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Outline	
•  Basics	

–  The	importance	of	a	good	representa;on	
–  Different	types	of	learning	problems	
–  Different	types	of	learning	algorithms	

•  Supervised	learning	
–  Decision	trees	
–  Naïve	Bayes	
–  Perceptrons,	Mul;-layer	Neural	Networks	
–  Boos;ng	

•  Unsupervised	Learning	
–  K-means	
–  Latent	space	representa;ons	

•  Applica;ons:	learning	to	detect	faces	in	images	



Deep Learning in Physics: 
Searching for Exotic Particles 

Thanks to 
Pierre Baldi 



Thanks to 
Pierre Baldi 



Daniel Whiteson 

Peter Sadowski 

Thanks to 
Pierre Baldi 



Higgs	Boson	Detec;on	

Deep	network	improves	AUC	by	8%	
Nature Communications, July 2014 BDT= Boosted  Decision Trees in 

TMVA package 

Thanks to 
Pierre Baldi 



Applica;on	to	Extra-Tropical	Cyclones	
Gaffney et al, Climate Dynamics, 2007 

Thanks to 
Padhraic Smyth 



Iceland Cluster 

Horizontal Cluster Greenland Cluster 

Original Data 

Thanks to 
Padhraic Smyth 



Cluster	Shapes	for	Pacific	Typhoon	Tracks	Camargo et al,  J. Climate, 2007 

Thanks to 
Padhraic Smyth 



	©	Padhraic	Smyth,	UC	Irvine:	DS	06					10	

	TROPICAL	CYCLONES	Western	North	Pacific		

Camargo et al,  J. Climate, 2007 

Thanks to 
Padhraic Smyth 



An	ICS	Undergraduate	Success	Story	
“The	key	student	involved	in	this	work	started	out	as	an	ICS	
undergrad.	Sco^	Gaffney	took	ICS	171	and	175,	got	interested	in	AI,	
started	to	work	in	my	group,	decided	to	stay	in	ICS	for	his	PhD,	did	a	
terrific	job	in	wri;ng	a	thesis	on	curve-clustering	and	working	with	
collaborators	in	climate	science	to	apply	it	to	important	scien;fic	
problems,	and	is	now	one	of	the	leaders	of	Yahoo!	Labs	repor;ng	
directly	to	the	CEO	there,	h^p://labs.yahoo.com/author/gaffney/.	
Sco^	grew	up	locally	in	Orange	County	and	is	someone	I	like	to	point	
as	a	great	success	story	for	ICS.”	

	 	 	 	 	 	 	 	 	 	 	 	---	From	Padhraic	Smyth	

Thanks to 
Padhraic Smyth 



•  p53 is a central tumor 
suppressor protein 
	 “The	 guardian	 of	 the	
genome”		

	
•  Cancer Mutants:									
	About	50%	of	all	human	
cancers	have	p53	
muta;ons.	

	
•  Rescue Mutants:	
					Several	second-site	

muta;ons	restore	
func;onality	to	some	p53	
cancer	mutants	in	vivo.		

p53 core domain bound to DNA 
Image Generated with UCSF Chimera 

Cho, Y.,  Gorina, S.,  Jeffrey, P.D.,  Pavletich, N.P.   Crystal 
structure of a p53 tumor suppressor-DNA complex: 

understanding tumorigenic mutations.   Science   v265   pp.
346-355 , 1994    

 

p53 and Human Cancers 



Theory 

Find Cancer 
Rescue 
Mutants 

Knowledge 

Experiment 

Active Learning for Biological Discovery 
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… 

Example N
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Known 

Training Set 

 

Classifier 

 

Train the 
Classifier 

Add New Example(s) 
To Training Set  

Choose  
Example(s) 

to Label 

Computational Active Learning 
Pick the Best (= Most Informative) Unknown Examples 

to Label 



•  Positive Region: 
  Predicted Active 
 96-105  (Green) 

 
•  Negative Region: 
  Predicted Inactive 
 223-232 (Red) 

 
•  Expert Region: 
  Predicted Active 
 114-123 (Blue) 

Visualization of Selected Regions 

Danziger, et al. 
(2009)



MIP	Posi(ve	
(96-105)	

MIP	Nega(ve	
(223-232)	

Expert	
(114-123)	

#	Strong	
Rescue	 8	 0	(p	<	0.008)	 6	(not	significant)	
#	Weak	
Rescue	 3	 2	(not	significant)	 7	(not	significant)	

Total	#	Rescue	 11	 2	(p	<	0.022)	 13	(not	significant)	
p-Values are two-tailed, comparing Positive to Negative and Expert regions. Danziger, et al. (2009)  

Novel Single-a.a. Cancer Rescue Mutants 

No significant differences between the MIP Positive and Expert regions. 
 
