Bayesian Networks

CS171, Fall 2016 Introduction to Artificial Intelligence Prof. Alexander Ihler

Reading: R&N Ch 14

UNIVERSITY of CALIFORNIA O IRVINE

Why Bayesian Networks?

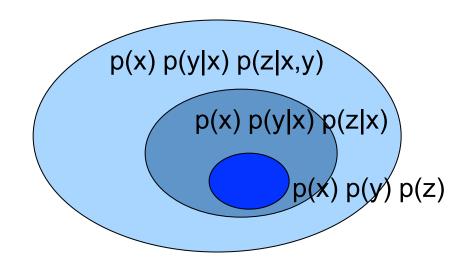
- Knowledge Representation & Reasoning (Inference)
 - Propositional Logic
 - Knowledge Base : Propositional logic sentences
 - Reasoning : KB |= Theory
 - Find a model or Count models
 - Probabilistic Reasoning
 - Knowledge Base : Full joint probability over all random variables
 - Reasoning: Compute Pr (KB |= Theory)
 - Find the most probable assignments
 - Compute marginal / conditional probability
- Why Bayesian Net?
 - Manipulating full joint probability distribution is very hard!
 - Exploit conditional independence properties of our distribution
 - Bayesian Network captures conditional independence
 - Graphical Representation (Probabilistic Graphical Models)
 - Tool for Reasoning, Computation (Probabilistic Reasoning bases on the Graph)

Conditional independence

- Recall: chain rule of probability
 - p(x,y,z) = p(x) p(y|x) p(z|x,y)
- *Some* of these models will be conditionally independent

- e.g., p(x,y,z) = p(x) p(y|x) p(z|x)

- *Some* models may have even *more* independence
 - E.g., p(x,y,z) = p(x) p(y) p(z)



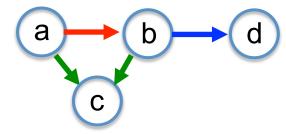
Bayesian networks

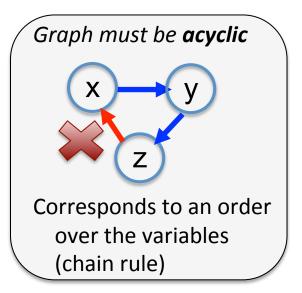
- Directed graphical model
- Nodes associated with variables
- "Draw" independence in conditional probability expansion
 - Parents in graph are the RHS of conditional

• Ex:
$$p(x, y, z) = p(x) p(y | x) p(z | y)$$

$$x \rightarrow y \rightarrow z$$

• Ex: p(a, b, c, d) = p(a) p(b | a) p(c | a, b) p(d | b)





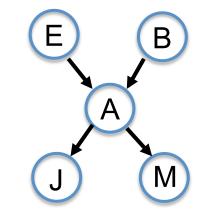
Example

- Consider the following 5 binary variables:
 - B = a burglary occurs at your house
 - E = an earthquake occurs at your house
 - A = the alarm goes off
 - J = John calls to report the alarm
 - M = Mary calls to report the alarm
 - What is P(B | M, J) ? (for example)
 - We can use the full joint distribution to answer this question
 - Requires 2⁵ = 32 probabilities
 - Can we use prior domain knowledge to come up with a Bayesian network that requires fewer probabilities?

Constructing a Bayesian network

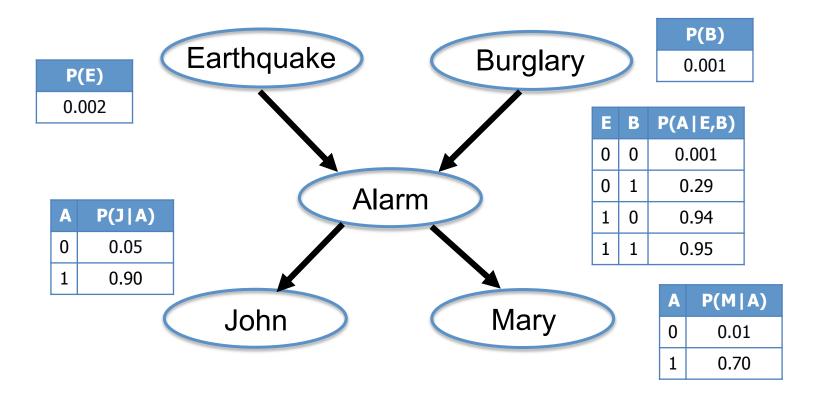
Order the variables in terms of causality (may be a partial order)
 - e.g., { E, B } → { A } → { J, M }

