
Machine Learning and Data Mining

Multi-layer Perceptrons & Neural Networks:
Basics

Prof. Alexander Ihler

TexPoint fonts used in EMF.
Read the TexPoint manual before you delete this box.: AAA

+

Linear Classifiers (Perceptrons)
•  Linear Classifiers

–  a linear classifier is a mapping which partitions feature space using a
linear function (a straight line, or a hyperplane)

–  separates the two classes using a straight line in feature space
–  in 2 dimensions the decision boundary is a straight line

Linearly separable data Linearly non-separable data

(c) Alexander Ihler
Feature 1, x1

Fe
at

ur
e

2,
 x

2

Decision boundary

Feature 1, x1

Fe
at

ur
e

2,
 x

2 Decision boundary

Perceptron Classifier (2 features)

(c) Alexander Ihler

w1

w2

w0 {-1, +1} weighted sum
of the inputs

Threshold
 Function

output
= class
decision

T(f)

f(X,Y)

Classifier
x1
x2

1

T(f)
f = w1 X1 + w2 X2 + w0

Decision Boundary at f(x) = 0

Solve: X2 = -w1/w2 X1 – w0/w2 (Line)

Perceptron (Linear classifier)

(c) Alexander Ihler

w1

w2

w0 {0, 1} weighted sum
of the inputs

Threshold
 Function

output
= class
decision

T(f)

f(X,Y)

Classifier
x1
x2

1

T(f)
f = w1 X1 + w2 X2 + w0

Decision boundary = “x such that T(w1 x + w0) transitions”

1D example: T(f) = 0 if f < 0
T(f) = 1 if f > 0

Features and perceptrons
•  Recall the role of features

–  We can create extra features that allow more complex decision
boundaries

–  Linear classifiers
–  Features [1,x]

•  Decision rule: T(ax+b) = ax + b >/< 0
•  Boundary ax+b =0 => point

–  Features [1,x,x2]
•  Decision rule T(ax2+bx+c)
•  Boundary ax2+bx+c = 0 = ?

–  What features can produce this decision rule?

(c) Alexander Ihler

Features and perceptrons
•  Recall the role of features

–  We can create extra features that allow more complex decision
boundaries

–  For example, polynomial features
 ©(x) = [1 x x2 x3 …]

•  What other kinds of features could we choose?
–  Step functions?

(c) Alexander Ihler

F1

F2

F3

Linear function of features
 a F1 + b F2 + c F3 + d

Ex: F1 – F2 + F3

Multi-layer perceptron model
•  Step functions are just perceptrons!

–  “Features” are outputs of a perceptron
–  Combination of features output of another

(c) Alexander Ihler

F1

Linear	func+on	of	features:	
			a	F1	+	b	F2	+	c	F3	+	d	
	
															Ex:		F1	–	F2	+	F3		

w11

w10
x1

1

∑

F2

∑

F3

∑

w21
w20

w31

w30

Out	

∑
w3

w1

w2

“Hidden	layer”	

“Output	layer”	

 w10 w11
W1 = w20 w21
 w30 w31

W2 = w1 w2 w3

Multi-layer perceptron model
•  Step functions are just perceptrons!

–  “Features” are outputs of a perceptron
–  Combination of features output of another

(c) Alexander Ihler

F1

Linear	func+on	of	features:	
			a	F1	+	b	F2	+	c	F3	+	d	
	
															Ex:		F1	–	F2	+	F3		

w11

w10
x1

1

∑

F2

∑

F3

∑

w21
w20

w31

w30

Out	

∑
w3

w1

w2

“Hidden	layer”	

“Output	layer”	

 w10 w11
W1 = w20 w21
 w30 w31

Regression	version:	
Remove	ac+va+on	
func+on	from	output	

W2 = w1 w2 w3

Features of MLPs
•  Simple building blocks

–  Each element is just a perceptron f’n

•  Can build upwards

(c) Alexander Ihler

 Input
Features

Perceptron:
 Step function /
 Linear partition

Features of MLPs
•  Simple building blocks

–  Each element is just a perceptron f’n

•  Can build upwards

(c) Alexander Ihler

 Input
Features

2-layer:
 “Features” are now partitions
 All linear combinations of those partitions

Layer 1

Features of MLPs
•  Simple building blocks

–  Each element is just a perceptron f’n

•  Can build upwards

(c) Alexander Ihler

 Input
Features

3-layer:
 “Features” are now complex functions
 Output any linear combination of those

Layer 1 Layer 2

Features of MLPs
•  Simple building blocks

–  Each element is just a perceptron f’n

•  Can build upwards

(c) Alexander Ihler

 Input
Features

Current research:
 “Deep” architectures
 (many layers)

Layer 1 Layer 2

…

…Layer 3

Features of MLPs
•  Simple building blocks

–  Each element is just a perceptron function

•  Can build upwards

•  Flexible function approximation
–  Approximate arbitrary functions with enough hidden nodes

(c) Alexander Ihler

…

 Input
Features

Layer 1

Output

…

h1

h2

h1 h2 h3

y

x0 x1 …

v0
v1

Neural networks
•  Another term for MLPs
•  Biological motivation

•  Neurons
–  “Simple” cells
–  Dendrites sense charge
–  Cell weighs inputs
–  “Fires” axon

(c) Alexander Ihler

∑
w3

w1

w2

“How stuff works: the brain”

Activation functions

(c) Alexander Ihler

Logis+c	

Hyperbolic	
			Tangent	

Gaussian	

Linear	

And	many	others…	

Feed-forward networks
•  Information flows left-to-right

–  Input observed features
–  Compute hidden nodes (parallel)
–  Compute next layer…

•  Alternative: recurrent NNs…
(c) Alexander Ihler

X1 = _add1(X); # add constant feature
T = X1.dot(W[0].T); # linear response
H = Sig(T); # activation f’n

H1 = _add1(H); # add constant feature
S = H1.dot(W[1].T); # linear response
H2 = Sig(S); # activation f’n

% ...

