
Machine Learning and Data Mining 
 
 

Linear classification 
 

Prof. Alexander Ihler 

TexPoint fonts used in EMF.  
Read the TexPoint manual before you delete this box.: AAA 

+ 



Supervised learning 
•  Notation 

–  Features      x 
–  Targets        y 
–  Predictions  ŷ 
–  Parameters θ  

Program  (“Learner”) 
 
Characterized by  
some “parameters”   µ 
 
Procedure (using µ)  
that outputs a prediction 
 

Training data  
(examples) 

Features 

Learning algorithm 
 
Change µ 
Improve performance 

Feedback /  
Target values Score performance 

(“cost function”) 



Linear regression 

•  Contrast with classification 
–  Classify: predict discrete-valued target y 

(c) Alexander Ihler 

0 10 20 
0 

20 

40 

Ta
rg

et
  y

 

Feature x 

“Predictor”: 
Evaluate line: 
 
 
  return r 



Perceptron Classifier (2 features) 

(c) Alexander Ihler 

µ1 

µ2 

µ0  {-1, +1} weighted sum 
of the inputs 

Threshold 
 Function 

output 
= class decision 

T(f) 

f(X,Y) 

Classifier 
x1 
x2 

1 

T(f) 
f = µ1 X1 + µ2 X2 + µ0 

y 

x 

y 

x 

f(x) 
T(f) 

Visualizing for one feature “x”:  



Perceptrons 
•  Perceptron = a linear classifier 

–  The parameters µ are sometimes called weights (“w”) 
•  real-valued constants (can be positive or negative) 

–  Define an additional constant input “1”  
 

•  A perceptron calculates 2 quantities: 
–  1. A weighted sum of the input features 
–  2. This sum is then thresholded by the T(.) function 

•  Perceptron: a simple artificial model of human neurons 
•  weights = “synapses” 
•  threshold = “neuron firing” 

(c) Alexander Ihler 



Notation 
•  Inputs: 

–  x0, x1, x2, …………, xn, 
–  x1, x2, …………, xn-1, xn   are the values of the n features 

–  x0 = 1  (a constant input) 
–  x =  [[x0, x1, x2, …………, xn ]] : feature vector (row vector) 

•  Weights (parameters): 
–  µ0, µ1, µ2, …………, µn, 
–  we have n+1 weights:  one for each feature + one for the constant 
–  µ =  [[µ0, µ1, µ2, …………, µn ]] : parameter vector (row vector) 

•  Linear response 
–  µ0x0 + µ1x1 +… µn xn    = x . µ ’     then threshold 

(Matlab)    >> f = th*x’;  f = sum(th.*x);  yhat = sign(f); 

F = X.dot( theta.T );   # compute linear response 
Yhat = np.sign(F)   # predict class +1 or -1 
Yhat = 2*(F>0)-1     # manual ”sign” of F 



Perceptron Decision Boundary 
•  The perceptron is defined by the decision algorithm: 

•  The perceptron represents a hyperplane decision surface in d-dimensional space 
–  A line in 2D, a plane in 3D, etc. 

•  The equation of the hyperplane is given by 

     This defines the set of points that are on the boundary. 

(c) Alexander Ihler 

           =    1    (if µ . x’ > 0) 
o(x1, x2,…, xd, xd+1)  

        
          =    -1   (otherwise) 

 

µ . x’  = 0 



Example, Linear Decision Boundary 

x1  

x2  

From P. Smyth 

µ  = (µ0,   µ1,   µ2) 
    = (1,   .5,  -.5 ) 
  



Example, Linear Decision Boundary 

x1  

x2  
µ . x’ = 0 
 
=> .5 · x1 - .5 · x2  + 1 · 1 = 0 
 
=> -.5 x2 = -.5 x1 - 1 
 
=>   x2 = x1  + 2  
 

From P. Smyth 

µ  = (µ0,   µ1,   µ2) 
    = (1,   .5,  -.5 ) 
  



Example, Linear Decision Boundary 

µ . x’ = 0 
 

x1  

x2  
µ . x’ < 0 
  
=> x1 + 2 <  x2 
(this is the  
equation for 
decision  
region -1)  

From P. Smyth 

µ . x’ > 0 
  
=> x1 + 2 >  x2 
(decision  
region +1)  

µ  = (µ0,   µ1,   µ2) 
    = (1,   .5,  -.5 ) 
  



Separability 
•  A data set is separable by a learner if 

–  There is some instance of that learner that correctly predicts all the data 
points 

•  Linearly separable data 
–  Can separate the two classes using a straight line in feature space 
–  in 2 dimensions the decision boundary is a straight line 

Linearly separable data   Linearly non-separable data 

(c) Alexander Ihler 
Feature 1,  x1 

Fe
at

ur
e 

2,
  x

2 

Decision boundary 

Feature 1,  x1 

Fe
at

ur
e 

2,
  x

2 Decision boundary 



Class overlap 
•  Classes may not be well-separated 
•  Same observation values possible  

under both classes 
–  High vs low risk; features {age, income} 
–  Benign/malignant cells look similar 
–  … 

•  Common in practice 
•  May not be able to perfectly distinguish between classes  

–  Maybe with more features? 
–  Maybe with more complex classifier? 