- Now, apply the chain rule, and simplify based on assumptions $p(J, M, A, E, B) = p(E, B) \ p(A | E, B) \ p(J, M | A, E, B)$ $= p(E) \ p(B) \ p(A | E, B) \ p(J, M | A)$ $= p(E) \ p(B) \ p(A | E, B) \ p(J | A) \ p(M | A)$
 - These assumptions are reflected in the graph structure of the Bayesian network



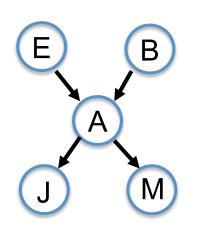
Constructing a Bayesian network

- Given p(J, M, A, E, B) = p(E) p(B) p(A | E, B) p(J | A) p(M | A)
- Define probabilities: 1 + 1 + 4 + 2 + 2
- Where do these come from?
 - Expert knowledge; estimate from data; some combination



Constructing a Bayesian network

Joint distribution



Full joint distribution: $2^5 = 32$ probabilities

Structured distribution: specify 10 parameters

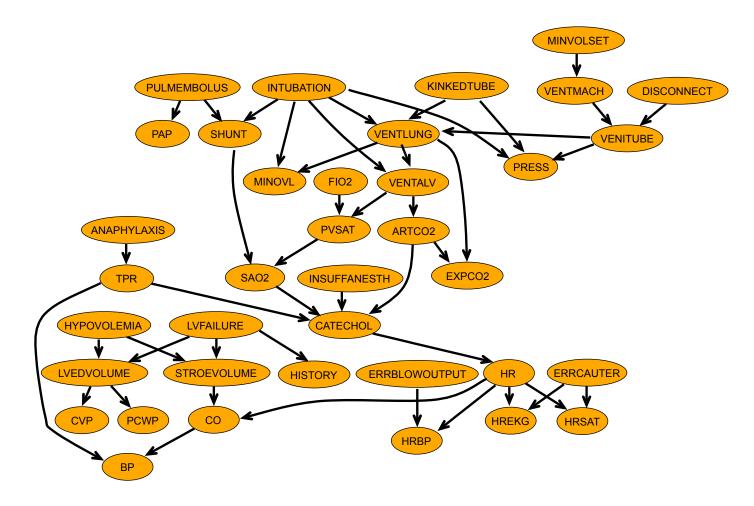
Е	B	A	J	Μ	P()
0	0	0	0	0	.93674
0	0	0	0	1	.00133
0	0	0	1	0	.00005
0	0	0	1	1	.00000
0	0	1	0	0	.00003
0	0	1	0	1	.00002
0	0	1	1	0	.00003
0	0	1	1	1	.00000
0	1	0	0	0	.04930
0	1	0	0	1	.00007
0	1	0	1	0	.00000
0	1	0	1	1	.00000
0	1	1	0	0	.00027
0	1	1	0	1	.00016
0	1	1	1	0	.00025
0	1	1	1	1	.00000

Ε	B	A	J	Μ	P()
1	0	0	0	0	.00946
1	0	0	0	1	.00001
1	0	0	1	0	.00000
1	0	0	1	1	.00000
1	0	1	0	0	.00007
1	0	1	0	1	.00004
1	0	1	1	0	.00007
1	0	1	1	1	.00000
1	1	0	0	0	.00050
1	1	0	0	1	.00000
1	1	0	1	0	.00000
1	1	0	1	1	.00000
1	1	1	0	0	.00063
1	1	1	0	1	.00037
1	1	1	1	0	.00059
1	1	1	1	1	.00000

