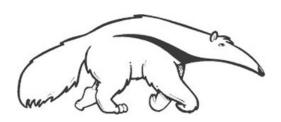
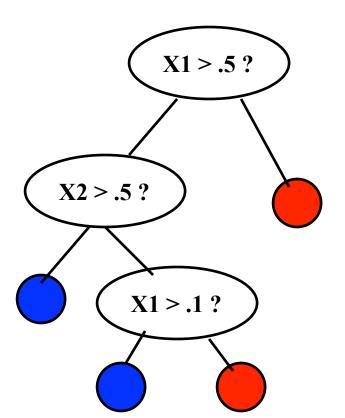
Machine Learning and Data Mining

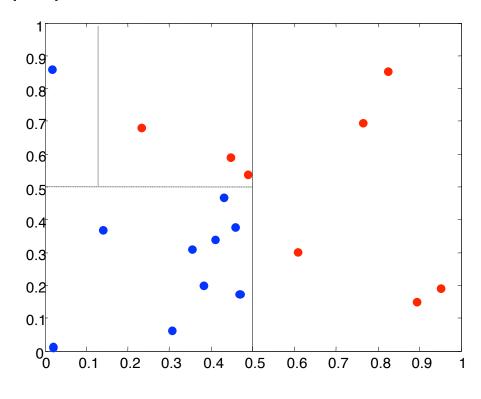
Decision Trees

Prof. Alexander Ihler

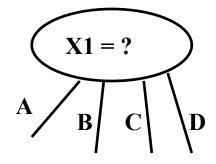


- "Split" input into cases
 - Usually based on a single variable
 - Recurse down until we reach a decision
 - Continuous vars: choose split point

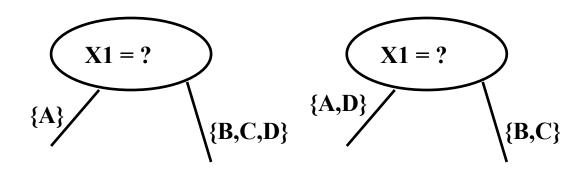




- Categorical variables
 - Could have a child per value
 - Binary tree: split values into two sets



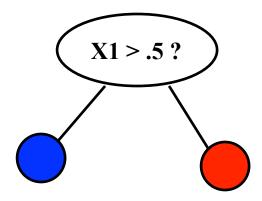
The discrete variable will not appear again below here...

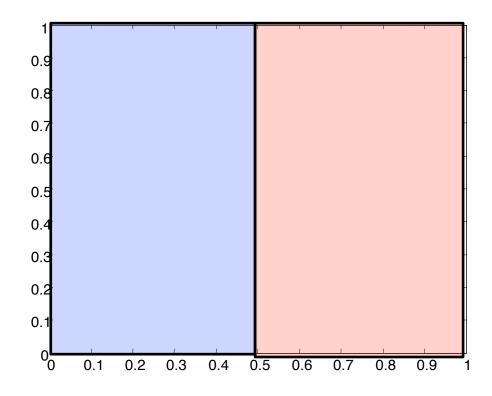


Could appear again multiple times...

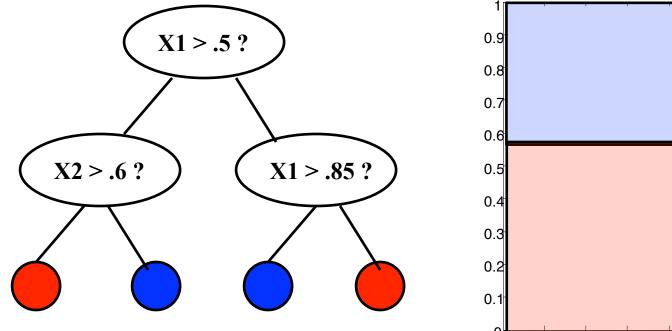
(This ^^^ is easy to implement using a 1-of-K representation...)

