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Unsupervised learning 
•  Supervised learning 

–  Predict target value (“y”) given features (“x”) 

•  Unsupervised learning 
–  Understand patterns of data (just “x”) 
–  Useful for many reasons 

•  Data mining (“explain”) 
•  Missing data values (“impute”) 
•  Representation (feature generation or selection) 

•  One example: clustering 
–  Describe data by discrete “groups” with some characteristics 



Clustering	
•  Clustering	describes	data	by	“groups”	
•  The	meaning	of	“groups”	may	vary	by	data!	

•  Examples	

Location Shape Density 



Clustering and Data Compression 
•  Clustering is related to vector quantization 

–  Dictionary of vectors (the cluster centers) 
–  Each original value represented using a dictionary index 
–  Each center “claims” a nearby region (Voronoi region) 



Clustering and Data Compression 
•  Clustering is related to vector quantization 

–  Dictionary of vectors (the cluster centers) 
–  Each original value represented using a dictionary index 
–  Each center “claims” a nearby region (Voronoi region) 

•  Example in 1D: cluster pixels’ grayscale values 
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•  A simple clustering algorithm 

•  Define a distance (or dissimilarity) 
between clusters (we’ll return to this) 

•  Initialize: every example is a cluster 
•  Iterate: 

–  Compute distances between all 
clusters  
(store for efficiency) 

–  Merge two closest clusters 
•  Save both clustering and sequence 

of cluster operations 
•  “Dendrogram” 

Initially, every datum is a cluster 

Algorithmic	Complexity:		O(m2	log	m )	+		

Data: 

Hierarchical		AgglomeraEve	Clustering	



Algorithmic	Complexity:		O(m2	log m)	+	O(m	log	m)	+		

Data: 

Height of the join 
indicates dissimilarity 

Dendrogram: 

Builds up a sequence of clusters (“hierarchical”) 

IteraEon	1	



Algorithmic	Complexity:		O(m2	log m)	+	2*O(m	log	m)	+		

Data: 

Height of the join 
indicates dissimilarity 

Dendrogram: 

Builds up a sequence of clusters (“hierarchical”) 

IteraEon	2	



Algorithmic	Complexity:		O(m2	log m)	+	3*O(m	log	m)	+		

Data: 

Height of the join 
indicates dissimilarity 

Dendrogram: 

Builds up a sequence of clusters (“hierarchical”) 

IteraEon	3	



In matlab:  “linkage”  function   (stats toolbox) 

    

    

    
    

          

Algorithmic	Complexity:		O(m2	log m)	+	(m-3)*O(m	log	m)	+		

Data: Dendrogram: 

Builds up a sequence of clusters (“hierarchical”) 

IteraEon	m-3	



In matlab:  “linkage”  function   (stats toolbox) 

    

    

    
    

          

Data: Dendrogram: 

Algorithmic	Complexity:		O(m2	log m)	+	(m-2)*O(m	log	m)	+		

Builds up a sequence of clusters (“hierarchical”) 

IteraEon	m-2	



In matlab:  “linkage”  function   (stats toolbox) 

    

    

    
    

          

Data: Dendrogram: 

Algorithmic	Complexity:		O(m2	log m)	+	(m-1)*O(m	log	m)			=		O(m2	log	m)	

Builds up a sequence of clusters (“hierarchical”) 

IteraEon	m-1	



In matlab:  “linkage”  function   (stats toolbox) 

    

    

    
    

          

Data: Dendrogram: 

Algorithmic	Complexity:		O(m2	log m)	+	(m-1)*O(m	log	m)			=		O(m2	log	m)	

Given the sequence, can select a number of clusters or a dissimilarity threshold: 

From	dendrogram	to	clusters	



produces minimal spanning tree. 

avoids elongated clusters. 

Need: 
  D(A,C) 
  D(B,C)    D(A+B,C)   

Cluster	distances	



Cluster	distances	
•  Dissimilarity choice will affect clusters created 

Single linkage (min) Complete linkage (max) 



•  Measure gene expression 

•  Various experimental 
conditions 
–  Disease v. normal 
–  Time 
–  Subjects 

•  Explore similarities 
–  What genes change 

together? 
–  What conditions are similar? 