Alarm network

[Beinlich et al., 1989]

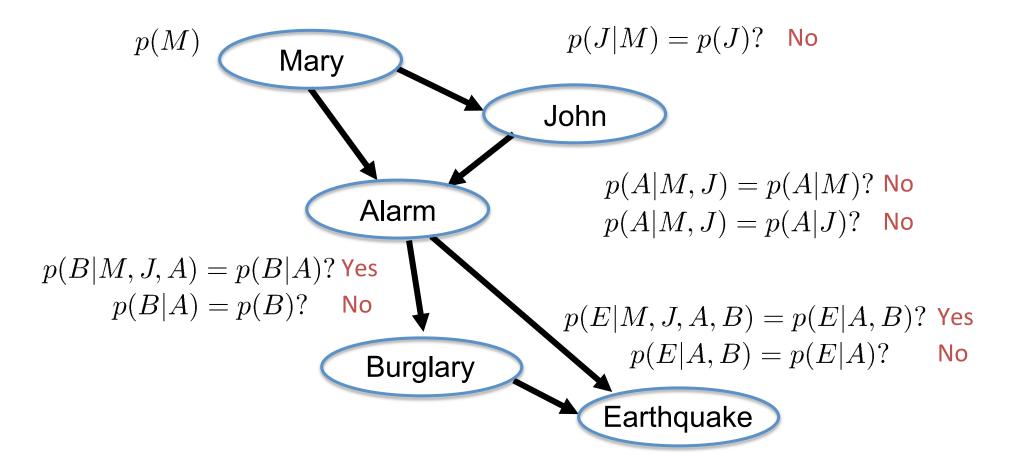
The "alarm" network: 37 variables, 509 parameters (rather than 2³⁷ = 10¹¹ !)



Network structure and ordering

• The network structure depends on the conditioning order

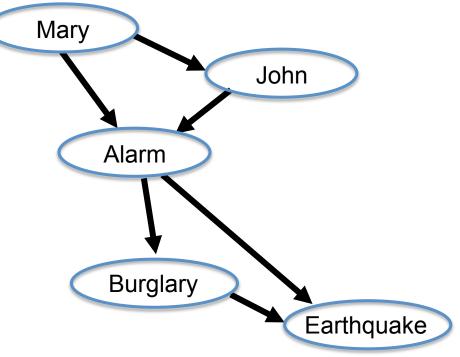
- Suppose we choose ordering M, J, A, B, E



Network structure and ordering

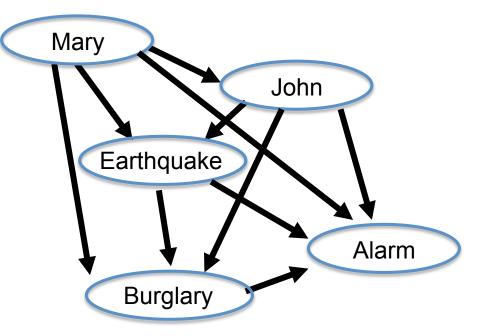
- The network structure depends on the conditioning order
 - Suppose we choose ordering M, J, A, B, E
- "Non-causal" ordering
 - Deciding independence is harder
 - Selecting probabilities is harder
 - Representation is less efficient

1 + 2 + 4 + 2 + 4 = 13 probabilities



Network structure and ordering

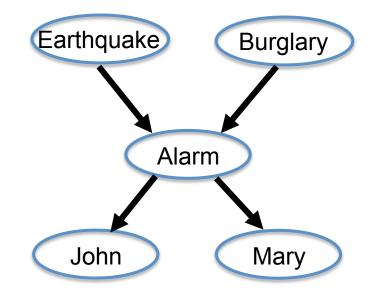
- The network structure depends on the conditioning order
 - Suppose we choose ordering M, J, A, B, E
- "Non-causal" ordering
 - Deciding independence is harder
 - Selecting probabilities is harder
 - Representation is less efficient



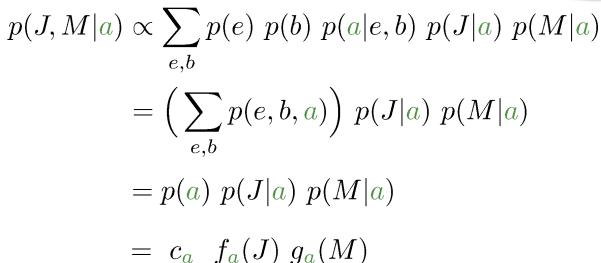
– Some orders may not reveal any independence!