Both were statistically significantly better than the MIP Negative region. 
 
The Positive region rescued for the first time the cancer mutant P152L. 
 
No previous single-a.a. rescue mutants in any region. 



Complete	architectures	for	intelligence?	

•  Search?	
– Solve	the	problem	of	what	to	do.	

•  Learning?	
– Learn	what	to	do.	

•  Logic	and	inference?	
– Reason	about	what	to	do.	
– Encoded	knowledge/”expert”	systems?	

•  Know	what	to	do.	

•  Modern	view:	It’s	complex	&	mul;-faceted.	



Automated	Learning	
•  Why is it useful for our agent to be able to learn? 

–  Learning is a key hallmark of intelligence 
–  The ability to take in real data and feedback and improve performance over time 
–  Check out USC Autonomous Flying Vehicle Project! 
 

•  Types of learning 
–  Supervised learning: learn mapping from attributes to “target” 

–  Classification: target variable is discrete (e.g., spam email) 
–  Regression: target variable is real-valued (e.g., stock market) 

 
–  Unsupervised learning: no target variable; “understand” data structure 

–  Clustering: grouping data into K groups 
–  Latent space embeddings: learn “simpler” representation of the data 

 
–   Other types of learning 

•  Reinforcement learning: e.g., game-playing agent 
•  Learning to rank, e.g., document ranking in Web search 
•  And many others…. 



Importance	of	representa;on	
Proper(es	of	a	good	representa(on:	
•  Reveals	important	features		
•  Hides	irrelevant	detail	
•  Exposes	useful	constraints	
•  Makes	frequent	opera;ons	easy-to-do	
•  Supports	local	inferences	from	local	features	

•  Called	the	“soda	straw”	principle	or	“locality”	principle	
•  Inference	from	features	“through	a	soda	straw”	

•  Rapidly	or	efficiently	computable	
•  It’s	nice	to	be	fast	



Reveals important features / Hides irrelevant detail 

•  “You	can’t	learn	what	you	can’t	represent.”	---	G.	Sussman	
	
•  In	search:		A	man	is	traveling	to	market	with	a	fox,	a	goose,	and	a	bag	of	oats.		

He	comes	to	a	river.		The	only	way	across	the	river	is	a	boat	that	can	hold	the	
man	and	exactly	one	of	the	fox,	goose	or	bag	of	oats.		The	fox	will	eat	the	goose	
if	le<	alone	with	it,	and	the	goose	will	eat	the	oats	if	le<	alone	with	it.	

•  A	good	representa(on	makes	this	problem	easy:	
	
1110 
0010 
1010 
1111 
0001 
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0000	 1101 
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0100 1110 

0010 1010 1111 
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Simple illustrative learning problem 

Problem:  
   decide whether to wait for a table at a restaurant, based on the following attributes: 
 

1.  Alternate: is there an alternative restaurant nearby? 
2.  Bar: is there a comfortable bar area to wait in? 
3.  Fri/Sat: is today Friday or Saturday? 
4.  Hungry: are we hungry? 
5.  Patrons: number of people in the restaurant (None, Some, Full) 
6.  Price: price range ($, $$, $$$) 
7.  Raining: is it raining outside? 
8.  Reservation: have we made a reservation? 
9.  Type: kind of restaurant (French, Italian, Thai, Burger) 
10.   WaitEstimate: estimated waiting time (0-10, 10-30, 30-60, >60) 



Training	Data	for	Supervised	Learning	



Terminology 

•  Attributes 
–  Also known as features, variables, independent variables, 

covariates 
 

•  Target Variable 
–  Also known as goal predicate, dependent variable, … 
 
 

•  Classification 
–  Also known as discrimination, supervised classification, … 
 

•  Error function 
–  Objective function, loss function, … 



Inductive learning 

•  Let x represent the input vector of attributes 
 
•  Let f(x) represent the value of the target variable for x 

–  The implicit mapping from x to f(x) is unknown to us 
–  We just have training data pairs, D = {x, f(x)} available 

 
•  We want to learn a mapping from x to f, i.e.,  
            h(x; θ) is “close” to f(x) for all training data points x           
 
            θ are the parameters of our predictor h(..) 
 
