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Unsupervised learning

L. Supervised learning

— Predict target value (“y”) given features (“x”)

* Unsupervised learning
— Understand patterns of data (just “x”)
— Useful for many reasons

+ Data mining (“explain”) @

» Missing data values (“impute”)

* Representation (feature generation or selection)

*  One example: clustering
— Describe data by discrete “groups” with some characteristics



Clustering

. Clustering describes data by “groups”

* The meaning of “groups” may vary by data!

* Examples

Location Shape Density



‘Clustering and Data Compression

, Clustering is related to vector quantization

— Dictionary of vectors (the cluster centers)
— Each original value represented using a dictionary index
— Each center “claims” a nearby region (Voronoi region)

. - TN e __ ¢
@
e +o © )
o ot
Py ° © T
. o
: o * o




‘Clustering and Data Compression
I

Clustering is related to vector quantization

— Dictionary of vectors (the cluster centers)

— Each original value represented using a dictionary index
— Each center “claims” a nearby region (Voronoi region)

- Example in 1D: cluster pixels’ grayscale values




Machine Learning and Data Mining

Clustering (2):
Hierarchical Agglomerative Clustering
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Hierarchical Agglomerative Clustering

Initially, every datum is a cluster

Data:

Algorithmic Complexity: O(m?logm) +

A simple clustering algorithm

Define a distance (or dissimilarity)
between clusters (we’ll return to this)

Initialize: every example is a cluster
lterate:

— Compute distances between all
clusters
(store for efficiency)

— Merge two closest clusters

Save both clustering and sequence
of cluster operations

“Dendrogram”



Ilteration 1

Builds up a sequence of clusters (“hierarchical”)

Data: Dendrogram:
0o ® A
o.' o
o) ° Height of the join
o) % L ® n indicates dissimilarity
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o 0
0 0

Algorithmic Complexity: O(m? log m) + O(m log m) +



Ilteration 2

Builds up a sequence of clusters (“hierarchical”)

Data: Dendrogram:
0o ° o A
o © °
o) ° — Height of the join
0 % o n l l indicates dissimilarity

Algorithmic Complexity: O(m?log m) + 2*O(m log m) +



Ilteration 3

Builds up a sequence of clusters (“hierarchical”)

Data: Dendrogram:
0o ° A
o.' o
o) ° — Height of the join
0 @ o I kl l l indicates dissimilarity

® 0
0
@ L)
0

Algorithmic Complexity: O(m?log m) + 3*O(m log m) +



lteration m-3

Builds up a sequence of clusters (“hierarchical”)

Data: Dendrogram:

LTS L T

In matlab: “linkage” function (stats toolbox)

©7

Algorithmic Complexity: O(m?log m) + (m-3)*O(m log m) +



lteration m-2

Builds up a sequence of clusters (“hierarchical”)

Data: Dendrogram:

LTS L T

In matlab: “linkage” function (stats toolbox)

@

Algorithmic Complexity: O(m?log m) + (m-2)*O(m log m) +



lteration m-1

Builds up a sequence of clusters (“hierarchical”)

Data: |

Dendrogram:

1.:H£

@

TEls

1Jﬂﬁ:ll

In matlab: “linkage” function (stats toolbox)

Algorithmic Complexity: O(m?log m) + (m-1)*O(m log m) = O(m?log m)



From dendrogram to clusters

Given the sequence, can select a number of clusters or a dissimilarity threshold:

Data:

Dendrogram:

@
_

In matlab: “linkage” function (stats toolbox)

Algorithmic Complexity: O(m? log m) + (m-1)*O(m log m) = O(m? log m)



Cluster distances Nearest

Neighbour

+
I (Single Linkage)

Dunin(Ci, Cj) = | _ min_ ||z —y| -
X 7

produces minimal spanning tree.

Dnax(C;,C5) = max  ||lx — y||2

Furthest
Neighbour

Complete Linkage) .