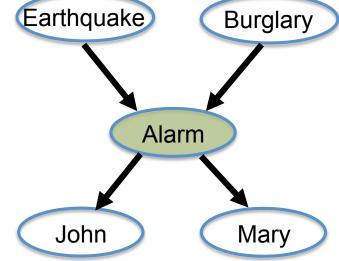
p(J, M, A, E, B) = p(M) p(J|M) p(E|M, J) p(B|M, J, E) p(A|M, J, E, B)

- Suppose we observe J
 - Observing J makes A more likely
 - A being more likely makes B more likely
- Suppose we observe A
 - Makes M more likely
- Observe A and J?
 - J doesn't add anything to M
 - Observing A makes J, M independent
- How can we read independence directly from the graph?



- How are J,M related given A?
 - P(M) = 0.0117
 - P(M|A) = 0.7
 - P(M|A,J) = 0.7
 - Conditionally independent (we actually know this by construction!)
- Proof:





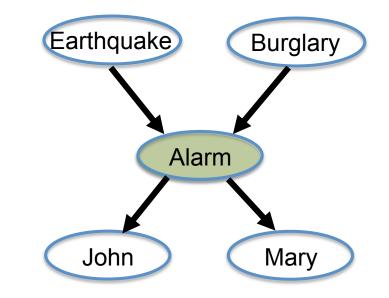
- How are J,B related given A?
 - P(B) = 0.001
 - P(B|A) = 0.3735
 - P(B|A,J) = 0.3735
 - Conditionally independent

Earthquake Burglary Alarm John Mary

• Proof:

$$p(J, B|a) \propto \sum_{e,m} p(e) \ p(B) \ p(a|e, B) \ p(J|a) \ p(m|a)$$
$$= \left(\sum_{e} p(e, B, a)\right) \ p(J|a) \ \left(\sum_{m} p(m|a)\right)$$
$$= p(B, a) \ p(J|a)$$
$$= f_a(B) \ g_a(J)$$

- How are E,B related?
 - P(B) = 0.001
 - P(B|E) = 0.001
 - (Marginally) independent
- What about given A?
 - P(B|A) = 0.3735
 - P(B|A,E) = 0.0032
 - Not conditionally independent!
 - The "causes" of A become coupled by observing its value
 - Sometimes called "explaining away"

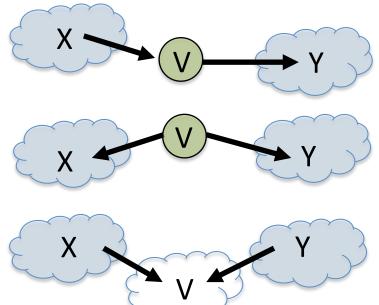


D-Separation

- Prove sets X,Y independent given Z?
- Check all *undirected* paths from X to Y
- A path is "inactive" if it passes through:
 (1) A "chain" with an observed variable

(2) A "split" with an observed variable

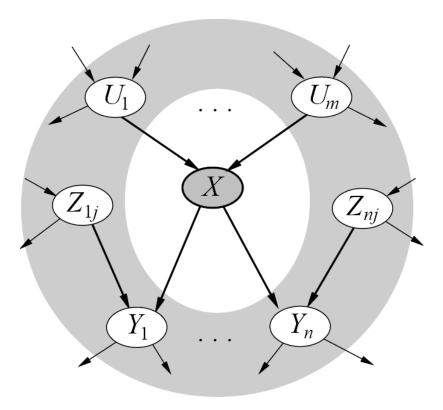
(3) A "vee" with **only unobserved** variables below it



• If all paths are inactive, conditionally independent!

