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Decision trees

“Split” input into cases

Usually based on a single variable

Recurse down until we reach a decision

Continuous vars: choose split point
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Decision trees

Categorical variables
Could have a child per value
Binary tree: split values into two sets

{A,D}
{A/ \{B,c,D} / \{B,C}

Could appear again multiple times...

The discrete variable will

not appear again below here...
(This "~ s easy
to implement
using a 1-of-K
representation...)



Decision trees

“Complexity” of function depends on the depth

A depth-1 decision tree is called a decision “stump”
Simpler than a linear classifier!
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Decision trees

“Complexity” of function depends on the depth

Depth d = up to 2”d regions & predictions
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Decision trees for regression

Exactly the same
Predict real valued numbers at leaf nodes

Examples on a single scalar feature:

Depth 1 =2 regions & predictions Depth 2 =4 regions & predictions
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| Learning decision trees

: Example algorithms:
Break into two parts ID3, C4.5

Should this be a leaf node? See e.g. wikipedia,
If so: what should we predict? “Classification and
If not: how should we further split the data? regression tree”

Leaf nodes: best prediction given this data subset
Classify: pick majority class; Regress: predict average value

Non-leaf nodes: pick a feature and a split
Greedy: “score” all possible features and splits

Score function measures “purity” of data after split
How much easier is our prediction task after we divide the data?

When to make a leaf node?
All training examples the same class (correct), or indistinguishable
Fixed depth (fixed complexity decision boundary)
Others ...



| Scoring decision tree splits

Suppose we are considering splitting feature 1
How can we score any particular split?
“Impurity” — how easy is the prediction problem in the leaves?

“Greedy” — could choose split with the best accuracy

Assume we have to predict a value next

MSE (regression) 1

0/1 loss (classification) 0
But: “soft” score can work better Z
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Entropy and Information

“Entropy” is a measure of randomness
How hard is it to communicate a result to you?
Depends on the probability of the outcomes

Communicating fair coin tosses
Output: HHTHTTTHHHHT ...
Sequence takes n bits — each outcome totally unpredictable

Communicating my daily lottery results
Output: 000000 ... Lost: 0
Most likely to take one bit — | lost every day. Won 1: 1(...)0
Small chance I'll have to send more bits (won & when) Won 2: 1(...)1(...)0

Takes less work to communicate because it’ s less random

Use a few bits for the most likely outcome, more for less likely
ones’



Entropy and Information

Entropy H(x) = E[ log 1/p(x) ] = Y p(x) log 1/p(x)

Log base two, units of entropy are “bits”
Examples:
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Entropy and Information

Entropy H(x) = E[ log 1/p(x) ] = Y p(x) log 1/p(x)

Log base two, units of entropy are “bits”
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= log 4 = 2 bits




Entropy and Information

Entropy H(x) = E[ log 1/p(x) ] = Y p(x) log 1/p(x)

Log base two, units of entropy are “bits”
Examples:

0.6 ]
0.5 ]
0.4 ]
0.3 ]
0.2 ]
0.1 ]

0 1 2 3 4 )

H(x) =.251log 4 +.25log 4 + H(x) =.75 log 4/3 + .25 log 4 H(x)=1log 1
25log 4 + .25 log 4 ~ .8133 bits = () bits
= log 4 = 2 bits

Max entropy for 4 outcomes Min entropy



| Entropy and Information

Information gain
How much is entropy reduced by measurement?

Information: expected information gain
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| Entropy and Information

* Information gain
How much is entropy reduced by measurement?

 Information: expected information gain

—

1
H =.77 bits H=0
Prob =13/18 Prob =5/18
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| Entropy and Information

* Information gain
How much is entropy reduced by measurement?

 Information: expected information gain

—

1
H =.77 bits H=0
Prob =13/18 Prob =5/18

2
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Information = 13/18 * (.99-.77) + 5/18 *(.99—-0) ° ' 02 08 04 05 06 0708 08 1

Equivalent: > p(s,c) log [ p(s,c) / p(s) p(c) ]
=10/18 log[ (10/18) / (13/18) (10/18)] + 3/18 log[ (3/18)/(13/18)(8/18) + ...



| Entropy and Information

* Information gain
How much is entropy reduced by measurement?

 Information: expected information gain

—

1
H = .97 bits H=0
Prob =17/18 Prob =1/18
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| Entropy and Information

* Information gain

How much is entropy reduced by measurement?
 Information: expected information gain

1
H = .97 bits H=0
Prob =17/18 Prob =1/18

2

Information = 17/18 * (.99-.97) + 1/18 * (.99 — 0)

—
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Less information reduction — a less desirable split of the data
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‘ Gini index / impurity

+ An alternative to information gain

Measures variance in the allocation (instead of entropy)

* Hgini = 3. p(c) (1-p(c)) vs. Hent=-3p(c)log p(c)

1
Hg =.355 Hg =0
Prob =13/18 Prob =5/18

2

Gini Index = 13/18 * (.494-.355) + 5/18 * (.494 — 0)

—

© ©o o oo o o o o

%

01 02 03 04 05 06 0.7 08 09 1



Entropy vs Gini index

" The two are nearly the same...

Pick whichever one you like
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| For regression
|

Most common is to measure variance reduction
Equivalent to “information gain” in a Gaussian model...
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Var =.25 Var =.1 Var = .2

Prob =4/10 Prob = 6/10

Var reduction = 4/10 * (.25-.1) + 6/10 * (.25-.2)



| Building a decision tree

Pseudo-code

decisionTreeSplitData (X, Y)
if (stopping condition) return decision for this node
For each possible feature
For each possible split
(for cts features: sort & compute split points)
Score the split (e.g. information gain)
Pick the feature & split with the best score
Split the data at that point
Recurse on each subset

Stopping conditions:
*# of data <K
* Depth > D
* All data indistinguishable (discrete features)
* Prediction sufficiently accurate



| Building a decision tree

| Pseudo-code

decisionTreeSplitData (X, Y)
if (stopping condition) return decision for this node
For each possible feature
For each possible split
(for cts features: sort & compute split points)
Score the split (e.g. information gain)
Pick the feature & split with the best score
Split the data at that point
Recurse on each subset

Stopping criteria:
* Information gain threshold? Often not a good idea...
00 | o
No single split improves performance, but
o0 °0 two splits together is accurate
o o

Instead: grow a large tree and prune back, using training or validation data



4.5

| Controlling complexity .
|

* Maximum depth cutoff

6.5 7 7.5 g

No limit




| Controlling complexity
|

* Minimum # parent data

minParent 1

minParent 3 minParent 5 minParent 10



Decision trees in Python

" Many implementations

« Class implementation:
— real-valued features (can use 1-of-k for discrete)
— Uses entropy (easy to extend)

T = dt.treeClassify()
T.train (X, Y, maxDepth=2)
print T

if x[0] < 5.602476:
if x[1] < 3.009747:

Predict 1.0 # green
else:

Predict 0.0 # blue

else:

if x[0] < 6.186588:

Predict 1.0 # green
else:

Predict 2.0 # red

ml.plotClassify2D(T, X,Y)



| Summary

Decision trees
Flexible functional form
At each level, pick a variable and split condition
At leaves, predict a value

Learning decision trees

Score all splits & pick best
Classification: Information gain, Gini index
Regression: Expected variance reduction

Stopping criteria

Complexity depends on depth

Decision stumps: very simple classifiers