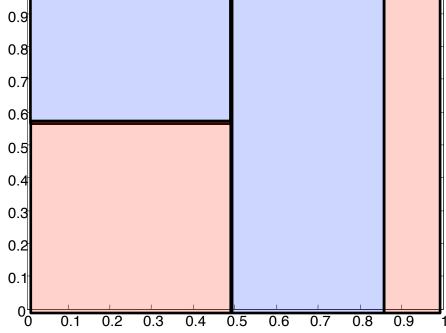
- "Complexity" of function depends on the depth
- A depth-1 decision tree is called a decision "stump"
 - Simpler than a linear classifier!





"Complexity" of function depends on the depth

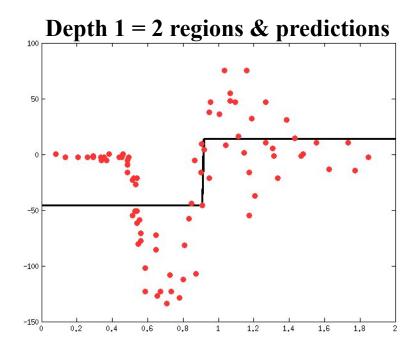


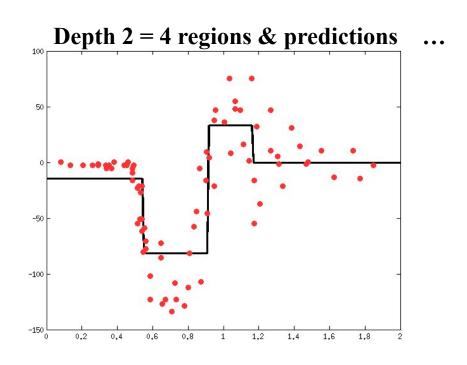


Depth d = up to 2^d regions & predictions

Decision trees for regression

- Exactly the same
- Predict real valued numbers at leaf nodes
- Examples on a single scalar feature:

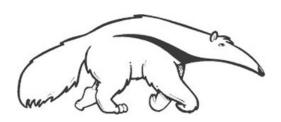




Machine Learning and Data Mining

Learning Decision Trees

Prof. Alexander Ihler



Learning decision trees

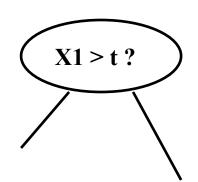
- Break into two parts
 - Should this be a leaf node?
 - If so: what should we predict?
 - If not: how should we further split the data?

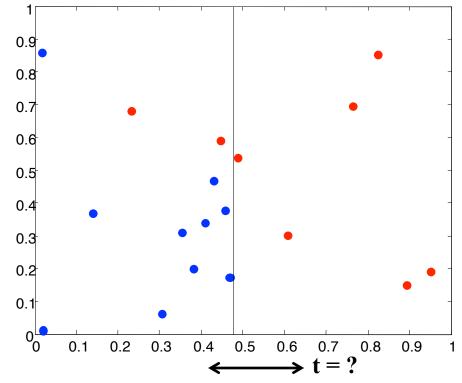
Example algorithms: ID3, C4.5
See e.g. wikipedia, "Classification and regression tree"

- Leaf nodes: best prediction given this data subset
 - Classify: pick majority class; Regress: predict average value
- Non-leaf nodes: pick a feature and a split
 - Greedy: "score" all possible features and splits
 - Score function measures "purity" of data after split
 - How much easier is our prediction task after we divide the data?
- When to make a leaf node?
 - All training examples the same class (correct), or indistinguishable
 - Fixed depth (fixed complexity decision boundary)
 - Others ...