1 .
Dan(C’UCj) — C. 11O Z Hx - yH2 -
G4l G z€C;, yeC,

avoids elongated clusters.

Dmeans(oia CJ) — ||:u’b — ILLj||2 .
_— Centroid .

Need:
D(A,C) —,
D(B,C) —

D(A+B,C)



Cluster distances

Single linkage (min)

Dissimilarity choice will affect clusters created

Complete linkage (max)
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Example: microarray expression

*Various experimental s
conditions Bt

— Disease v. normal —l

E2025188R552

- Measure gene expression ﬁ\ﬂ
siaiiil
—

. E1115150R568
E2028185R!

— Time Crosstos
E199S255R448

. E1995255R450

— Subjects S
E111S150R568

E1445184R737

E2028180R548

E202S186R549

« Explore similarities s
E202S185R544

— What genes change Coes o

together? Coneaysunaee

— What conditions are similar? castauncs
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« Cluster on both genes and
conditions

Matlab: “clustergram” (bioinfo toolbox)



Summary

. Agglomerative clustering

— Choose a cluster distance / dissimilarity scoring method
— Successively merge closest pair of clusters

— “Dendrogram” shows sequence of merges & distances
— Complexity: O(m? log m)

e “Clustergram” for understanding data matrix
— Build clusters on rows (data) and columns (features)
— Reorder data & features to expose behavior across groups

* Agglomerative clusters depend critically on dissimilarity

— Choice determines characteristics of “found” clusters



Machine Learning and Data Mining

Clustering (3):

k-Means Clustering

Prof. Alexander lhler

)

A ©
BREN:(CS UNIVERSITY of CALIFORNIA O [RVINE

INFORMATION AND COMPUTER SCIENCES



K-Means Clustering

Lo A simple clustering algorithm

* lterate between
— Updating the assignment of data to clusters
— Updating the cluster’s summarization

Notation:
Data example i has features x;

Assume K clusters
Each cluster ¢ “described” by a center p,

Each cluster will “claim” a set of nearby points

Matlab: “kmeans” (stats toolbox)



K-Means Clustering

A simple clustering algorithm

lterate between

— Updating the assignment of data to clusters
— Updating the cluster’s summarization
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Notation:
Data example i has features x;

Assume K clusters
Each cluster ¢ “described” by a center p,

Each cluster will “claim” a set of nearby points
“Assignment” of it" example: z. € 1..K

Matlab: “kmeans” (stats toolbox)



K-Means Clustering

l. lterate until convergence:
— (A) For each datum, find the closest cluster

z; = argmin ||z; — pe||? Vi
C

— (B) Set each cluster to the mean of all assigned data:

1 .
Ve, ,uczm—Cin Se={i:zi=c}, mc.=|5
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K-Means Clustering

l. Optimizing the cost function:

Clz,p) = Z |2i —

* Coordinate descent:

Over the cluster assignments:
Only one term in sum depends on z
Minimized by selecting closest p,

(A)

X

"
<

Descent => guaranteed to converge
New means = same assignments
Same assignments = same means
Same means = same assignments

2

Mz,

Over the cluster centers:
Cluster c only depends on x; with z=c
Minimized by selecting the mean

(B)




Initialization

. Multiple local optima, depending on initialization

* Try different (randomized) initializations
* Can use cost C to decide which we prefer
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* C=2233 C=212.6 C=167.0



Initialization methods

I Random

— Usually, choose random data index
— Ensures centers are near some data
— Issue: may choose nearby points

.J.
X



Initialization methods

I Random

— Usually, choose random data index
— Ensures centers are near some data
— Issue: may choose nearby points

* Distance-based g

— Start with one random data point .
— Find the point farthest from the clusters chosen so f'ar
— Issue: may choose outliers
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Initialization methods R s
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* Random N o 4
— Usually, choose random data index \;\';_,:'
o* -
— Ensures centers are near some data ™ il
: -,
— Issue: may choose nearby points
* Distance-based .
— Start with one random data point "" .