•  Otherwise, may have to accept some errors 

(c) Alexander Ihler 

-2 -1 0 1 2 3 4 5
-2

-1

0

1

2

3

4

5



Another example 

(c) Alexander Ihler 

-2 -1 0 1 2 3 4 -2 

-1 

0 

1 

2 

3 

4 



Non-linear decision boundary 

(c) Alexander Ihler 

-2 -1 0 1 2 3 4 -2 

-1 

0 

1 

2 

3 

4 



Representational Power of Perceptrons 
•  What mappings can a perceptron represent perfectly? 

–  A perceptron is a linear classifier 
–  thus it can represent any mapping that is linearly separable 
–  some Boolean functions like AND (on left) 
–  but not Boolean functions like XOR (on right)  

(c) Alexander Ihler 



Adding features 
•  Linear classifier can’t learn some functions 

(c) Alexander Ihler 

1D example: 

Add quadratic features 

Not linearly separable 

Linearly separable in new features… 

y = T( b x + c ) 

y = T( a x2 + b x + c ) 



Adding features 
•  Linear classifier can’t learn some functions 

1D example: 

Quadratic features, visualized in original feature space: 

Not linearly separable 

More complex decision boundary:   ax2+bx+c = 0 

y = T( b x + c ) 

y = T( a x2 + b x + c ) 



Representational Power of Perceptrons 
•  What mappings can a perceptron represent perfectly? 

–  A perceptron is a linear classifier 
–  thus it can represent any mapping that is linearly separable 
–  some Boolean functions like AND (on left) 
–  but not Boolean functions like XOR (on right)  

(c) Alexander Ihler 

What kinds of functions would we need to learn the data on the right? 



Representational Power of Perceptrons 
•  What mappings can a perceptron represent perfectly? 

–  A perceptron is a linear classifier 
–  thus it can represent any mapping that is linearly separable 
–  some Boolean functions like AND (on left) 
–  but not Boolean functions like XOR (on right)  

(c) Alexander Ihler 

What kinds of functions would we need to learn the data on the right? 
Ellipsiodal decision boundary:   a x1

2 + b x1 + c x2
2 + d x2 + e x1x2 + f = 0     



Feature representations 
•  Features are used in a linear way 
•  Learner is dependent on representation 

•  Ex: discrete features 
–  Mushroom surface: {fibrous, grooves, scaly, smooth} 
–  Probably not useful to use x = {1, 2, 3, 4} 
–  Better: 1-of-K,   x = { [1000], [0100], [0010], [0001] } 
–  Introduces more parameters, but a more flexible relationship 

(c) Alexander Ihler 



Effect of dimensionality 
•  Data are increasingly separable in high dimension – is this a good thing? 

•  “Good” 
–  Separation is easier in higher dimensions (for fixed # of data m) 
–  Increase the number of features, and even a linear classifier will eventually be 

able to separate all the training examples! 

•  “Bad” 
–  Remember training vs. test error?  Remember overfitting? 
–  Increasingly complex decision boundaries can eventually get all the training 

data right, but it doesn’t necessarily bode well for test data… 

Predictive 
Error 

Complexity 

Error on Training Data 

Error on Test Data 

Ideal Range 
Overfitting Underfitting 



Summary 
•  Linear classifier ó perceptron 

•  Linear decision boundary 
–  Computing and visualizing 

•  Separability 
–  Limits of the representational power of a perceptron 

•  Adding features 
–  Interpretations 
–  Effect on separability 
–  Potential for overfitting 

(c) Alexander Ihler 



Machine Learning and Data Mining 
 
 

Linear classification: Learning 
 

Prof. Alexander Ihler 

+ 



Learning the Classifier Parameters 

•  Learning from Training Data: 
–  training data = labeled feature vectors 
–  Find parameter values that predict well (low error) 

•  error is estimated on the training data 
•  “true” error will be on future test data 

•  Define an objective function  J(µ) : 
–  Classifier accuracy  (for a given set of weights µ and labeled data) 

•  Maximize this objective function    (or, minimize error) 
–  An optimization or search problem over the vector (µ1, µ2, µ0) 

(c) Alexander Ihler 



Training a linear classifier 
•  How should we measure error? 