Scoring decision tree splits

- Suppose we are considering splitting feature 1
 - How can we score any particular split?
 - "Impurity" how easy is the prediction problem in the leaves?
- "Greedy" could choose split with the best accuracy
 - Assume we have to predict a value next
 - MSE (regression)
 - 0/1 loss (classification)
- But: "soft" score can work better



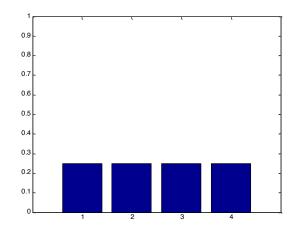


- "Entropy" is a measure of randomness
 - How hard is it to communicate a result to you?
 - Depends on the probability of the outcomes
- Communicating fair coin tosses
 - Output: HHTHTTTHHHHT...
 - Sequence takes n bits each outcome totally unpredictable
- Communicating my daily lottery results
 - Output: 0 0 0 0 0 0 ...
 - Most likely to take one bit I lost every day.
 Won 1: 1(...)0
 - Small chance I'll have to send more bits (won & when) Won 2: 1(...)1(...)0

Lost:

- Takes less work to communicate because it's less random
 - Use a few bits for the most likely outcome, more for less likely ones`

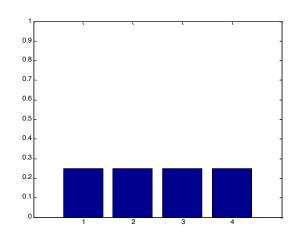
- Entropy $H(x) \equiv \mathbb{E}[\log 1/p(x)] = \sum p(x) \log 1/p(x)$
 - Log base two, units of entropy are "bits"
- Examples:



$$H(x) = .25 \log 4 + .25 \log 4 + .25 \log 4 + .25 \log 4 = .25 \log 4$$

= log 4 = 2 bits

- Entropy $H(x) \equiv \mathbb{E}[\log 1/p(x)] = \sum p(x) \log 1/p(x)$
 - Log base two, units of entropy are "bits"
- Examples:

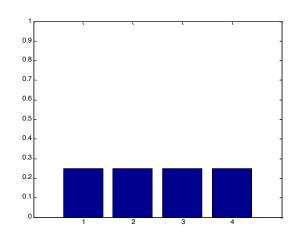


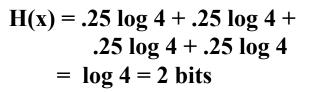
$$H(x) = .25 \log 4 + .25 \log 4 + .25 \log 4 + .25 \log 4 + .25 \log 4 = 2 \text{ bits}$$

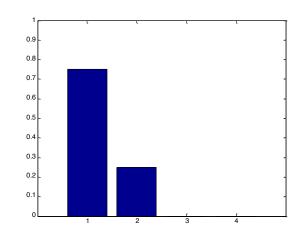
$$H(x) = .75 \log 4/3 + .25 \log 4$$

 $\approx .8133 \text{ bits}$

- Entropy $H(x) \equiv \mathbb{E}[\log 1/p(x)] = \sum p(x) \log 1/p(x)$
 - Log base two, units of entropy are "bits"
- Examples:

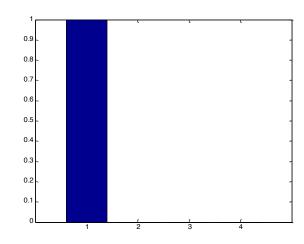






$$H(x) = .75 \log 4/3 + .25 \log 4$$

 $\approx .8133 \text{ bits}$

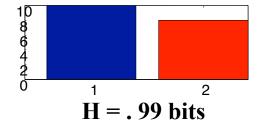


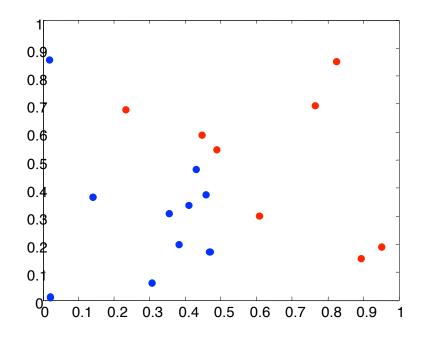
$$H(x) = 1 \log 1$$
$$= 0 \text{ bits}$$

Max entropy for 4 outcomes

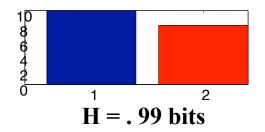
Min entropy

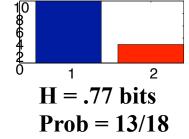
- Information gain
 - How much is entropy reduced by measurement?
- Information: expected information gain