— Find the point farthest from the clusters chosen so 1’ar
— Issue: may choose outliers

* Random + distance (“k-means++”) (arthur & vassilvitskii, 2007)
— Choose next points “far but randomly”

p(x) o< squared distance from x to current centers
— Likely to put a cluster far away, in a region with lots of data



Out-of-sample points

. Often want to use clustering on new data

* Easy for k-means: choose nearest cluster center

% perform clustering
[Z , mu] = kmeans(X, K);

% cluster 1d = nearest center
L = knnClassify(mu, (1:K)’, 1);

% assign in- or out-of-sample points
Z = predict(L, X);



Choosing the number of clusters

With cost function 2000 ‘
Clz,p) = Z l2; — | 1000} K
what is the optimal value of k? . ,
0 5
* Cost always decreases with k!
* A model complexity issue...
(
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Choosing the number of clusters

With cost function 2000

— Z |Ti — ||2 1000} \ ]
i —

what is the optimal value of k?
Cost always decreases with k!

0 5 10 15 20

A model complexity issue...

One solution is to penalize for complexity
— Add penalty: Total = Error + Complexity
— Now more clusters can increase cost, if they don’ t help “enough”

— Ex: simplified BIC penalty
lo m
Tz, ) = log [ >l e 2] + k==

— More precise version: see e.g. “X-means” (Pelleg & Moore 2000)




Summary

. K-Means clustering

— Clusters described as locations (“centers”) in feature space

Procedure
— Initialize cluster centers
— |terate: assign each data point to its closest cluster center

— : move cluster centers to minimize mean squared error

Properties

— Coordinate descent on MSE criterion
— Prone to local optima; initialization important

Out-of-sample data

Choosing the # of clusters, K
— Model selection problem; penalize for complexity (BIC, etc.)
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Mixtures of Gaussians

'. K-means algorithm

— Assigned each example to exactly one cluster

— What if clusters are overlapping?
- Hard to tell which cluster is right
- Maybe we should try to remain uncertain

— Used Euclidean distance
— What if cluster has a non-circular shape?

« (Gaussian mixture models

— Clusters modeled as Gaussians
* Not just by their mean

— EM algorithm: assign data to
cluster with some probability

— Gives probability model of x! (“generative”)




Mixtures of Gaussians

'+ Start with parameters describing each cluster

* Mean pu,., varianceo,., “size” T,
* Probability distribution: p(z) = 7. N(z ; pe,0c)




Mixtures of Gaussians

» Start with parameters describing each cluster

* Mean pu,., varianceo,., “size” T,
* Probability distribution: p(z) = 7. N(z ; pe,0c)

* Equivalent “latent variable” form:

p(z =c) = Select a mixture component with probability 7

p(zlz =c) =N(z ; pe,0c) Sample from that component’s Gaussian

“Latent assignment” z:
we observe X, but z 1s hidden

o
p(x) = marginal over x T ’



Multivariate Gaussian models

N(i s M Z) — (27_‘_1)61/2 |Z|_1/2 exp {%(iﬁ)Tz_l(iﬁ)}

Maximum Likelihood estimates

o 1
3 ; — g (Z)
{ o H= i
2 o 1 7
1 i @) _ \T (2 _
/ ) mE (x )" (x i)

of | i

A A We' 1l model each cluster
using one of these Gaussian
2, ] 0 1‘ 2 3 7 5 “bells”...




