0.94	$0.06=0.6 \times 0.1$
T	T	F	0.88	$0.12=0.6 \times 0.2$
T	T	T	0.988	$0.012=0.6 \times 0.2 \times 0.1$

Number of parameters linear in number of parents

Naïve Bayes Model

Features X are conditionally independent given the class variable C
Widely used in machine learning
e.g., spam email classification: X's = counts of words in emails

Probabilities $P(C)$ and $P(X i \mid C)$ can easily be estimated from labeled data

Naïve Bayes Model (2)

$$
P\left(C \mid X_{1}, \ldots X_{n}\right)=\alpha \Pi P\left(X_{i} \mid C\right) P(C)
$$

<Learning Naïve Bayes Model>
Probabilities $\mathrm{P}(\mathrm{C})$ and $\mathrm{P}(\mathrm{Xi} \mid \mathrm{C})$ can easily be estimated from labeled data
$\mathrm{P}(\mathrm{C}=\mathrm{cj}) \approx \#($ Examples with class label cj) / \#(Examples)
$\mathrm{P}(\mathrm{Xi}=\mathrm{xik} \mid \mathrm{C}=\mathrm{cj})$
~\#(Examples with Xi value xik and class label cj)
/ \#(Examples with class label cj)
Usually easiest to work with logs
$\log \left[P\left(C \mid X_{1}, \ldots X_{n}\right)\right]$
$=\log \alpha+\Sigma\left[\log P\left(X_{i} \mid C\right)+\log P(C)\right]$
DANGER: Suppose ZERO examples with Xi value xik and class label cj? An unseen example with Xi value xik will NEVER predict class label cj !

Practical solutions: Pseudocounts, e.g., add 1 to every \#() , etc.
Theoretical solutions: Bayesian inference, beta distribution, etc.

Hidden Markov Models

- Two key assumptions
- Hidden state sequence is Markov
- Observations o_t is conditionally independent given state x_t
- Widely used in:
- speech recognition, protein sequence models, ...
- Bayesian network is a tree, so inference is linear in n
- Exploit graph structure for efficient computation (as in CSPs)

You should know...

- Basic concepts and vocabulary of Bayesian networks.
- Nodes represent random variables.
- Directed arcs represent (informally) direct influences.
- Conditional probability tables, $\mathrm{P}(\mathrm{Xi} \mid \operatorname{Parents(Xi)}$).
- Given a Bayesian network:
- Write down the full joint distribution it represents.
- Given a full joint distribution in factored form:
- Draw the Bayesian network that represents it.
- Given a variable ordering and some background assertions of conditional independence among the variables:
- Write down the factored form of the full joint distribution, as simplified by the conditional independence assertions.

Summary

- Bayesian networks represent a joint distribution using a graph
- The graph encodes a set of conditional independence assumptions
- Answering queries (or inference or reasoning) in a Bayesian network amounts to efficient computation of appropriate conditional probabilities
- Probabilistic inference is intractable in the general case
- But can be carried out in linear time for certain classes of Bayesian networks