–  Natural measure = “fraction we get wrong”   (error rate) 

•  But, hard to train via gradient descent 
–  Not continuous 
–  As decision boundary moves, errors change abruptly 

 (c) Alexander Ihler 

1D example: T(f) = -1  if   f < 0 
T(f) = +1  if   f > 0  

err(µ)  =  1/m  Σ  ±( ŷ(i) ≠ y(i) ) 
 

where    ±( ŷ(i) ≠ y(i) ) = 0   if ŷ(i) = y(i),     and 1 otherwise 

(Matlab)    >> yh = sign(th*X’); err = mean(y ~= yh); Yhat = np.sign( X.dot( theta.T ) );  # predict class 
err = np.mean( Y != Yhat )   # count errors: empirical error rate 



Linear regression? 
•  Simple	op)on:	set	µ	using	linear	regression	

	

•  In	prac)ce,	this	o6en	doesn’t	work	so	well…	
–  Consider	adding	a	distant	but	“easy”	point	
–  MSE	distorts	the	solu)on	

(c) Alexander Ihler 



Perceptron algorithm 
•  Perceptron algorithm: an SGD-like algorithm 

While (~done) 
    For each data point  j: 

   ŷ(j) = T( µ * x(j) )               : predict output for data point j 
   µ Ã µ +  ® ( y(j) - ŷ(j) ) x(j)   :  “gradient-like” step  

•  Compare to linear regression + MSE cost 
–  Identical update to SGD for MSE except error uses 

 thresholded ŷ(j) instead of linear response µ x’       so: 

–  (1) For correct predictions,    y(j) - ŷ(j) = 0 
–  (2) For incorrect predictions, y(j) - ŷ(j) = ± 2 

(c) Alexander Ihler 

“adaptive” linear regression: correct predictions stop contributing 



Perceptron algorithm 
•  Perceptron algorithm: an SGD-like algorithm 

While (~done) 
    For each data point  j: 

   ŷ(j) = T( µ * x(j) )               : predict output for data point j 
   µ Ã µ +  ® ( y(j) - ŷ(j) ) x(j)   :  “gradient-like” step  

(c) Alexander Ihler 

y(j) 
predicted 
incorrectly: 
update 
weights 



Perceptron algorithm 
•  Perceptron algorithm: an SGD-like algorithm 

While (~done) 
    For each data point  j: 

   ŷ(j) = T( µ * x(j) )               : predict output for data point j 
   µ Ã µ +  ® ( y(j) - ŷ(j) ) x(j)   :  “gradient-like” step  

(c) Alexander Ihler 

y(j) 
predicted 
correctly: 
no update 



Perceptron algorithm 
•  Perceptron algorithm: an SGD-like algorithm 

While (~done) 
    For each data point  j: 

   ŷ(j) = T( µ * x(j) )               : predict output for data point j 
   µ Ã µ +  ® ( y(j) - ŷ(j) ) x(j)   :  “gradient-like” step  

(Converges if data are linearly separable) 

(c) Alexander Ihler 

y(j) 
predicted 
correctly: 
no update 



Surrogate loss functions 
•  Another solution: use a “smooth” loss  

–  e.g., approximate the threshold function 

–  Usually some smooth function of distance 
•  Example: “sigmoid”, looks like an “S” 

–  Now, measure e.g. MSE 
    

 
–  Far from the decision boundary:  |f(.)| large, small error 
–  Nearby the boundary:  |f(.)| near 1/2, larger error 

T(f) 

f(X,Y) 

f(X,Y) 

σ(f) 

1D example: 

Classification error = 2/9 MSE = (02 + 12 + .22 + .252 + .052 + …)/9 

Class y = {0, 1} … 



Feature 1,  x1 

Fe
at

ur
e 

2,
  x

2 

Feature 1,  x1 
Fe

at
ur

e 
2,

  x
2 

Beyond misclassification rate 
•  Which decision boundary is “better”? 

–  Both have zero training error  (perfect training accuracy) 
–  But, one of them seems intuitively better… 

•  Side benefit of “smoothed” error function 
–  Encourages data to be far from the decision boundary 
–  See more examples of this principle later... 

(c) Alexander Ihler 



Training the Classifier 
•  Once we have a smooth measure of quality, we can find the 

“best” settings for the parameters of  
f(X1,X2) = a*X1 + b*X2 + c 

•  Example: 2D feature space      ó       parameter space 

•  [X,Y]      [arctan(A/B), c] 

(c) Alexander Ihler 

J = 1.9 



Training the Classifier 
•  Once we have a smooth measure of quality, we can find the 

“best” settings for the parameters of  
f(X1,X2) = a*X1 + b*X2 + c 

•  Example: 2D feature space      ó       parameter space 

•  [X,Y]      [arctan(A/B), c] 