•  Examples: 

–  h(x; θ) = sign(w1x1 + w2x2+ w3) 
 
–  hk(x) = (x1 OR x2) AND (x3 OR NOT(x4)) 

 



Empirical Error Functions 

•  Empirical error function: 
      E(h) = Σx distance[h(x; θ) , f] 
 
e.g., distance = squared error if h and f are real-valued  (regression) 
        distance = delta-function if h and f are categorical  (classification) 
 
Sum is over all training pairs in the training data D 
 
 
 
In learning, we get to choose  
 

 1. what class of functions h(..) that we want to learn  
            – potentially a huge space!  (“hypothesis space”) 
 
    2. what error function/distance to use 
              - should be chosen to reflect real “loss” in problem 
              - but often chosen for mathematical/algorithmic convenience 
 
 



Inductive Learning as Optimization or Search 

•  Empirical error function: 
      E(h) = Σx distance[h(x; θ) , f] 
 
 

•  Empirical learning = finding h(x), or h(x; θ) that minimizes E(h) 
–  In simple problems there may be a closed form solution 

•  E.g., “normal equations” when h is a linear function of x, E = squared error 
 

–  If E(h) is differentiable as a function of q, then we have a continuous optimization problem 
and can use gradient descent, etc 

•  E.g., multi-layer neural networks 
 

–  If E(h) is non-differentiable (e.g., classification), then we typically have a systematic search 
problem through the space of functions h 

•  E.g., decision tree classifiers 
 
 

•  Once we decide on what the functional form of h is, and what the error function E 
is, then machine learning typically reduces to a large search or optimization 
problem 

 
•  Additional aspect: we really want to learn an h(..) that will generalize well to new 

data, not just memorize training data – will return to this later 
 



Our	training	data	example	(again)	

•  If all attributes were binary, h(..) could be any arbitrary Boolean function 

•  Natural error function E(h) to use is classification error, i.e., how many incorrect 
predictions does a hypothesis h make 

•  Note an implicit assumption: 
–  For any set of attribute values there is a unique target value 
–  This in effect assumes a “no-noise” mapping from inputs to targets 

•  This is often not true in practice (e.g., in medicine). Will return to this later 



Learning Boolean Functions 

•  Given examples of the function, can we learn the function? 
 
•  How many Boolean functions can be defined on d attributes? 

–  Boolean function = Truth table + column for target function (binary) 
–  Truth table has 2d rows 
–  So there are 2 to the power of 2d different Boolean functions we can define 

(!) 
–  This is the size of our hypothesis space 
 
–  E.g., d = 6, there are 18.4 x 1018  possible Boolean functions 

 
•  Observations: 

–  Huge hypothesis spaces –> directly searching over all functions is impossible 
–  Given a small data (n pairs) our learning problem may be underconstrained 

•  Ockham’s razor: if multiple candidate functions all explain the data 
equally well, pick the simplest explanation (least complex function) 

•  Constrain our search to classes of Boolean functions, e.g., 
–  decision trees 
–  Weighted linear sums of inputs (e.g., perceptrons) 

 
 

William of 
Ockham 
c. 1288-1347 



Decision	Tree	Learning	
• Constrain	h(..)	to	be	a	decision	tree	



Decision	Tree	Representa;ons	
• Decision	trees	are	fully	expressive	

– can	represent	any	Boolean	func;on	
– Every	path	in	the	tree	could	represent	1	row	in	the	truth	table	
– Yields	an	exponen;ally	large	tree	

• Truth	table	is	of	size	2d,	where	d	is	the	number	of	a^ributes	

	



Decision Tree Representations 

 
•  Trees can be very inefficient for certain types of functions 

–  Parity function: 1 only if an even number of 1’s in the input vector 
•  Trees are very inefficient at representing such functions 

–  Majority function: 1 if more than ½ the inputs are 1’s 
•  Also inefficient 

–  Simple DNF formulae can be easily represented 
•  E.g., f = (A AND B) OR (NOT(A) AND D) 
•  DNF = disjunction of conjunctions 

