Machine Learning and Data Mining

Linear classification

Prof. Alexander lhler

\J

A6 O

M Sy)

BREN:[CS

UNIVERSITY of CALIFORNIA (} IRVINE
INFORMATION AND COMPUTER SCIENCES (=)

'Supervised learning
|

- Notation

— Features x

— Targets y

— Predictions y

— Parameters 6 Learning algorithm
Program (“Learner”) IC hange ¢

mprove performance
Characterized by
some “‘parameters” 0
Procedure (using 6)
SAUITES that outputs a prediction

Feedback /
Target values

'Linear regression
| _

“Predictor”:
Evaluate line:

r =0+ 6121

return r

0 10 20
Feature x

» Contrast with classification
— Classify: predict discrete-valued target y

(¢) Alexander Ihler

'Perceptron Classifier (2 features)
|

T(H)
) £(X,Y)
X, g Classifier
T ~
b, f=0, x1+0,x2+6, — 'O — ¢(x)
/ Threshold

1 % weighted sum Function -1, +1;
of the inputs output

= class decision

Visualizing for one feature “x”:
g

|Perceptrons
|

* Perceptron = a linear classifier

— The parameters 6 are sometimes called weights (“w")
* real-valued constants (can be positive or negative)

— Define an additional constant input “1”

* A perceptron calculates 2 quantities:
— 1. Aweighted sum of the input features
— 2. This sum is then thresholded by the T(.) function

* Perceptron: a simple artificial model of human neurons
 weights = “synapses”
- threshold = “neuron firing”

| Notation

* Inputs:

— Xqy Xoy vreneanannnn , X1, X, are the values of the n features

n-1»
— X =1 (a constant input)
— X = [[Xgy Xq5 Xgy cuvrvenennn. , X,]] : feature vector (row vector)
« Weights (parameters):

— Oy 04, 05y cenvnena , 0.,
— we have n+1 weights: one for each feature + one for the constant

— 0= 1[0y, 04,605, ccvevnn.... , 0. 1] : parameter vector (row vector)

* Linear response
— OXg+ 04Xy +... 0, %, =x.0" then threshold

F = X.dot(theta.T); # compute linear response
Yhat = np.sign(F) # predict class +1 or -1
Yhat = 2*(F>0)-1 # manual ’sign” of F

|Perceptron Decision Boundary
|

The perceptron is defined by the decision algorithm:

The perceptron represents a hyperplane decision surface in d-dimensional space
- Aline in 2D, a plane in 3D, etc. — 1 -f 0 ’ > O
—
The equation of the hyperplane is given by (I ~ " Z)
This deﬁnso s&f points are on the bound
(X5 X5 Ky, Xyt

—

_ = -1 (otherwise)

(¢) Alexander Ihler

|Example, Linear Decision Boundary
|

0

(60, 61, 6,)
(1, .5, -5)

Q

From P. Smyth

|Example, Linear Decision Boundary
|

0 =(0,, 0, 6,)
=(1, .5, -.5)
9.x =0
X, O//_ -
S // =>.5-%X-5-x+1-1=0
// =>-5X,=-5x,-1
// \=> X2=X1+2
7
Vd
)4
/ N
/ O
7 X4
/7

From P. Smyth

|Example, Linear Decision Boundary
|

@ =(6, 04 0,)
=(1, .5, -.5)
’ . ,b0.x = 0
0.x <0 : o
& 7
A
=>X,+2< X, y
(this is the Y \ 5 3 >0
equation for / -
decision => . +2> x
region -1) 7’ (deci1sion 2
// region +1)
7
v e O
/7 X4
7

From P. Smyth

| Separability
|

- Adata set is separable by a learner if
— There is some instance of that learner that correctly predicts all the data

points

* Linearly separable data
— Can separate the two classes using a straight line in feature space

— in 2 dimensions the decision boundary is a straight line

Linearly separable data Linearly non-separable data

Feature 2, X,
Feature 2, X,

Decision boundary

Feature 1, X,

Feature 1, X
> (¢) Alexander Ihler

|Class overlap
|

o %%¢
- Classes may not be well-separated T -, “
- Same observation values possible [g7 e wtT
under both classes | ,.\‘, °
— High vs low risk; features {age, income} | *° *o .
— Benign/malignant cells look similar ot 8

Common in practice

May not be able to perfectly distinguish between classes
— Maybe with more features?
— Maybe with more complex classifier?

