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Linear Classifiers (Perceptrons) 
•  Linear Classifiers 

–  a linear classifier is a mapping which partitions feature space using a 
linear function (a straight line, or a hyperplane) 

–  separates the two classes using a straight line in feature space 
–  in 2 dimensions the decision boundary is a straight line 

Linearly separable data   Linearly non-separable data 
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Perceptron Classifier (2 features) 
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Perceptron (Linear classifier) 
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Decision boundary = “x such that T( w1 x + w0 ) transitions”  

1D example: T(f) = 0  if   f  <  0 
T(f) = 1  if   f  >  0  



Features and perceptrons 
•  Recall the role of features 

–  We can create extra features that allow more complex decision 
boundaries 

–  Linear classifiers 
–  Features [1,x] 

•  Decision rule:  T(ax+b)  =  ax + b >/< 0 
•  Boundary ax+b =0  => point 

–  Features [1,x,x2] 
•  Decision rule T(ax2+bx+c)    
•  Boundary ax2+bx+c = 0  = ? 

–  What features can produce this decision rule? 
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Features and perceptrons 
•  Recall the role of features 

–  We can create extra features that allow more complex decision 
boundaries 

–  For example, polynomial features 
 ©(x) = [1  x  x2  x3 …] 

•  What other kinds of features could we choose? 
–  Step functions? 
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Ex:  F1 – F2 + F3  



Multi-layer perceptron model 
•  Step functions are just perceptrons! 

–  “Features” are outputs of a perceptron 
–  Combination of features output of another 
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Multi-layer perceptron model 
•  Step functions are just perceptrons! 

–  “Features” are outputs of a perceptron 
–  Combination of features output of another 
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Features of MLPs 
•  Simple building blocks 

–  Each element is just a perceptron f’n 

•  Can build upwards 
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Features of MLPs 
•  Simple building blocks 

–  Each element is just a perceptron f’n 

•  Can build upwards 
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Features of MLPs 
•  Simple building blocks 

–  Each element is just a perceptron f’n 

•  Can build upwards 
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3-layer: 
   “Features” are now complex functions 
   Output any linear combination of those   

Layer 1 Layer 2 



Features of MLPs 
•  Simple building blocks 

–  Each element is just a perceptron f’n 

•  Can build upwards 
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Features of MLPs 
•  Simple building blocks 

–  Each element is just a perceptron function 

•  Can build upwards 

•  Flexible function approximation 
–  Approximate arbitrary functions with enough hidden nodes 
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Neural networks 
•  Another term for MLPs 
•  Biological motivation 

•  Neurons 
–  “Simple” cells 
–  Dendrites sense charge 
–  Cell weighs inputs 
–  “Fires” axon 
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Activation functions 
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Feed-forward networks 
•  Information flows left-to-right 

–  Input observed features 
–  Compute hidden nodes (parallel) 
–  Compute next layer… 

•  Alternative: recurrent NNs… 
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X1 = _add1(X);    # add constant feature 
T  = X1.dot(W[0].T); # linear response 
H  = Sig( T );       # activation f’n 
 
H1 = _add1(H);    # add constant feature 
S  = H1.dot(W[1].T); # linear response 
H2 = Sig( S );       # activation f’n 
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Feed-forward networks 
A note on multiple outputs: 
•  Regression: 

–  Predict multi-dimensional y 
–  “Shared” representation 

 = fewer parameters 

•  Classification 
–  Predict binary vector 
–  Multi-class classification 

 y = 2  =  [0 0 1 0 … ] 
–  Multiple, joint binary predictions 

 (image tagging, etc.) 

–  Often trained as regression (MSE), 
 with saturating activation 
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Training MLPs 
•  Observe features “x” with target “y” 
•  Push “x” through NN = output is “ŷ” 
•  Error:  (y- ŷ)2 
•  How should we update the weights to improve? 

•  Single layer 
–  Logistic sigmoid function 
–  Smooth, differentiable 

•  Optimize using: 
–  Batch gradient descent 
–  Stochastic gradient descent 
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Backpropagation 
•  Just gradient descent… 
•  Apply the chain rule to the MLP 
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Backpropagation 
•  Just gradient descent… 
•  Apply the chain rule to the MLP 
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Backpropagation 
•  Just gradient descent… 
•  Apply the chain rule to the MLP 
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Forward pass 

Output layer 

Hidden layer 

Loss function 

B2 = (Y-Yhat) * dSig(S)  #(1xN3) 
 
G2 = B2.T.dot( H )       #(N3x1)*(1xN2)=(N3xN2) 
 
B1 = B2.dot(W[1])*dSig(T)#(1xN3).(N3*N2)*(1xN2) 
 
G1 = B1.T.dot( X )       #(N2 x N1+1) 

% X  : (1xN1)  
H  = Sig(X1.dot(W[0]))  
% W1 : (N2 x N1+1) 
% H  : (1xN2) 
Yh = Sig(H1.dot(W[1]))  
% W2 : (N3 x N2+1) 
% Yh : (1xN3) 



Example:	Regression,	MCycle	data	
•  Train	NN	model,	2	layer	

–  1	input	features	=>	1	input	units	
–  10	hidden	units	
–  1	target	=>	1	output	units	
–  Logis+c	sigmoid	ac+va+on	for	hidden	layer,	linear	for	output	layer	
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(=	features	of	linear	regression):	
select	out	useful	regions	of	“x”	



Example:	Classifica+on,	Iris	data	
•  Train	NN	model,	2	layer	

–  2	input	features	=>	2	input	units	
–  10	hidden	units	
–  3	classes	=>	3	output	units			(y	=	[0	0	1],	etc.)	
–  Logis+c	sigmoid	ac+va+on	func+ons	
–  Op+mize	MSE	of	predic+ons	using	stochas+c	gradient	
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MLPs in practice 
•  Example: Deep belief nets  (Hinton et al. 2007) 

–  Handwriting recognition 
–  Online demo 
–  784 pixels ó 500 mid ó 500 high ó 2000 top ó 10 labels  
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MLPs in practice 
•  Example: Deep belief nets  (Hinton et al. 2007) 

–  Handwriting recognition 
–  Online demo 
–  784 pixels ó 500 mid ó 500 high ó 2000 top ó 10 labels  
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MLPs in practice 
•  Example: Deep belief nets  (Hinton et al. 2007) 

–  Handwriting recognition 
–  Online demo 
–  784 pixels ó 500 mid ó 500 high ó 2000 top ó 10 labels 
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Neural networks & DBNs 
•  Want to try them out? 
•  Matlab “Deep Learning Toolbox” 

https://github.com/rasmusbergpalm/DeepLearnToolbox 

•  PyLearn2 
https://github.com/lisa-lab/pylearn2 

•  TensorFlow 
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Summary 
•  Neural networks, multi-layer perceptrons 

•  Cascade of simple perceptrons 
–  Each just a linear classifier 
–  Hidden units used to create new features 

•  Together, general function approximators 
–  Enough hidden units (features) = any function 
–  Can create nonlinear classifiers 
–  Also used for function approximation, regression, … 

•  Training via backprop 
–  Gradient descent; logistic; apply chain rule 
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