 
•  Decision trees are in effect DNF representations 

–  often used in practice since they often result in compact approximate 
representations for complex functions 

–  E.g., consider a truth table where most of the variables are irrelevant to the 
function 



Decision Tree Learning 

•  Find the smallest decision tree consistent with the n examples 
–  Unfortunately this is provably intractable to do optimally 
 

•  Greedy heuristic search used in practice: 
–  Select root node that is “best” in some sense 
–  Partition data into 2 subsets, depending on root attribute value 
–  Recursively grow subtrees 
–  Different termination criteria 

•  For noiseless data, if all examples at a node have the same label then 
declare it a leaf and backup 

•  For noisy data it might not be possible to find a “pure” leaf using the 
given attributes 

–  we’ll return to this later – but a simple approach is to have a 
depth-bound on the tree (or go to max depth) and use majority 
vote 

 
•  We have talked about binary variables up until now, but we can 

trivially extend to multi-valued variables 



Pseudocode for Decision tree learning 



Choosing an attribute 

•  Idea: a good attribute splits the examples into subsets that are 
(ideally) "all positive" or "all negative" 

 
 
 
 
 
 
 
 
 
 
•  Patrons? is a better choice 

–  How can we quantify this? 
–  One approach would be to use the classification error E directly (greedily) 

•  Empirically it is found that this works poorly 
–  Much better is to use information gain (next slides) 



Entropy	and	Informa;on	
•  “Entropy”	is	a	measure	of	randomness	

–  How	hard	is	it	to	communicate	a	result	to	you?	
–  Depends	on	the	probability	of	the	outcomes	

•  Communica;ng	fair	coin	tosses	
–  Output:		H	H	T	H	T	T	T	H	H	H	H	T	…	
–  Sequence	takes	n	bits	–	each	outcome	totally	unpredictable	

•  Communica;ng	my	daily	lo^ery	results	
–  Output:	0	0	0	0	0	0	…	
–  Most	likely	to	take	one	bit	–	I	lost	every	day.	
–  Small	chance	I’ll	have	to	send	more	bits	(won	&	when)	

•  Takes	less	work	to	communicate	because	it’s	less	random	
–  Use	a	few	bits	for	the	most	likely	outcome,	more	for	less	likely	ones`	

Lost:						0	
Won	1:		1(…)0	
Won	2:		1(…)1(…)0	



Entropy	and	Informa;on	
•  Entropy H(x) ´ E[ log 1/p(x) ] = ∑ p(x) log 1/p(x) 

–  Log base two, units of entropy are “bits” 
–  Two outcomes:  H = - p log(p) - (1-p) log(1-p) 

•  Examples: 

1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

H(x) = .25 log 4 + .25 log 4 + 
              .25 log 4 + .25 log 4 
        =  log 4 = 2 bits 

1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

H(x) = .75 log 4/3 + .25 log 4 
        ¼ .8133 bits 

1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

H(x) = 1 log 1 
         = 0 bits 

Max entropy for 4 outcomes Min entropy 



Entropy with only 2 outcomes 

 
Consider 2 class problem: p = probability of class 1, 1 – p = 

probability of class 2 
 
In binary case, H(p) = - p log p  -  (1-p) log (1-p) 
 
 
 
 

 

H(p) 

0.5 1 0 

1 

p 



Information Gain 

•  H(p) = entropy of class distribution at a particular node 
 
•  H(p | A) = conditional entropy = average entropy of 

conditional class distribution, after we have partitioned the 
data according to the values in A 

 
•  Gain(A) = H(p) – H(p | A) 
 
•  Simple rule in decision tree learning 

–  At each internal node, split on the node with the largest 
information gain (or equivalently, with smallest H(p|A)) 

 
•  Note that by definition, conditional entropy can’t be greater 

than the entropy 



Root Node Example 
 
For the training set, 6 positives, 6 negatives, H(6/12, 6/12) = 1 bit 
 
 
 
 
 
Consider the attributes Patrons and Type: 
 
 
 
 
 
 
 
 
Patrons has the highest IG of all attributes and so is chosen by the learning 

algorithm as the root 
 
Information gain is then repeatedly applied at internal nodes until all leaves contain 

only examples from one class or the other 

positive (p) negative (1-p) 



Choosing an attribute 



Decision Tree Learned 

•  Decision tree learned from the 12 examples: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Hungry? 