Otherwise, may have to accept some errors

(c) Alexander Ihler

|Another example
|

(c) Alexander Ihler

'Non-linear decision boundary
|

(c) Alexander Ihler

Representational Power of Perceptrons

' What mappings can a perceptron represent perfectly?

— A perceptron is a linear classifier

— thus it can represent any mapping that is linearly separable
— some Boolean functions like AND (on left)

— but not Boolean functions like XOR (on right)

(¢) Alexander Ihler

|Adding features
|

* Linear classifier can’t learn some functions

1D example: y=T(bx+c)

Not linearly separable

Add quadratic features o
y=T(ax>+bx+c)

Linearly separable in new features...

(¢) Alexander Ihler

|Adding features
|

* Linear classifier can’t learn some functions

1D example: y=T(bx+c)

Not linearly separable

Quadratic features, visualized in original feature space:

y=T(ax>+bx+c)

More complex decision boundary: ax?>+bx+c =10

Representational Power of Perceptrons

' What mappings can a perceptron represent perfectly?

— A perceptron is a linear classifier

— thus it can represent any mapping that is linearly separable
— some Boolean functions like AND (on left)

— but not Boolean functions like XOR (on right)

What Kkinds of functions would we need to learn the data on the right?

Representational Power of Perceptrons

' What mappings can a perceptron represent perfectly?

— A perceptron is a linear classifier

— thus it can represent any mapping that is linearly separable
— some Boolean functions like AND (on left)

— but not Boolean functions like XOR (on right)

What Kkinds of functions would we need to learn the data on the right?
Ellipsiodal decision boundary: ax? +bXx,+cx2+dx,+ex X, +f=0

| Feature representations
|

* Features are used in a linear way
* Learner is dependent on representation

* EXx: discrete features
— Mushroom surface: {fibrous, grooves, scaly, smooth}
— Probably not useful to use x = {1, 2, 3, 4}
— Better: 1-of-K, x ={[1000], [0100], [0010], [0001] }
— Introduces more parameters, but a more flexible relationship

| Effect of dimensionality

Data are increasingly separable in high dimension — is this a good thing?

“Good”

— Separation is easier in higher dimensions (for fixed # of data m)

— Increase the number of features, and even a linear classifier will eventually be
able to separate all the training examples!

“Bad”
— Remember training vs. test error? Remember overfitting?

— Increasingly complex decision boundaries can eventually get all the training
data right, but it doesn’ t necessarily bode well for test data...

A

Predictive

Error Error on Test.Data

Error on Training Data

A

- n > Complexity
Underfitting Overfitting

Ideal Range

|Summary
|

* Linear classifier < perceptron

» Linear decision boundary
— Computing and visualizing

* Separability

— Limits of the representational power of a perceptron

« Adding features
— Interpretations
— Effect on separability
— Potential for overfitting

(¢) Alexander Ihler

Machine Learning and Data Mining

Linear classification: Learning

Prof. Alexander lhler

N 0 ©FS)

BREN:[CS

UNIVERSITY of CALIFORNIA { } IRVINE
INFORMATION AND COMPUTER SCIENCES (=)

|Learning the Classifier Parameters
|

« Learning from Training Data:
— training data = labeled feature vectors

— Find parameter values that predict well (low error)
* error is estimated on the training data
 “true” error will be on future test data

» Define an objective function J(0) :
— Classifier accuracy (for a given set of weights 6 and labeled data)

« Maximize this objective function (or, minimize error)
— An optimization or search problem over the vector (6,, 6., 6,)

| Training a linear classifier
| _

« How should we measure error?
— Natural measure = “fraction we get wrong” (error rate)

err(@) = 1/m 2 8(y(i) = y(i))
where 5(y(i) = y(i)) =0 ify(i)=y(i), and1otherwise

Yhat = np.sign(X.dot(theta.T)); # predict class
err = np.mean(Y !=Yhat) # count errors: empirical error rate

- But, hard to train via gradient descent
— Not continuous
— As decision boundary moves, errors change abruptly

® ® T =-1if £<0

1D le:
cxampie T(H) =+1 if £>0

(¢) Alexander Ihler

'Linear regression?
| _

* Simple option: set 6 using linear regression

* In practice, this often doesn’t work so well...