(c) Alexander Ihler 

J = 0.4 



Training the Classifier 
•  Once we have a smooth measure of quality, we can find the “best” 

settings for the parameters of  
f(X1,X2) = a*X1 + b*X2 + c 

•  Finding the minimum loss J(.) in parameter space… 

 

(c) Alexander Ihler 

Best Point 
(minimum MSE) 

J = 0.1 



Finding the Best MSE 
•  As in linear regression, this is now just optimization 

•  Methods: 
–  Gradient descent 

•  Improve loss by small 
 changes in parameters 
 (“small” = learning rate) 

–  Or, substitute your favorite 
optimization algorithm… 

•  Coordinate descent 
•  Stochastic search 
•  Genetic algorithms 
 

(c) Alexander Ihler 

Gradient Descent 



Gradient Equations 
•  MSE  (note, depends on function σ(.) ) 

   
 
 
•  What’s the derivative with respect to one of the 

parameters? 
   

 

•  Similar for parameters b, c [replace x1 with x2 or 1 
(constant)]  

(c) Alexander Ihler 

Error between class 
   and prediction 

 
 

Sensitivity of prediction to 
   changes in parameter “a” 



Saturating Functions 
•  Many possible “saturating” functions 

•  “Logistic” sigmoid (scaled for range [0,1]) is 

    σ(z) = 1 / (1 + exp(-z)) 
•  Derivative is 

    ∂σ(z) = σ(z) (1-σ(z)) 
 
•  Python Implementation: 

(c) Alexander Ihler 

For range [-1 , +1]: 
 

   ½(z)   = 2 ¾(z) -1  
 

   ∂½(z) = 2 ¾(z) (1-¾(z)) 
 
 

Predict: threshold z or ½ at zero 

(to predict:  
   threshold z at 0   or  
   threshold σ (z) at ½  )  

def sig(z):    # logistic sigmoid 
    return  1.0 / (1.0 + np.exp(-z) ) #   in [0,1] 
 
def dsig(z):   # its derivative at z 
    return  sig(z) * (1-sig(z))  



Logistic regression 
•  Intepret ¾( µ x’ ) as a probability that y = 1 
•  Use a negative log-likelihood loss function 

–  If  y = 1,   cost is  - log Pr[y=1]   =   - log ¾( µ x’ )   
–  If  y = 0,   cost is  - log Pr[y=0]   =   - log (1 - ¾( µ x’ ) )  

•  Can write this succinctly: 

(c) Alexander Ihler 

Nonzero only if y=1 Nonzero only if y=0 



Logistic regression 
•  Intepret ¾( µ x’ ) as a probability that y = 1 
•  Use a negative log-likelihood loss function 

–  If  y = 1,   cost is  - log Pr[y=1]   =   - log ¾( µ x’ )   
–  If  y = 0,   cost is  - log Pr[y=0]   =   - log (1 - ¾( µ x’ ) )  

•  Can write this succinctly: 

•  Convex!  Otherwise similar: optimize J(µ) via … 

1D example: 

Classification error = MSE = 2/9 NLL = - (log(.99) + log(.97) + …)/9 



Gradient Equations 
•  Logistic neg-log likelihood loss: 

  
 
 
•  What’s the derivative with respect to one of the 

parameters? 
   

 

 

(c) Alexander Ihler 



Surrogate loss functions 
•  Replace 0/1 loss 
    with something easier: 

•  Logistic MSE 

•  Logistic Neg Log Likelihood 

(c) Alexander Ihler 

0/1 Loss 



Summary 
•  Linear classifier ó perceptron 

•  Measuring quality of a decision boundary 
–  Error rate  (0/1 loss) 
–  Logistic sigmoid + MSE criterion 
–  Logistic Regression 

•  Learning the weights of a linear classifer from data 
–  Reduces to an optimization problem 
–  Perceptron algorithm 
–  For MSE or Logistic NLL, we can do gradient descent 
–  Gradient equations & update rules 

(c) Alexander Ihler 



Mul)class	linear	models	
•  Define	a	generic	linear	classifier	by	

•  Example:		y	2	{-1,	+1}	

(c) Alexander Ihler 

(Standard	perceptron	rule)	



Mul)class	linear	models	
•  Define	a	generic	linear	classifier	by	

•  Example:		y	2	{0,1,2,…}	

(c) Alexander Ihler 

(predict	class	with	largest	linear	response)	

(parameters	for	each	class	c)	



Training	mul)class	perceptrons	
•  Mul)-class	perceptron	algorithm	

– StraighQorward	generaliza)on	of	perceptron	alg	

•  Mul)logis)c	regression	
– Take			p(c	|	x)	/	exp[	µ	©(x,c)	]	
– Normalize	by	sum	over	classes	c	
– StraighQorward	generaliza)on	of	logis)c	regression	

(c) Alexander Ihler 