…
 



True	Tree	(leq)					versus						Learned	Tree	(right)	



Assessing Performance 

Training data performance is typically optimistic 
 e.g., error rate on training data 

 
 
Reasons? 

 - classifier may not have enough data to fully learn the concept (but 
               on training data we don’t know this) 
          - for noisy data, the classifier may overfit the training data 
 
 
In practice we want to assess performance “out of sample” 

 how well will the classifier do on new unseen data? This is the 
            true test of what we have learned (just like a classroom) 
 
With large data sets we can partition our data into 2 subsets, train and test 

 - build a model on the training data 
          - assess performance on the test data 
 
 



Example of Test Performance 

Restaurant problem 
 - simulate 100 data sets of different sizes 

          - train on this data, and assess performance on an independent test set 
          - learning curve = plotting accuracy as a function of training set size 
          - typical “diminishing returns” effect (some nice theory to explain this) 
 
 
 



Overfitting and Underfitting 

X 

Y 



A Complex Model 

X 

Y 

Y = high-order polynomial in X 



A Much Simpler Model 

X 

Y 

Y = a X  + b  +  noise 



Example 2 



Example 2 



Example 2 



Example 2 



Example 2 



How Overfitting affects Prediction 

Predictive 
Error 

Model Complexity 

Error on Training Data 



How Overfitting affects Prediction 

Predictive 
Error 

Model Complexity 

Error on Training Data 

Error on Test Data 



How Overfitting affects Prediction 

Predictive 
Error 

Model Complexity 

Error on Training Data 

Error on Test Data 

Ideal Range 
for Model Complexity 

Overfitting Underfitting 



Training and Validation Data 

Full Data Set 

Training Data 

Validation Data 

Idea: train each 
model on the 
“training data” 
 
and then test 
each model’s 
accuracy on 
the validation data 



 The k-fold Cross-Validation Method 

•  Why just choose one particular 90/10 “split” of the data? 
–  In principle we could do this multiple times 
 

•  “k-fold Cross-Validation” (e.g., k=10) 
–  randomly partition our full data set into k disjoint subsets (each 

roughly of size n/k, n = total number of training data points) 
•  for  i = 1:10  (here k = 10) 

–  train on 90% of data, 
–  Acc(i) =  accuracy on other 10% 

•  end 

•  Cross-Validation-Accuracy =  1/k  Σi  Acc(i) 
–  choose the method with the highest cross-validation accuracy 
–  common values for k are 5 and 10 
–  Can also do “leave-one-out” where k = n 
 



Disjoint Validation Data Sets 

Full Data Set 

Training Data 

Validation Data (aka Test Data) 

1st partition 



Disjoint Validation Data Sets 

Full Data Set 

Training Data 

Validation Data (aka Test Data) 

1st partition 2nd partition 



Disjoint Validation Data Sets 

Full Data Set 

Training Data 

Validation Data (aka Test Data) 

Validation  
Data 

1st partition 2nd partition 

3rd partition 4th partition 5th partition 



More on Cross-Validation 

•  Notes 
–  cross-validation generates an approximate estimate of how well 

the learned model will do on “unseen” data 
 
–  by averaging over different partitions it is more robust than just a 

single train/validate partition of the data 
 
–  “k-fold” cross-validation is a generalization 

•  partition data into disjoint validation subsets of size n/k 
•  train, validate, and average over the v partitions 
•  e.g., k=10 is commonly used 
 

–  k-fold cross-validation is approximately k times computationally 
more expensive than just fitting a model to all of the data 



You will be expected to know 

l  Understand Attributes, Error function, Classification, 
 Regression, Hypothesis (Predictor function)  
 
l  What is Supervised Learning? 
 
l  Decision Tree Algorithm 
 
l  Entropy 
 
l  Information Gain 
 
l  Tradeoff between train and test with model complexity 
 
l  Cross validation 



Summary 

•  Inductive learning 
–  Error function, class of hypothesis/models {h} 
–  Want to minimize E on our training data 
–  Example: decision tree learning 
 

•  Generalization 
–  Training data error is over-optimistic 
–  We want to see performance on test data 
–  Cross-validation is a useful practical approach 
 

•  Learning to recognize faces 
–  Viola-Jones algorithm: state-of-the-art face detector, entirely 

learned from data, using boosting+decision-stumps 
 
 