•  Cluster on both genes and 
conditions 

Matlab: “clustergram”  (bioinfo toolbox) 

Example:	microarray	expression	



Summary	
•  AgglomeraEve	clustering	

–  Choose	a	cluster	distance	/	dissimilarity	scoring	method	
–  Successively	merge	closest	pair	of	clusters	
–  “Dendrogram”	shows	sequence	of	merges	&	distances	
–  Complexity:	O(m2	log	m)	

•  “Clustergram”	for	understanding	data	matrix	
–  Build	clusters	on	rows	(data)	and	columns	(features)	
–  Reorder	data	&	features	to	expose	behavior	across	groups	

•  AgglomeraEve	clusters	depend	criEcally	on	dissimilarity	
–  Choice	determines	characterisEcs	of	“found”	clusters	
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•  A simple clustering algorithm 
•  Iterate between 

–  Updating the assignment of data to clusters 
–  Updating the cluster’s summarization 

Notation: 
   Data example i has features xi  
 
   Assume K clusters 
 
   Each cluster c “described” by a center  µc 
 
   Each cluster will “claim” a set of nearby points 

x 

x 

x µ2 

µ3 

µ1 

Matlab: “kmeans”  (stats toolbox) 

K-Means	Clustering	



•  A simple clustering algorithm 
•  Iterate between 

–  Updating the assignment of data to clusters 
–  Updating the cluster’s summarization 

Notation: 
   Data example i has features xi  
 
   Assume K clusters 
 
   Each cluster c “described” by a center  µc 
 
   Each cluster will “claim” a set of nearby points 
       “Assignment” of ith example: zi 2 1..K   

Matlab: “kmeans”  (stats toolbox) 

x 

x 

x µ2 

µ3 

µ1 

z2 = 3  

z1 = 1  

K-Means	Clustering	



•  Iterate until convergence: 
–  (A) For each datum, find the closest cluster 

  
 
–  (B) Set each cluster to the mean of all assigned data: 

  

x 

x 

x 

x 

(A) (B) 

K-Means	Clustering	



•  Optimizing the cost function: 

•  Coordinate descent: 

x 

x 

x 

x 

Over the cluster assignments: 
  Only one term in sum depends on zi 
  Minimized by selecting closest µc 

Over the cluster centers: 
  Cluster c only depends on xi with zi=c 
  Minimized by selecting the mean 

Descent => guaranteed to converge 
  New means = same assignments 
  Same assignments = same means 
  Same means = same assignments 
  … 

(A) (B) 

K-Means	Clustering	



IniEalizaEon	
•  MulEple	local	opEma,	depending	on	iniEalizaEon	

•  Try	different	(randomized)	iniEalizaEons	
•  Can	use	cost	C	to	decide	which	we	prefer	

C = 212.6 C = 167.0 C = 223.3 



IniEalizaEon	methods	
•  Random	

–  Usually,	choose	random	data	index	
–  Ensures	centers	are	near	some	data	
–  Issue:	may	choose	nearby	points	



IniEalizaEon	methods	
•  Random	

–  Usually,	choose	random	data	index	
–  Ensures	centers	are	near	some	data	
–  Issue:	may	choose	nearby	points	

•  Distance-based	
–  Start	with	one	random	data	point	
–  Find	the	point	farthest	from	the	clusters	chosen	so	far	
–  Issue:	may	choose	outliers	



IniEalizaEon	methods	
•  Random	

–  Usually,	choose	random	data	index	
–  Ensures	centers	are	near	some	data	
–  Issue:	may	choose	nearby	points	

•  Distance-based	
–  Start	with	one	random	data	point	
–  Find	the	point	farthest	from	the	clusters	chosen	so	far	
–  Issue:	may	choose	outliers	

•  Random	+	distance	(“k-means++”)	(Arthur	&	Vassilvitskii,	2007)	
–  Choose	next	points	“far	but	randomly”	

	p(x)	/	squared	distance	from	x	to	current	centers	
–  Likely	to	put	a	cluster	far	away,	in	a	region	with	lots	of	data	



Out-of-sample	points	
•  O`en	want	to	use	clustering	on	new	data	
•  Easy	for	k-means:	choose	nearest	cluster	center	

% perform clustering 
[Z , mu] = kmeans(X, K); 
 
% cluster id = nearest center 
L = knnClassify(mu, (1:K)’, 1); 
 
% assign in- or out-of-sample points 
Z = predict(L, X); 



Choosing	the	number	of	clusters	
•  With cost function 

 
 
what is the optimal value of k? 