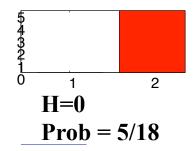


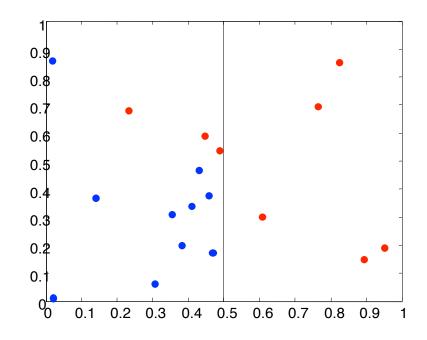


- Information gain
 - How much is entropy reduced by measurement?
- Information: expected information gain

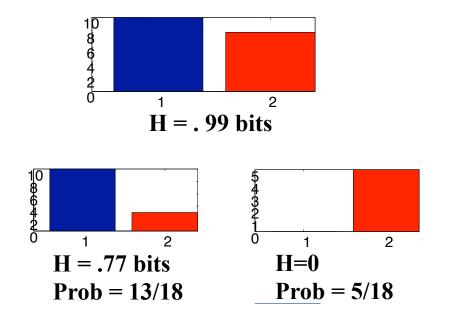


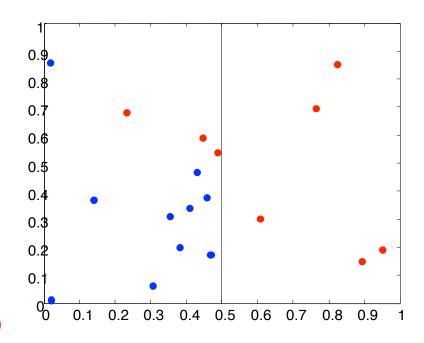






- Information gain
 - How much is entropy reduced by measurement?
- Information: expected information gain

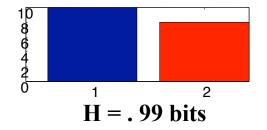


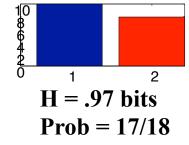


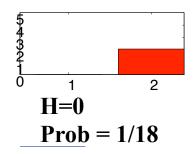
Information = 13/18 * (.99-.77) + 5/18 * (.99 - 0)

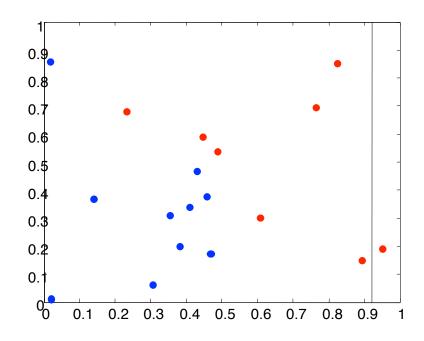
Equivalent: $\sum p(s,c) \log [p(s,c) / p(s) p(c)]$ = 10/18 log[(10/18) / (13/18) (10/18)] + 3/18 log[(3/18)/(13/18)(8/18) + ...

- Information gain
 - How much is entropy reduced by measurement?
- Information: expected information gain

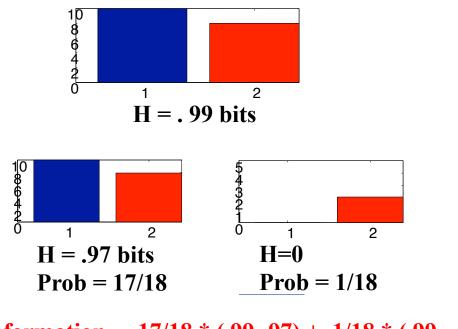








- Information gain
 - How much is entropy reduced by measurement?
- Information: expected information gain



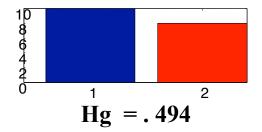
0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.2 0.3 0.2 0.1 0.3 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

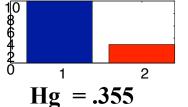
Information = 17/18 * (.99-.97) + 1/18 * (.99 - 0)

