
Machine	Learning	

CS171,	Fall	2016	
Introduc;on	to	Ar;ficial	Intelligence	

Prof.	Alexander	Ihler	
	

Reading: R&N 18.1-18.4

Outline	
•  Basics	

–  The	importance	of	a	good	representa;on	
–  Different	types	of	learning	problems	
–  Different	types	of	learning	algorithms	

•  Supervised	learning	
–  Decision	trees	
–  Naïve	Bayes	
–  Perceptrons,	Mul;-layer	Neural	Networks	
–  Boos;ng	

•  Unsupervised	Learning	
–  K-means	
–  Latent	space	representa;ons	

•  Applica;ons:	learning	to	detect	faces	in	images	

Deep Learning in Physics:
Searching for Exotic Particles

Thanks to
Pierre Baldi

Thanks to
Pierre Baldi

Daniel Whiteson

Peter Sadowski

Thanks to
Pierre Baldi

Higgs	Boson	Detec;on	

Deep	network	improves	AUC	by	8%	
Nature Communications, July 2014 BDT= Boosted Decision Trees in

TMVA package

Thanks to
Pierre Baldi

Applica;on	to	Extra-Tropical	Cyclones	
Gaffney et al, Climate Dynamics, 2007

Thanks to
Padhraic Smyth

Iceland Cluster

Horizontal Cluster Greenland Cluster

Original Data

Thanks to
Padhraic Smyth

Cluster	Shapes	for	Pacific	Typhoon	Tracks	Camargo et al, J. Climate, 2007

Thanks to
Padhraic Smyth

	©	Padhraic	Smyth,	UC	Irvine:	DS	06					10	

	TROPICAL	CYCLONES	Western	North	Pacific		

Camargo et al, J. Climate, 2007

Thanks to
Padhraic Smyth

An	ICS	Undergraduate	Success	Story	
“The	key	student	involved	in	this	work	started	out	as	an	ICS	
undergrad.	Sco^	Gaffney	took	ICS	171	and	175,	got	interested	in	AI,	
started	to	work	in	my	group,	decided	to	stay	in	ICS	for	his	PhD,	did	a	
terrific	job	in	wri;ng	a	thesis	on	curve-clustering	and	working	with	
collaborators	in	climate	science	to	apply	it	to	important	scien;fic	
problems,	and	is	now	one	of	the	leaders	of	Yahoo!	Labs	repor;ng	
directly	to	the	CEO	there,	h^p://labs.yahoo.com/author/gaffney/.	
Sco^	grew	up	locally	in	Orange	County	and	is	someone	I	like	to	point	
as	a	great	success	story	for	ICS.”	

	 	 	 	 	 	 	 	 	 	 	 	---	From	Padhraic	Smyth	

Thanks to
Padhraic Smyth

•  p53 is a central tumor
suppressor protein
	 “The	 guardian	 of	 the	
genome”		

	
•  Cancer Mutants:									
	About	50%	of	all	human	
cancers	have	p53	
muta;ons.	

	
•  Rescue Mutants:	
					Several	second-site	

muta;ons	restore	
func;onality	to	some	p53	
cancer	mutants	in	vivo.		

p53 core domain bound to DNA
Image Generated with UCSF Chimera

Cho, Y., Gorina, S., Jeffrey, P.D., Pavletich, N.P. Crystal
structure of a p53 tumor suppressor-DNA complex:

understanding tumorigenic mutations. Science v265 pp.
346-355 , 1994

p53 and Human Cancers

Theory

Find Cancer
Rescue
Mutants

Knowledge

Experiment

Active Learning for Biological Discovery

Example M

…

Example N
+4

Example N
+3

Example N
+2

Example N
+1

Unknown

Example N

…

Example 3

Example 2

Example 1

Known

Training Set

Classifier

Train the
Classifier

Add New Example(s)
To Training Set

Choose
Example(s)

to Label

Computational Active Learning
Pick the Best (= Most Informative) Unknown Examples

to Label

•  Positive Region:
 Predicted Active
 96-105 (Green)

•  Negative Region:
 Predicted Inactive
 223-232 (Red)