— Consider adding a distant but “easy” point
— MSE distorts the solution

(¢) Alexander Ihler

| Perceptron algorithm
|

* Perceptron algorithm: an SGD-like algorithm
While (~done)
For each data point j:
V(i) =T(0 ™ x()) . predict output for data point |
00+ o(y()-y())x() : “gradient-like” step

« Compare to linear regression + MSE cost
— ldentical update to SGD for MSE except error uses
thresholded y(j) instead of linear response 6 X’ SO:

— (1) For correct predictions, y(j)-y()=0
— (2) For incorrect predictions, y(j) - y(j) = £ 2

“adaptive” linear regression: correct predictions stop contributing
(¢) Alexander Ihler

| Perceptron algorithm
| _

* Perceptron algorithm: an SGD-like algorithm
While (~done)
For each data point j:
V(i) =T(8™ x()) . predict output for data point j
0+ 0+ a(y()-y())x() : “gradient-like” step

e ¢ e ¢
o © o ©
0% % o . : °® % °
*% 0'. s y() *% o'. s.
. .’:'3 o oo predicted N .':'3 ° oo
° . °
tly:
o® o © p.
.'.. % 3 weights
° '..\'
T
o ® E o®
°
2

(¢) Alexander Ihler

| Perceptron algorithm
| _

* Perceptron algorithm: an SGD-like algorithm
While (~done)
For each data point j:
V(i) =T(8™ x()) . predict output for data point j
0+ 0+ a(y()-y())x() : “gradient-like” step

y(®)
predicted
correctly:
no update

>

(¢) Alexander Ihler

| Perceptron algorithm
| _

* Perceptron algorithm: an SGD-like algorithm
While (~done)
For each data point j:
V(i) =T(8™ x()) . predict output for data point j
0+ 0+ a(y()-y())x() : “gradient-like” step
(Converges if data are linearly separable)

y(®)
predicted
correctly:
no update

>

(¢) Alexander Ihler

|Surrogate loss functions
| _

- Another solution: use a “smooth” loss —— T(D)
— e.g., approximate the threshold function =_ f(3(,Y)
— Usually some smooth function of distance
- Example: “sigmoid”, looks like an “S” /—0(1)
YY)
— Now, measure e.g. MSE
J(9) = lz (a(f(:c(j))) — y(j))2 Classy = {0, 1} ...
N m

J
— Far from the decision boundary: |f(.)| large, small error
— Nearby the boundary: [f(.)| near 1/2, larger error

1D example: ¢ ® ® O/'/.—_.
‘ /
O —o—o-/o/o O

Classification error = 2/9 MSE = (02 + 1% + .22+ .252 + .05% + ...)/9

| Beyond misclassification rate
|

-« Which decision boundary is “better”?
— Both have zero training error (perfect training accuracy)

— But, one of them seems intuitively better...

><(\l * o ><(\l
- ® o 4> -

N o S N
5

: g £
= o‘v oS ° =
) o® #*)
<2 o . =

Feature 1, X,

Feature 1, X,

+ Side benefit of “smoothed” error function
— Encourages data to be far from the decision boundary

— See more examples of this principle later...

(¢) Alexander Ihler

| Training the Classifier
|

- Once we have a smooth measure of quality, we can find the
best settings for the parameters of
f(X1,X2) =a*X1 +b*X2 + c

- Example: 2D feature space & parameter space

J=1.9

[arctan(r\/B), c]

(¢) Alexander Ihler

| Training the Classifier
|

Once we have a smooth measure of quality, we can find the

“best” settings for the

arameters of

f(X1.X2) = a

1+b*X2+cC

Example: 2D feature space

&

parameter space

Q J=04

[arctan(r\/B), c]

(¢) Alexander Ihler

\Tralnlng the Classifier

- Once we have a smooth measure of quality, we can find the “best”
settings for the parameters of
f(X1,X2) =a*X1 + b*X2 + ¢

* Finding the minimum loss J(.) in parameter space...

Best POi‘J:
(minimugn MSE)

O

(¢) Alexander Ihler

'Finding the Best MSE

* As in linear regression, this is now just optimization

 Methods:

— Gradient descent
- Improve loss by small Gradient Descent

changes in parameters
(“small” = learning rate)

— Or, substitute your favorite
optimization algorithm...