Less information reduction – a less desirable split of the data

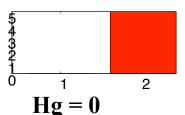
Gini index / impurity

- An alternative to information gain
 - Measures variance in the allocation (instead of entropy)
- Hgini = $\sum_{c} p(c) (1-p(c))$ vs. Hent = - $\sum_{c} p(c) \log p(c)$

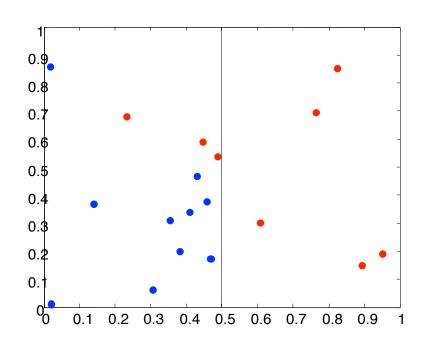




$$Prob = 13/18$$



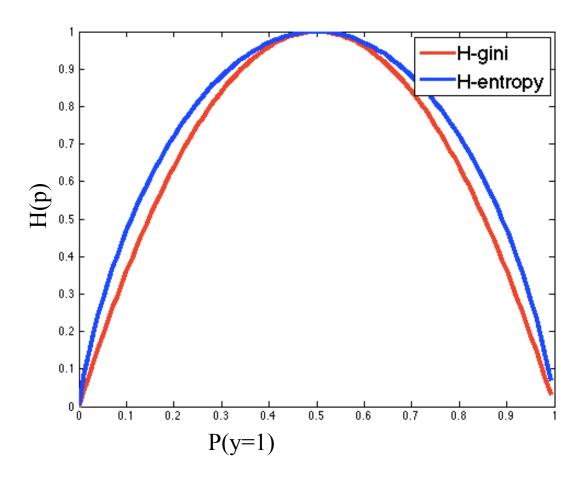
$$Prob = 5/18$$



Gini Index = 13/18 * (.494 - .355) + 5/18 * (.494 - 0)

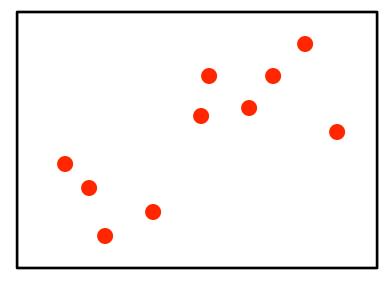
Entropy vs Gini index

- The two are nearly the same...
 - Pick whichever one you like

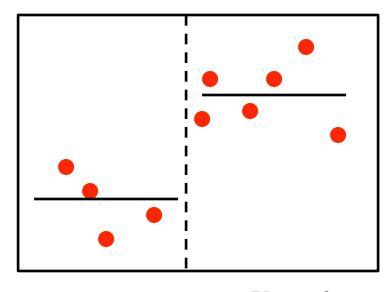


For regression

- Most common is to measure variance reduction
 - Equivalent to "information gain" in a Gaussian model...



Var = .25



$$Var = .1$$

$$Prob = 4/10$$

Var reduction = 4/10 * (.25-.1) + 6/10 * (.25 - .2)

Building a decision tree

Pseudo-code

```
decisionTreeSplitData(X,Y)

if (stopping condition) return decision for this node

For each possible feature

For each possible split

(for cts features: sort & compute split points)

Score the split (e.g. information gain)

Pick the feature & split with the best score

Split the data at that point

Recurse on each subset

Stopping conditions:
```

- * # of data < K
- * Depth > D
- * All data indistinguishable (discrete features)
- * Prediction sufficiently accurate

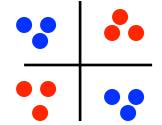
Building a decision tree

Pseudo-code

```
decisionTreeSplitData(X,Y)
  if (stopping condition) return decision for this node
  For each possible feature
   For each possible split
    (for cts features: sort & compute split points)
    Score the split (e.g. information gain)
  Pick the feature & split with the best score
  Split the data at that point
  Recurse on each subset
```

Stopping criteria:

• Information gain threshold? Often not a good idea...