•  Expert Region:
 Predicted Active
 114-123 (Blue)

Visualization of Selected Regions

Danziger, et al.
(2009)

MIP	Posi(ve	
(96-105)	

MIP	Nega(ve	
(223-232)	

Expert	
(114-123)	

#	Strong	
Rescue	 8	 0	(p	<	0.008)	 6	(not	significant)	
#	Weak	
Rescue	 3	 2	(not	significant)	 7	(not	significant)	

Total	#	Rescue	 11	 2	(p	<	0.022)	 13	(not	significant)	
p-Values are two-tailed, comparing Positive to Negative and Expert regions. Danziger, et al. (2009)

Novel Single-a.a. Cancer Rescue Mutants

No significant differences between the MIP Positive and Expert regions.

Both were statistically significantly better than the MIP Negative region.

The Positive region rescued for the first time the cancer mutant P152L.

No previous single-a.a. rescue mutants in any region.

Complete	architectures	for	intelligence?	

•  Search?	
– Solve	the	problem	of	what	to	do.	

•  Learning?	
– Learn	what	to	do.	

•  Logic	and	inference?	
– Reason	about	what	to	do.	
– Encoded	knowledge/”expert”	systems?	

•  Know	what	to	do.	

•  Modern	view:	It’s	complex	&	mul;-faceted.	

Automated	Learning	
•  Why is it useful for our agent to be able to learn?

–  Learning is a key hallmark of intelligence
–  The ability to take in real data and feedback and improve performance over time
–  Check out USC Autonomous Flying Vehicle Project!

•  Types of learning
–  Supervised learning: learn mapping from attributes to “target”

–  Classification: target variable is discrete (e.g., spam email)
–  Regression: target variable is real-valued (e.g., stock market)

–  Unsupervised learning: no target variable; “understand” data structure

–  Clustering: grouping data into K groups
–  Latent space embeddings: learn “simpler” representation of the data

–  Other types of learning

•  Reinforcement learning: e.g., game-playing agent
•  Learning to rank, e.g., document ranking in Web search
•  And many others….

Importance	of	representa;on	
Proper(es	of	a	good	representa(on:	
•  Reveals	important	features		
•  Hides	irrelevant	detail	
•  Exposes	useful	constraints	
•  Makes	frequent	opera;ons	easy-to-do	
•  Supports	local	inferences	from	local	features	

•  Called	the	“soda	straw”	principle	or	“locality”	principle	
•  Inference	from	features	“through	a	soda	straw”	

•  Rapidly	or	efficiently	computable	
•  It’s	nice	to	be	fast	

Reveals important features / Hides irrelevant detail

•  “You	can’t	learn	what	you	can’t	represent.”	---	G.	Sussman	
	
•  In	search:		A	man	is	traveling	to	market	with	a	fox,	a	goose,	and	a	bag	of	oats.		

He	comes	to	a	river.		The	only	way	across	the	river	is	a	boat	that	can	hold	the	
man	and	exactly	one	of	the	fox,	goose	or	bag	of	oats.		The	fox	will	eat	the	goose	
if	le<	alone	with	it,	and	the	goose	will	eat	the	oats	if	le<	alone	with	it.	

•  A	good	representa(on	makes	this	problem	easy:	
	
1110
0010
1010
1111
0001
0101

	

0000	 1101

1011

0100 1110

0010 1010 1111

0001

0101

Simple illustrative learning problem

Problem:
 decide whether to wait for a table at a restaurant, based on the following attributes:

1.  Alternate: is there an alternative restaurant nearby?
2.  Bar: is there a comfortable bar area to wait in?
3.  Fri/Sat: is today Friday or Saturday?
4.  Hungry: are we hungry?
5.  Patrons: number of people in the restaurant (None, Some, Full)
6.  Price: price range ($, $$, $$$)
7.  Raining: is it raining outside?
8.  Reservation: have we made a reservation?
9.  Type: kind of restaurant (French, Italian, Thai, Burger)
10.  WaitEstimate: estimated waiting time (0-10, 10-30, 30-60, >60)

