
Machine Learning and Data Mining 
 
 

VC Dimension 

Prof. Alexander Ihler 

TexPoint fonts used in EMF.  
Read the TexPoint manual before you delete this box.: AAA 

Slides based on Andrew Moore’s 

+ 



Learners and Complexity 
•  We’ve seen many versions of underfit/overfit trade-off 

–  Complexity of the learner 
–  “Representational Power” 

•  Different learners have different power 
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Learners and Complexity 
•  We’ve seen many versions of underfit/overfit trade-off 

–  Complexity of the learner 
–  “Representational Power” 

•  Different learners have different power 
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Learners and Complexity 
•  We’ve seen many versions of underfit/overfit trade-off 

–  Complexity of the learner 
–  “Representational Power” 

•  Different learners have different power 

•  Usual trade-off: 
–  More power = represent more complex systems, might overfit 
–  Less power = won’t overfit, but may not find “best” learner 

•  How can we quantify representational power? 
–  Not easily… 
–  One solution is VC (Vapnik-Chervonenkis) dimension 
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Some notation 
•  Let’s assume our training data are iid from some 

distribution p(x,y) 
•  Define “risk” and “empirical risk” 

–  These are just “long term” test and observed training error 

•  How are these related?  Depends on overfitting… 
–  Underfitting domain: pretty similar… 
–  Overfitting domain: test error might be lots worse! 
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VC Dimension and Risk 
•  Given some classifier, let H be its VC dimension 

–  Represents “representational power” of classifier 

•  With “high probability”  (1-´), Vapnik showed 
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Shattering 
•  We say a classifier f(x) can shatter points x(1)…x(h) iff 

 For all y(1)…y(h), f(x) can achieve zero error on  
 training data (x(1),y(1)), (x(2),y(2)), … (x(h),y(h)) 

 

 (i.e., there exists some µ that gets zero error) 

•  Can   f(x;µ) = sign( µ0 + µ1x1 + µ2x2 ) shatter these points? 
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Shattering 
•  We say a classifier f(x) can shatter points x(1)…x(h) iff 

 For all y(1)…y(h), f(x) can achieve zero error on  
 training data (x(1),y(1)), (x(2),y(2)), … (x(h),y(h)) 

 

 (i.e., there exists some µ that gets zero error) 

•  Can   f(x;µ) = sign( µ0 + µ1x1 + µ2x2 ) shatter these points? 
•  Yes:  there are 4 possible training sets… 
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Shattering 
•  We say a classifier f(x) can shatter points x(1)…x(h) iff 

 For all y(1)…y(h), f(x) can achieve zero error on  
 training data (x(1),y(1)), (x(2),y(2)), … (x(h),y(h)) 

 

 (i.e., there exists some µ that gets zero error) 

•  Can   f(x;µ) = sign( x1
2 + x2

2 - µ) shatter these points? 
•  Nope! 
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VC Dimension 
•  The VC dimension H is defined as 

 The maximum number of points h that can be arranged 
so that f(x) can shatter them 

 
•  A game:   

–  Fix the definition of f(x;µ) 

–  Player 1: choose locations x(1)…x(h) 

–  Player 2: choose target labels y(1)…y(h) 
–  Player 1: choose value of µ 
–  If f(x;µ) can reproduce the target labels, P1 wins 
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VC Dimension 
•  The VC dimension H is defined as 

 The maximum number of points h that can be arranged 
so that f(x) can shatter them 

 
•  Example:  what’s the VC dimension of the (zero-

centered) circle, f(x;µ) = sign( x1
2 + x2
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VC Dimension 
•  The VC dimension H is defined as 

 The maximum number of points h that can be arranged 
so that f(x) can shatter them 

 
•  Example:  what’s the VC dimension of the (zero-

centered) circle, f(x;µ) = sign( x1
2 + x2

2 - µ) ? 
•  VCdim = 1 : can arrange one point, cannot arrange two 

(previous example was general) 
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VC Dimension 
•  Example:  what’s the VC dimension of the two-

dimensional line, f(x;µ) = sign(µ1 x1 + µ2 x2 + µ0)? 

(c) Alexander Ihler 



VC Dimension 
•  Example:  what’s the VC dimension of the two-

dimensional line, f(x;µ) = sign(µ1 x1 + µ2 x2 + µ0)? 

•  VC dim >= 3?  Yes 
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VC Dimension 
•  Example:  what’s the VC dimension of the two-

dimensional line, f(x;µ) = sign(µ1 x1 + µ2 x2 + µ0)? 

•  VC dim >= 3?  Yes 

•  VC dim >= 4?   
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VC Dimension 
•  Example:  what’s the VC dimension of the two-

dimensional line, f(x;µ) = sign(µ1 x1 + µ2 x2 + µ0)? 

•  VC dim >= 3?  Yes 

•  VC dim >= 4?  No… 
 Any line through these points 

must split one pair (by crossing 
one of the lines) 
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VC Dimension 
•  Example:  what’s the VC dimension of the two-

dimensional line, f(x;µ) = sign(µ1 x1 + µ2 x2 + µ0)? 

•  VC dim >= 3?  Yes 

•  VC dim >= 4?  No… 
 Any line through these points 

must split one pair (by crossing 
one of the lines) 
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Turns out: 
For a general , linear 
classifier  (perceptron) 
in d dimensions with a 
constant term: 
 
VC dim = d+1 



VC dimension 
•  VC dimension measures the “power” of the learner 
•  Does *not* necessarily equal the # of parameters! 

•  Number of parameters does not necessarily equal 
complexity 
–  Can define a classifier with a lot of parameters but not much 

power  (how?) 
–  Can define a classifier with one parameter but lots of power 

(how?) 

•  Lots of work to determine what the VC dimension of 
various learners is… 
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Using VC dimension 
•  Used validation / cross-validation to select complexity 
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# Params    Train Error    X-Val  Error        

f1 
f2 
f3 
f4 
f5 
f6 
 



Using VC dimension 
•  Used validation / cross-validation to select complexity 
•  Use VC dimension based bound on test error similarly 

•  “Structural Risk Minimization” (SRM) 

(c) Alexander Ihler 

# Params      Train Error       VC Term     VC Test Bound        
f1 
f2 
f3 
f4 
f5 
f6 
 



Using VC dimension 
•  Used validation / cross-validation to select complexity 
•  Use VC dimension based bound on test error similarly 

•  Other Alternatives 
–  Probabilistic models: likelihood under model (rather than 

classification error) 
–  AIC  (Aikike Information Criterion) 

•  Log-likelihood of training data  -  # of parameters 

–  BIC  (Bayesian Information Criterion) 
•  Log-likelihood of training data -  (# of parameters)*log(m) 

•  Similar to VC dimension: performance + penalty 

•  BIC conservative;  SRM very conservative 
•  Also, “true Bayesian” methods (take prob. learning…) 
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