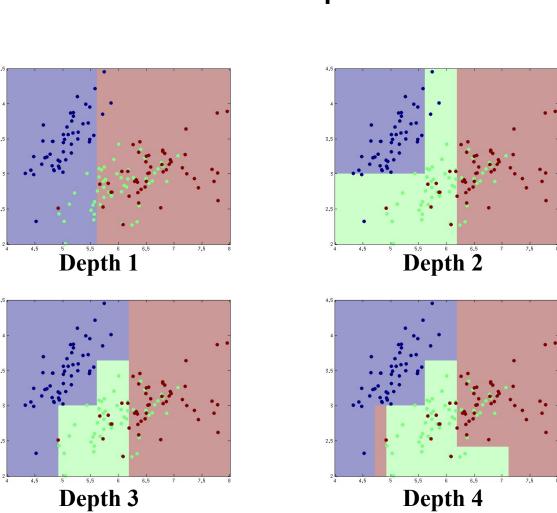


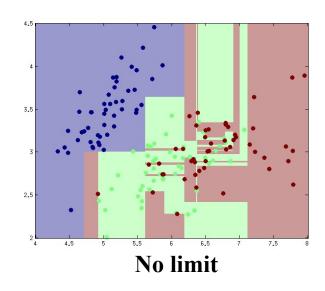
No single split improves performance, but two splits together is accurate

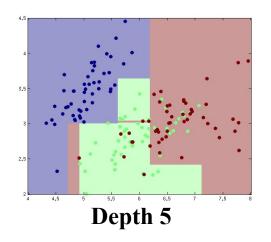
Instead: grow a large tree and prune back, using training or validation data

Controlling complexity

Maximum depth cutoff

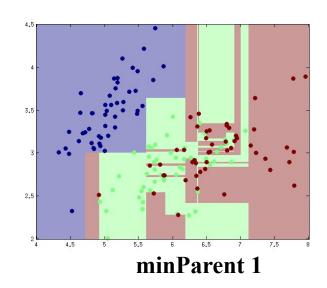


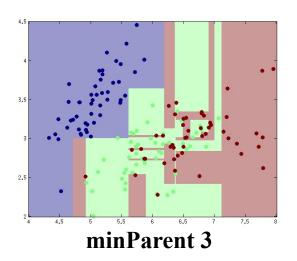


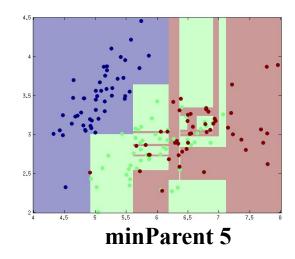


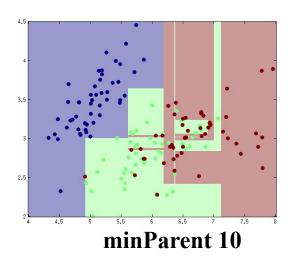
Controlling complexity

Minimum # parent data









Decision trees in Python

- Many implementations
- Class implementation:
 - real-valued features (can use 1-of-k for discrete)
 - Uses entropy (easy to extend)

```
T = dt.treeClassify()
T.train(X,Y,maxDepth=2)
print T
  if x[0] < 5.602476:
    if x[1] < 3.009747:
                          # green
      Predict 1.0
    else:
      Predict 0.0
                          # blue
  else:
    if x[0] < 6.186588:
      Predict 1.0
                          # green
    else:
      Predict 2.0
                          # red
```

```
4.5

4.0

3.5

3.0

2.5

2.0

4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
```

ml.plotClassify2D(T, X,Y)

Summary

- Decision trees
 - Flexible functional form
 - At each level, pick a variable and split condition
 - At leaves, predict a value
- Learning decision trees
 - Score all splits & pick best
 - Classification: Information gain, Gini index
 - Regression: Expected variance reduction
 - Stopping criteria
- Complexity depends on depth
 - Decision stumps: very simple classifiers