Training	Data	for	Supervised	Learning	

Terminology

•  Attributes
–  Also known as features, variables, independent variables,

covariates

•  Target Variable
–  Also known as goal predicate, dependent variable, …

•  Classification
–  Also known as discrimination, supervised classification, …

•  Error function
–  Objective function, loss function, …

Inductive learning

•  Let x represent the input vector of attributes

•  Let f(x) represent the value of the target variable for x

–  The implicit mapping from x to f(x) is unknown to us
–  We just have training data pairs, D = {x, f(x)} available

•  We want to learn a mapping from x to f, i.e.,
 h(x; θ) is “close” to f(x) for all training data points x

 θ are the parameters of our predictor h(..)

•  Examples:

–  h(x; θ) = sign(w1x1 + w2x2+ w3)

–  hk(x) = (x1 OR x2) AND (x3 OR NOT(x4))

Empirical Error Functions

•  Empirical error function:
 E(h) = Σx distance[h(x; θ) , f]

e.g., distance = squared error if h and f are real-valued (regression)
 distance = delta-function if h and f are categorical (classification)

Sum is over all training pairs in the training data D

In learning, we get to choose

 1. what class of functions h(..) that we want to learn
 – potentially a huge space! (“hypothesis space”)

 2. what error function/distance to use
 - should be chosen to reflect real “loss” in problem
 - but often chosen for mathematical/algorithmic convenience

Inductive Learning as Optimization or Search

•  Empirical error function:
 E(h) = Σx distance[h(x; θ) , f]

•  Empirical learning = finding h(x), or h(x; θ) that minimizes E(h)
–  In simple problems there may be a closed form solution

•  E.g., “normal equations” when h is a linear function of x, E = squared error

–  If E(h) is differentiable as a function of q, then we have a continuous optimization problem
and can use gradient descent, etc

•  E.g., multi-layer neural networks

–  If E(h) is non-differentiable (e.g., classification), then we typically have a systematic search
problem through the space of functions h

•  E.g., decision tree classifiers

•  Once we decide on what the functional form of h is, and what the error function E
is, then machine learning typically reduces to a large search or optimization
problem

•  Additional aspect: we really want to learn an h(..) that will generalize well to new

data, not just memorize training data – will return to this later

Our	training	data	example	(again)	

•  If all attributes were binary, h(..) could be any arbitrary Boolean function

•  Natural error function E(h) to use is classification error, i.e., how many incorrect
predictions does a hypothesis h make

•  Note an implicit assumption:
–  For any set of attribute values there is a unique target value
–  This in effect assumes a “no-noise” mapping from inputs to targets

•  This is often not true in practice (e.g., in medicine). Will return to this later

Learning Boolean Functions

•  Given examples of the function, can we learn the function?

•  How many Boolean functions can be defined on d attributes?

–  Boolean function = Truth table + column for target function (binary)
–  Truth table has 2d rows
–  So there are 2 to the power of 2d different Boolean functions we can define

(!)
–  This is the size of our hypothesis space

–  E.g., d = 6, there are 18.4 x 1018 possible Boolean functions

•  Observations:

–  Huge hypothesis spaces –> directly searching over all functions is impossible
–  Given a small data (n pairs) our learning problem may be underconstrained

•  Ockham’s razor: if multiple candidate functions all explain the data
equally well, pick the simplest explanation (least complex function)

•  Constrain our search to classes of Boolean functions, e.g.,
–  decision trees
–  Weighted linear sums of inputs (e.g., perceptrons)

William of
Ockham
c. 1288-1347

Decision	Tree	Learning	
• Constrain	h(..)	to	be	a	decision	tree	

Decision	Tree	Representa;ons	
• Decision	trees	are	fully	expressive	

– can	represent	any	Boolean	func;on	
– Every	path	in	the	tree	could	represent	1	row	in	the	truth	table	
– Yields	an	exponen;ally	large	tree	

• Truth	table	is	of	size	2d,	where	d	is	the	number	of	a^ributes	

	