« Coordinate descent

« Stochastic search
+ Genetic algorithms \

(¢) Alexander Ihler

\Gradlent Equations

- MSE (note, depends on function of(.))
J(6 = [a,b,c]) Z(J(aazl)-I—ba:g:)-l—c)—y(i))2

- What' s the derivative with respect to one of the
parameters?

oJ 1 : : : :
= 30300 -2 D) —y Y 90 (0 2?))
a m*
Error between class Sensitivity of prediction to
and prediction changes in parameter “a”

- Similar for parameters b, c [replace x, with x, or 1
(constant)]

(¢) Alexander Ihler

| Saturating Functions
|

- Many possible “saturating” functions

- “Logistic” sigmoid (scaled for range [0,1]) is

o(z) =1/ (1 + exp(-z))
* Derivative is

do(z) = o(z) (1-0(z))

* Python Implementation:

def sig(z): # logistic sigmoid
return 1.0/ (1.0 + np.exp(-z)) # 1in [0,1]

def dsig(z): # its derivative at z
return sig(z) * (1-sig(z))

(¢) Alexander Ihler

(to predict:
threshold zat 0 or
threshold 6 (z) at /2)

For range [-1, +1]:

o(z) =2o0(z)-1
Ip(z) = 2 o(z) (1-0(z))

Predict: threshold z or p at zero

'Logistic regression
|

* Intepret o(8 X’) as a probability that y = 1
« Use a negative log-likelihood loss function
— If y=1, costis -logPrl[y=1] = -loga(8x’)
— If y=0, costis -log Pr[y=0] -log(1-0(8Xx))

» Can write this succinctly:

1)) .)
J(0) = —Ezy@ l0g o(0-z)+(1—y D) log(1—o(6-z()))
7 | l \ J
| Y

Nonzero only if y=1 Nonzero only if y=0

(¢) Alexander Ihler

'Logistic regression
|

* Intepret o(8 X’) as a probability that y = 1
« Use a negative log-likelihood loss function
— If y=1, costis -logPrly=1] = -loga(8x’)
— If y=0, costis -log Pr[y=0] -log(1-0(8Xx))

» Can write this succinctly:
7(0) = —— 3" y@ 109 7 (6-2D)+(1-y D) log(1—0(0-2D))
(147

» Convex! Otherwise similar: optimize J(0) via ...

1D example: ¢ ® ® ’/.4——.
‘ /
O —o—o-/o/o O

Classification error = MSE = 2/9 NLL = - (log(.99) + log(.97) +...)/9

\Gradlent Equations

» Logistic neg-log likelihood loss:

J(0) = —%Zy“) l0g o(0-2)+(1-y?) log(1-0(6-2"))

- What' s the derivative with respect to one of the
parameters?

0J 1 - 1
7= = (2)
da mzi:y o(6 - x(D)

00 (0 - xD) 2{V + (1 — y(3)) ...

1 - : i i
— —EZy(Z)(l —a(@-a}(z))) a;g) — (1 —y())

(¢) Alexander Ihler

|Surrogate loss functions
| _

* Replace 0/1 loss
with something easie

Ai(8) = 5(T(0xD) £ y)

0/1 Loss

* Logistic MSE

Ji(8) = 4(0(62D) — y D)

* Logistic Neg Log Likelihood

(2)

Y
log 2

J:(0) = — logo(d -y 4+ ...

(¢) Alexander Ihler

|Summary
|

* Linear classifier < perceptron

« Measuring quality of a decision boundary
— Error rate (0/1 loss)
— Logistic sigmoid + MSE criterion
— Logistic Regression

« Learning the weights of a linear classifer from data
— Reduces to an optimization problem
— Perceptron algorithm
— For MSE or Logistic NLL, we can do gradient descent
— Gradient equations & update rules

| Multiclass linear models
|

* Define a generic linear classifier by

f(x;0) =argmax 6 - ®(x,y)
Y

* Example: y € {-1, +1}

O(z,y) =y [l xa* ...]

f(az;';Q){Jrl Oz]>—0 Lo]

—1 o.w.

(Standard perceptron rule)

(¢) Alexander Ihler

| Multiclass linear models
|

* Define a generic linear classifier by

f(z;0) =argmax 6 - ®(x,y)
Y

* Example: y €{0,1,2,...}
O(x,y)=[1ly=0][Lz2* ...] Lly=1][Lz2*..]..]
0 = [[900 901 902 ..] [910 911 912 ..] ..]

(parameters for each class c)

fx;0) = arg max O - [1x 2 ..]

(predict class with largest linear response)

(¢) Alexander Ihler

\Training multiclass perceptrons
I

* Multi-class perceptron algorithm
— Straightforward generalization of perceptron alg

* Multilogistic regression
— Take p(c | x) oc exp[€ D(x,¢c)]
— Normalize by sum over classes c
— Straightforward generalization of logistic regression