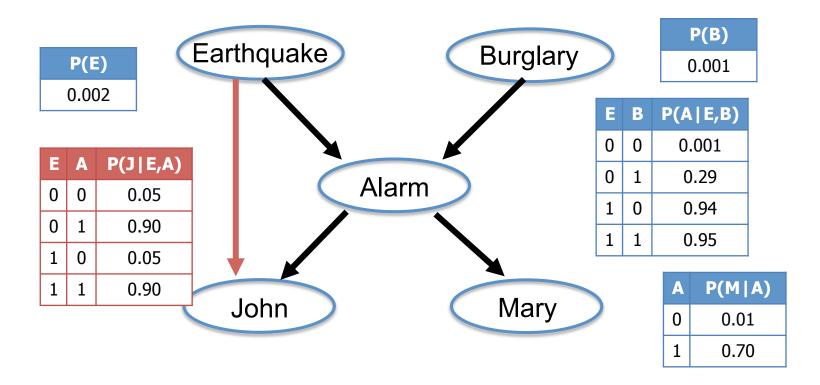
Markov blanket

A node is conditionally independent of all other nodes in the network given its Markov blanket (in gray)



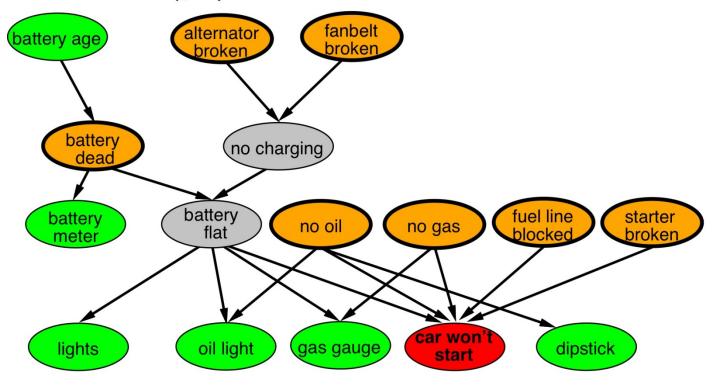
Graphs and Independence

- Graph structure allows us to infer independence in p(.)
 - X,Y d-separated given Z?
- Adding edges
 - Fewer independencies inferred, but still valid to represent p(.)
 - Complete graph: can represent any distribution p(.)



Example: Car diagnosis

Initial evidence: car won't start Testable variables (green), "broken, so fix it" variables (orange) Hidden variables (gray) ensure sparse structure, reduce parameters



AIMA2e Chapter 14.1–3 19

Compact conditional distributions contd.

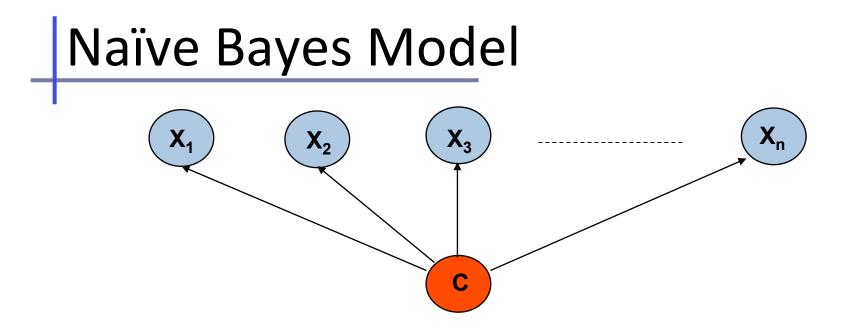
Noisy-OR distributions model multiple noninteracting causes

- 1) Parents $U_1 \dots U_k$ include all causes (can add leak node)
- 2) Independent failure probability q_i for each cause alone

 $\Rightarrow P(X|U_1 \dots U_j, \neg U_{j+1} \dots \neg U_k) = 1 - \prod_{i=1}^j q_i$