•  Cost	always	decreases	with	k!	
•  A	model	complexity	issue…	

K=3 K=5 K=10 



Choosing	the	number	of	clusters	
•  With cost function 

 
 
what is the optimal value of k? 

•  Cost	always	decreases	with	k!	
•  A	model	complexity	issue…	

•  One solution is to penalize for complexity 
–  Add penalty:   Total  =  Error  +  Complexity 
–  Now more clusters can increase cost, if they don’t help “enough” 

–  Ex: simplified BIC penalty   

–  More precise version: see e.g. “X-means” (Pelleg & Moore 2000)	



Summary	
•  K-Means	clustering	

–  Clusters	described	as	locaEons	(“centers”)	in	feature	space	
•  Procedure	

–  IniEalize	cluster	centers	
–  Iterate:	assign	each	data	point	to	its	closest	cluster	center	
–  												:	move	cluster	centers	to	minimize	mean	squared	error	

•  ProperEes	
–  Coordinate	descent	on	MSE	criterion	
–  Prone	to	local	opEma;	iniEalizaEon	important	

•  Out-of-sample	data	
•  Choosing	the	#	of	clusters,	K	

–  Model	selecEon	problem;	penalize	for	complexity	(BIC,	etc.)	
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•  K-means algorithm 
–  Assigned each example to exactly one cluster 
–  What if clusters are overlapping? 

•  Hard to tell which cluster is right 
•  Maybe we should try to remain uncertain 

–  Used Euclidean distance 
–  What if cluster has a non-circular shape? 

•  Gaussian mixture models 
–  Clusters modeled as Gaussians 

•  Not just by their mean 
–  EM algorithm: assign data to  

cluster with some probability 
–  Gives probability model of x!  (“generative”) 

Mixtures	of	Gaussians	



Mixtures	of	Gaussians	
•  Start	with	parameters	describing	each	cluster	
•  Mean µc ,  variance	¾c ,  “size”	¼c 
•  Probability	distribuEon:			

xx xxx            x  x x   x xx    x            x   x x 



Mixtures	of	Gaussians	
•  Start	with	parameters	describing	each	cluster	
•  Mean µc ,  variance	¾c ,  “size”	¼c 
•  Probability	distribuEon:			

•  Equivalent	“latent	variable”	form:	

Select a mixture component with probability ¼ 

¼1 ¼2 
¼3 

x 

Sample from that component’s Gaussian 

“Latent assignment” z: 
    we observe x, but z is hidden 
 
p(x) = marginal over x 



We’ll model each cluster 
using one of these Gaussian 
“bells”… -2 -1 0 1 2 3 4 5 -2 

-1 

0 

1 

2 

3 

4 

5 

Maximum Likelihood estimates 

MulEvariate	Gaussian	models	



EM	Algorithm:		E-step	
•  Start with clusters: Mean µc, Covariance §c, “size” ¼c 
 
•  E-step (“Expectation”) 

–  For each datum (example) xi,  
–  Compute “ric”, the probability that it belongs to cluster c 

•  Compute its probability under model c 
•  Normalize to sum to one (over clusters c) 

¼1 N(x ; µ1, §1) 
x 



EM	Algorithm:		E-step	
•  Start with clusters: Mean µc, Covariance §c, “size” ¼c 
 
•  E-step (“Expectation”) 

–  For each datum (example) xi,  
–  Compute “ric”, the probability that it belongs to cluster c 

•  Compute its probability under model c 
•  Normalize to sum to one (over clusters c) 

–  If xi is very likely under the cth Gaussian, it gets high weight 
–  Denominator just makes r’s sum to one 

¼2 N(x ; µ2, §2) 

r1 ¼ .33;  r2 ¼ .66 

x 



EM	Algorithm:		M-step	
•  Start with assignment probabilities ric 
•  Update parameters: mean µc, Covariance §c, “size” ¼c 

•  M-step (“Maximization”) 
–  For each cluster (Gaussian) z = c,  
–  Update its parameters using the (weighted) data points 

Total responsibility allocated to cluster c 

Fraction of total assigned to cluster c 

Weighted mean of  assigned data Weighted covariance of  assigned data 
  (use new weighted means here) 



•  Each step increases the log-likelihood of our model 
 
 
 
(we won’t derive this here, though) 

•  Iterate until convergence 
–  Convergence guaranteed – another ascent method 
–  Local optima: initialization often important 

•  What should we do  
–  If we want to choose a single cluster for an “answer”? 
–  With new data we didn’t see during training? 