X

W[0]
H1

W[1]

H2

Information

Feed-forward networks
A note on multiple outputs:
•  Regression:

–  Predict multi-dimensional y
–  “Shared” representation

 = fewer parameters

•  Classification
–  Predict binary vector
–  Multi-class classification

 y = 2 = [0 0 1 0 …]
–  Multiple, joint binary predictions

 (image tagging, etc.)

–  Often trained as regression (MSE),
 with saturating activation

(c) Alexander Ihler

Information

Machine Learning and Data Mining

Multi-layer Perceptrons & Neural Networks:
Backpropagation

Prof. Alexander Ihler

TexPoint fonts used in EMF.
Read the TexPoint manual before you delete this box.: AAA

+

Training MLPs
•  Observe features “x” with target “y”
•  Push “x” through NN = output is “ŷ”
•  Error: (y- ŷ)2
•  How should we update the weights to improve?

•  Single layer
–  Logistic sigmoid function
–  Smooth, differentiable

•  Optimize using:
–  Batch gradient descent
–  Stochastic gradient descent

(c) Alexander Ihler

Inputs

Hidden Layer

Outputs

(Can	use	different	loss	func+ons	if	desired…)	

Backpropagation
•  Just gradient descent…
•  Apply the chain rule to the MLP

(c) Alexander Ihler

Forward pass

Output layer

Hidden layer

Loss function

(Identical to logistic mse regression with inputs “hj”)

ŷk

hj

Backpropagation
•  Just gradient descent…
•  Apply the chain rule to the MLP

(c) Alexander Ihler

Forward pass

Output layer

Hidden layer

Loss function

(Identical to logistic mse regression with inputs “hj”)

ŷk

hj

xi

Backpropagation
•  Just gradient descent…
•  Apply the chain rule to the MLP

(c) Alexander Ihler

Forward pass

Output layer

Hidden layer

Loss function

B2 = (Y-Yhat) * dSig(S) #(1xN3)

G2 = B2.T.dot(H) #(N3x1)*(1xN2)=(N3xN2)

B1 = B2.dot(W[1])*dSig(T)#(1xN3).(N3*N2)*(1xN2)

G1 = B1.T.dot(X) #(N2 x N1+1)

% X : (1xN1)
H = Sig(X1.dot(W[0]))
% W1 : (N2 x N1+1)
% H : (1xN2)
Yh = Sig(H1.dot(W[1]))
% W2 : (N3 x N2+1)
% Yh : (1xN3)

Example:	Regression,	MCycle	data	
•  Train	NN	model,	2	layer	

–  1	input	features	=>	1	input	units	
–  10	hidden	units	
–  1	target	=>	1	output	units	
–  Logis+c	sigmoid	ac+va+on	for	hidden	layer,	linear	for	output	layer	

(c) Alexander Ihler

Data:		
+	

learned	predic/on	f’n:	

Responses	of	hidden	nodes	
(=	features	of	linear	regression):	
select	out	useful	regions	of	“x”	

Example:	Classifica+on,	Iris	data	
•  Train	NN	model,	2	layer	

–  2	input	features	=>	2	input	units	
–  10	hidden	units	
–  3	classes	=>	3	output	units			(y	=	[0	0	1],	etc.)	
–  Logis+c	sigmoid	ac+va+on	func+ons	
–  Op+mize	MSE	of	predic+ons	using	stochas+c	gradient	

(c) Alexander Ihler

MLPs in practice
•  Example: Deep belief nets (Hinton et al. 2007)

–  Handwriting recognition
–  Online demo
–  784 pixels ó 500 mid ó 500 high ó 2000 top ó 10 labels

(c) Alexander Ihler

h1	

h2	

h3	

ŷ	

x	

h1	 h2	 h3	 ŷ	x	

MLPs in practice
•  Example: Deep belief nets (Hinton et al. 2007)

–  Handwriting recognition
–  Online demo
–  784 pixels ó 500 mid ó 500 high ó 2000 top ó 10 labels

(c) Alexander Ihler

h1	

h2	

h3	

ŷ	

x	

h1	 h2	 h3	 ŷ	x	

MLPs in practice
•  Example: Deep belief nets (Hinton et al. 2007)

–  Handwriting recognition
–  Online demo
–  784 pixels ó 500 mid ó 500 high ó 2000 top ó 10 labels

(c) Alexander Ihler

Fix	output,	
			simulate	inputs	

Neural networks & DBNs
•  Want to try them out?
•  Matlab “Deep Learning Toolbox”

https://github.com/rasmusbergpalm/DeepLearnToolbox

•  PyLearn2
https://github.com/lisa-lab/pylearn2

•  TensorFlow

(c) Alexander Ihler

Summary
•  Neural networks, multi-layer perceptrons

•  Cascade of simple perceptrons
–  Each just a linear classifier
–  Hidden units used to create new features

•  Together, general function approximators
–  Enough hidden units (features) = any function
–  Can create nonlinear classifiers
–  Also used for function approximation, regression, …

•  Training via backprop
–  Gradient descent; logistic; apply chain rule

(c) Alexander Ihler