Decision Tree Representations

•  Trees can be very inefficient for certain types of functions

–  Parity function: 1 only if an even number of 1’s in the input vector
•  Trees are very inefficient at representing such functions

–  Majority function: 1 if more than ½ the inputs are 1’s
•  Also inefficient

–  Simple DNF formulae can be easily represented
•  E.g., f = (A AND B) OR (NOT(A) AND D)
•  DNF = disjunction of conjunctions

•  Decision trees are in effect DNF representations

–  often used in practice since they often result in compact approximate
representations for complex functions

–  E.g., consider a truth table where most of the variables are irrelevant to the
function

Decision Tree Learning

•  Find the smallest decision tree consistent with the n examples
–  Unfortunately this is provably intractable to do optimally

•  Greedy heuristic search used in practice:
–  Select root node that is “best” in some sense
–  Partition data into 2 subsets, depending on root attribute value
–  Recursively grow subtrees
–  Different termination criteria

•  For noiseless data, if all examples at a node have the same label then
declare it a leaf and backup

•  For noisy data it might not be possible to find a “pure” leaf using the
given attributes

–  we’ll return to this later – but a simple approach is to have a
depth-bound on the tree (or go to max depth) and use majority
vote

•  We have talked about binary variables up until now, but we can

trivially extend to multi-valued variables

Pseudocode for Decision tree learning

Choosing an attribute

•  Idea: a good attribute splits the examples into subsets that are
(ideally) "all positive" or "all negative"

•  Patrons? is a better choice

–  How can we quantify this?
–  One approach would be to use the classification error E directly (greedily)

•  Empirically it is found that this works poorly
–  Much better is to use information gain (next slides)

Entropy	and	Informa;on	
•  “Entropy”	is	a	measure	of	randomness	

–  How	hard	is	it	to	communicate	a	result	to	you?	
–  Depends	on	the	probability	of	the	outcomes	

•  Communica;ng	fair	coin	tosses	
–  Output:		H	H	T	H	T	T	T	H	H	H	H	T	…	
–  Sequence	takes	n	bits	–	each	outcome	totally	unpredictable	

•  Communica;ng	my	daily	lo^ery	results	
–  Output:	0	0	0	0	0	0	…	
–  Most	likely	to	take	one	bit	–	I	lost	every	day.	
–  Small	chance	I’ll	have	to	send	more	bits	(won	&	when)	

•  Takes	less	work	to	communicate	because	it’s	less	random	
–  Use	a	few	bits	for	the	most	likely	outcome,	more	for	less	likely	ones`	

Lost:						0	
Won	1:		1(…)0	
Won	2:		1(…)1(…)0	

Entropy	and	Informa;on	
•  Entropy H(x) ´ E[log 1/p(x)] = ∑ p(x) log 1/p(x)

–  Log base two, units of entropy are “bits”
–  Two outcomes: H = - p log(p) - (1-p) log(1-p)

•  Examples:

1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

H(x) = .25 log 4 + .25 log 4 +
 .25 log 4 + .25 log 4
 = log 4 = 2 bits

1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

H(x) = .75 log 4/3 + .25 log 4
 ¼ .8133 bits

1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

H(x) = 1 log 1
 = 0 bits

Max entropy for 4 outcomes Min entropy

Entropy with only 2 outcomes

Consider 2 class problem: p = probability of class 1, 1 – p =

probability of class 2

In binary case, H(p) = - p log p - (1-p) log (1-p)

H(p)

0.5 1 0

1

p

Information Gain

•  H(p) = entropy of class distribution at a particular node

•  H(p | A) = conditional entropy = average entropy of

conditional class distribution, after we have partitioned the
data according to the values in A

•  Gain(A) = H(p) – H(p | A)

•  Simple rule in decision tree learning

–  At each internal node, split on the node with the largest
information gain (or equivalently, with smallest H(p|A))

•  Note that by definition, conditional entropy can’t be greater

than the entropy

Root Node Example

For the training set, 6 positives, 6 negatives, H(6/12, 6/12) = 1 bit

Consider the attributes Patrons and Type:

Patrons has the highest IG of all attributes and so is chosen by the learning

algorithm as the root

Information gain is then repeatedly applied at internal nodes until all leaves contain

only examples from one class or the other

positive (p) negative (1-p)

Choosing an attribute

Decision Tree Learned

•  Decision tree learned from the 12 examples:

Hungry?