Cold	Flu	Malaria	P(Fever)	$P(\neg Fever)$
F	F	F	0.0	1.0
F	F	Т	0.9	0.1
F	Т	F	0.8	0.2
F	Т	Т	0.98	$0.02 = 0.2 \times 0.1$
Т	F	F	0.4	0.6
Т	F	Т	0.94	$0.06 = 0.6 \times 0.1$
T	Т	F	0.88	$0.12 = 0.6 \times 0.2$
Т	Т	Т	0.988	$0.012 = 0.6 \times 0.2 \times 0.1$

Number of parameters **linear** in number of parents



 $\mathsf{P}(\mathsf{C} \mid \mathsf{X}_1, \dots, \mathsf{X}_n) = \alpha \Pi \mathsf{P}(\mathsf{X}_i \mid \mathsf{C}) \mathsf{P}(\mathsf{C})$

Features X are conditionally independent given the class variable C

Widely used in machine learning e.g., spam email classification: X's = counts of words in emails

Probabilities P(C) and P(Xi | C) can easily be estimated from labeled data

Naïve Bayes Model (2)

 $P(C \mid X_1, ..., X_n) = \alpha \Pi P(X_i \mid C) P(C)$
<Learning Naïve Bayes Model>

Probabilities P(C) and P(Xi | C) can easily be estimated from labeled data

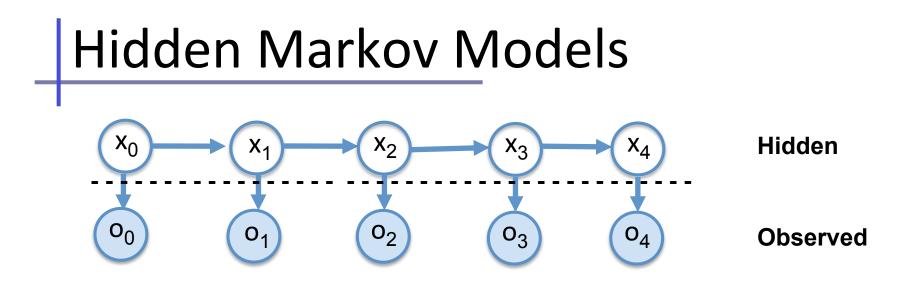
P(C = cj) ≈ #(Examples with class label cj) / #(Examples) P(Xi = xik | C = cj) ≈ #(Examples with Xi value xik and class label cj) / #(Examples with class label cj)

```
Usually easiest to work with logs

log [ P(C | X_1,...X_n) ]
= log \alpha + \Sigma [ log P(X_i | C) + log P (C) ]
```

DANGER: Suppose ZERO examples with Xi value xik and class label cj? An unseen example with Xi value xik will NEVER predict class label cj !

<u>Practical solutions:</u> Pseudocounts, e.g., add 1 to every #(), etc. <u>Theoretical solutions:</u> Bayesian inference, beta distribution, etc.



- Two key assumptions
 - Hidden state sequence is Markov
 - Observations o_t is conditionally independent given state x_t
- Widely used in:
 - speech recognition, protein sequence models, ...
- Bayesian network is a tree, so inference is linear in n
 - Exploit graph structure for efficient computation (as in CSPs)

You should know...

- Basic concepts and vocabulary of Bayesian networks.
 - Nodes represent random variables.
 - Directed arcs represent (informally) direct influences.
 - Conditional probability tables, P(Xi | Parents(Xi)).
- Given a Bayesian network:
 - Write down the full joint distribution it represents.
- Given a full joint distribution in factored form:
 - Draw the Bayesian network that represents it.
- Given a variable ordering and some background assertions of conditional independence among the variables:
 - Write down the factored form of the full joint distribution, as simplified by the conditional independence assertions.

Summary

- Bayesian networks represent a joint distribution using a graph
- The graph encodes a set of conditional independence assumptions
- Answering queries (or inference or reasoning) in a Bayesian network amounts to efficient computation of appropriate conditional probabilities
- Probabilistic inference is intractable in the general case
 - But can be carried out in linear time for certain classes of Bayesian networks