•  Choosing the number of clusters 
–  Can use penalized likelihood of training data  (like k-means 
–  True probability model: can use log-likelihood of test data, log p(x’) 

ExpectaEon-MaximizaEon	
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EM and missing data 
•  EM is a general framework for partially observed data 

–  “Complete data”  xi, zi   – features and assignments 
–  Assignments zi are missing (unobserved) 

•  EM corresponds to 
–  Computing the distribution over all zi given the parameters 
–  Maximizing the “expected complete” log likelihood 
–  GMMs = plug in “soft assignments”, but not always so easy 

•  Alternatives: Stochastic EM, Hard EM 
–  Instead of expectations, just sample the zi or choose best (often easier) 
–  Called “imputing” the values of z 
–  Hard EM: similar to EM, but less “smooth”, more local minima 
–  Stochastic EM: similar to EM, but with extra randomness 

•  Not obvious when it has converged 



Summary	
•  Gaussian	mixture	models	

–  Flexible	class	of	probability	distribuEons	
–  Explain	variaEon	with	hidden	groupings	or	clusters	of	data	
–  Latent	“membership”	z(i)	

–  Feature	values	x(i)	are	Gaussian	given	z(i)	

•  ExpectaEon-MaximizaEon	
–  Compute	so`	membership	probabiliEes,	“responsibility”	ric	
–  Update	mixture	component	parameters	given	so`	memberships	
–  Ascent	on	log-likelihood:	convergent,	but	local	opEma	

•  SelecEng	the	number	of	clusters	
–  Penalized	likelihood	or	validaEon	data	likelihood	



Gibbs sampling for clustering 
•  Another technique for inferring uncertain cluster assignments 

–  K-means: take the best assignment 
–  EM: assign “partially” 
–  Stochastic EM: sample assignment 
–  All: choose best cluster descriptions given assignments 

•  Gibbs sampling (“Markov chain Monte Carlo”) 
–  Assign randomly, probability equal to EM’s weight 
–  Sample a cluster description given assignment 
–  Requires a probability model over cluster parameters 

•  This doesn’t really find the “best” clustering 
–  It eventually samples almost all “good” clusterings 
–  Converges “in probability”, randomness helps us explore configurations 
–  Also tells us about uncertainty of clustering 
–  Disadvantage: not obvious when “done” 



“Infinite” mixture models 
•  How many clusters are there? 

•  Gibbs sampling has an interesting solution 
–  Write a distribution over k, the # of clusters 
–  Sample k also 

•  Can do our sampling sequentially 
–  Draw each zi given all the others 
–  Instead of sampling cluster parameters, marginalize them 
–  Defines a distribution over groupings of data 

•  Now, for each zi, sample 
–  Join an existing cluster?  Or, join a new cluster? 

•  What are these probabilities? 
–  “Dirichlet process” mixture models 



Parametric and Nonparametric Models 

•  Every model has some parameters 
–  “The stuff you have to store to make your prediction” 
–  Logistic regression: weights 
–  Decision tree: feature to split, value at each level 
–  Gaussian mixture model:  means, covariances, sizes 

•  Parametric vs Nonparametric models 
–  Parametric: fixed # of parameters 
–  Nonparametric: # of parameters grows with more data 

•  What type are 
–  Logistic regression? 
–  Nearest neighbor prediction? 
–  Decision trees? 
–  Decision trees of depth < 3? 
–  Gaussian mixture model? 



Summary 
•  Clustering algorithms 

–  Agglomerative clustering 
–  K-means 
–  Expectation-Maximization 

Open questions for each application: 

•  What does it mean to be “close” or “similar”? 
–  Depends on your particular problem… 

•  “Local” versus “global” notions of simliarity 
–  Former is easy, but we usually want the latter… 

•  Is it better to “understand” the data itself (unsupervised learning), 
to focus just on the final task (supervised learning), or both? 

•  Do we need a generative model?  Out-of-sample assignments? 