…

True	Tree	(leq)					versus						Learned	Tree	(right)	

Assessing Performance

Training data performance is typically optimistic
 e.g., error rate on training data

Reasons?

 - classifier may not have enough data to fully learn the concept (but
 on training data we don’t know this)
 - for noisy data, the classifier may overfit the training data

In practice we want to assess performance “out of sample”

 how well will the classifier do on new unseen data? This is the
 true test of what we have learned (just like a classroom)

With large data sets we can partition our data into 2 subsets, train and test

 - build a model on the training data
 - assess performance on the test data

Example of Test Performance

Restaurant problem
 - simulate 100 data sets of different sizes

 - train on this data, and assess performance on an independent test set
 - learning curve = plotting accuracy as a function of training set size
 - typical “diminishing returns” effect (some nice theory to explain this)

Overfitting and Underfitting

X

Y

A Complex Model

X

Y

Y = high-order polynomial in X

A Much Simpler Model

X

Y

Y = a X + b + noise

Example 2

Example 2

Example 2

Example 2

Example 2

How Overfitting affects Prediction

Predictive
Error

Model Complexity

Error on Training Data

How Overfitting affects Prediction

Predictive
Error

Model Complexity

Error on Training Data

Error on Test Data

How Overfitting affects Prediction

Predictive
Error

Model Complexity

Error on Training Data

Error on Test Data

Ideal Range
for Model Complexity

Overfitting Underfitting

Training and Validation Data

Full Data Set

Training Data

Validation Data

Idea: train each
model on the
“training data”

and then test
each model’s
accuracy on
the validation data

 The k-fold Cross-Validation Method

•  Why just choose one particular 90/10 “split” of the data?
–  In principle we could do this multiple times

•  “k-fold Cross-Validation” (e.g., k=10)
–  randomly partition our full data set into k disjoint subsets (each

roughly of size n/k, n = total number of training data points)
•  for i = 1:10 (here k = 10)

–  train on 90% of data,
–  Acc(i) = accuracy on other 10%

•  end

•  Cross-Validation-Accuracy = 1/k Σi Acc(i)
–  choose the method with the highest cross-validation accuracy
–  common values for k are 5 and 10
–  Can also do “leave-one-out” where k = n

Disjoint Validation Data Sets

Full Data Set

Training Data

Validation Data (aka Test Data)

1st partition

Disjoint Validation Data Sets

Full Data Set

Training Data

Validation Data (aka Test Data)

1st partition 2nd partition

Disjoint Validation Data Sets

Full Data Set

Training Data

Validation Data (aka Test Data)

Validation
Data

1st partition 2nd partition

3rd partition 4th partition 5th partition

More on Cross-Validation

•  Notes
–  cross-validation generates an approximate estimate of how well

the learned model will do on “unseen” data

–  by averaging over different partitions it is more robust than just a

single train/validate partition of the data

–  “k-fold” cross-validation is a generalization

•  partition data into disjoint validation subsets of size n/k
•  train, validate, and average over the v partitions
•  e.g., k=10 is commonly used

–  k-fold cross-validation is approximately k times computationally
more expensive than just fitting a model to all of the data

You will be expected to know

l  Understand Attributes, Error function, Classification,
 Regression, Hypothesis (Predictor function)

l  What is Supervised Learning?

l  Decision Tree Algorithm

l  Entropy

l  Information Gain

l  Tradeoff between train and test with model complexity

l  Cross validation

Summary

•  Inductive learning
–  Error function, class of hypothesis/models {h}
–  Want to minimize E on our training data
–  Example: decision tree learning

•  Generalization
–  Training data error is over-optimistic
–  We want to see performance on test data
–  Cross-validation is a useful practical approach

•  Learning to recognize faces
–  Viola-Jones algorithm: state-of-the-art face detector, entirely

learned from data, using boosting+decision-stumps