EM Algorithm: E-step

'+ Start with clusters: Mean u., Covariance X, “size” m,

- E-step (“Expectation”)
— For each datum (example) x,
— Compute “r,.”, the probability that it belongs to cluster ¢
« Compute its probability under model ¢

« Normalize to sum to one (over clusters c)
7"-c/\/‘(xi s He, Zc)
ch 7"_c’-/\/‘(xi s ey Zc’)

Tic =

Im N(X 5 g, 54



EM Algorithm: E-step

'+ Start with clusters: Mean u., Covariance X, “size” m,

- E-step (“Expectation”)
— For each datum (example) x,
— Compute “r,.”, the probability that it belongs to cluster ¢
« Compute its probability under model ¢

« Normalize to sum to one (over clusters c)

T N(zi 5 phe, Xc)
> oo TN (X 5 e, Xer) .7 N(x 5 i X)

r,~.33; r,~ .66

Tic =

— If x;, is very likely under the ct" Gaussian, it gets high weight
— Denominator just makes r’'s sum to one



EM Algorithm: M-step

'+ Start with assignment probabilities r;,

+ Update parameters: mean p., Covariance X, “size” m,

« M-step (“Maximization™)
— For each cluster (Gaussian) z = c,
— Update its parameters using the (weighted) data points

Me = Z Tic Total responsibility allocated to cluster c
)

m
Te = EC Fraction of total assigned to cluster c
_ S riea® ! (i T ()
He = me & °c e = E Zric(x — )" (2 — pie)
1
Weighted mean of assigned data Weighted covariance of assigned data

(use new weighted means here)



Expectation-Maximization

I« Each step increases the log-likelihnood of our model

10gp(£> — Zlog ZT‘-C N(xz s Hes Zc)

(we won’ t derive this here, though)

* lterate until convergence
— Convergence guaranteed — another ascent method
— Local optima: initialization often important

What should we do

— If we want to choose a single cluster for an “answer”?
— With new data we didn’t see during training?

« Choosing the number of clusters
— Can use penalized likelihood of training data (like k-means
— True probability model: can use log-likelihood of test data, log p(x’)



ANEMIA PATIENTS AND CONTROLS
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EM ITERATION 1
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From P. Smyth
ICML 2001
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EM ITERATION 5
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EM ITERATION 10
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EM ITERATION 15
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EM ITERATION 25
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EM and missing data

- EM is a general framework for partially observed data
— “Complete data” xi, zi — features and assignments
— Assignments zi are missing (unobserved)

EM corresponds to
— Computing the distribution over all zi given the parameters
— Maximizing the “expected complete” log likelihood
— GMMs = plug in “soft assignments”, but not always so easy

« Alternatives: Stochastic EM, Hard EM
— Instead of expectations, just sample the zi or choose best (often easier)
— Called “imputing” the values of z
— Hard EM: similar to EM, but less “smooth”, more local minima
— Stochastic EM: similar to EM, but with extra randomness
* Not obvious when it has converged



Summary

. Gaussian mixture models

— Flexible class of probability distributions
— Explain variation with hidden groupings or clusters of data
— Latent “membership” zl!

— Feature values x!) are Gaussian given z)

* Expectation-Maximization
— Compute soft membership probabilities, “responsibility” r;
— Update mixture component parameters given soft memberships
— Ascent on log-likelihood: convergent, but local optima

* Selecting the number of clusters
— Penalized likelihood or validation data likelihood



| Gibbs sampling for clustering

* Another technique for inferring uncertain cluster assignments
— K-means: take the best assignment
— EM: assign “partially”
— Stochastic EM: sample assignment
— All: choose best cluster descriptions given assignments
«  Gibbs sampling (“Markov chain Monte Carlo™)
— Assign randomly, probability equal to EM’s weight
— Sample a cluster description given assignment
— Requires a probability model over cluster parameters

«  This doesn’ t really find the “best” clustering
— It eventually samples almost all “good” clusterings
— Converges “in probability”, randomness helps us explore configurations
— Also tells us about uncertainty of clustering
— Disadvantage: not obvious when “done”



“Infinite” mixture models

* How many clusters are there?

*  Gibbs sampling has an interesting solution
— Write a distribution over k, the # of clusters
— Sample k also

« Can do our sampling sequentially
— Draw each zi given all the others
— Instead of sampling cluster parameters, marginalize them
— Defines a distribution over groupings of data
* Now, for each zi, sample
— Join an existing cluster? Or, join a new cluster?
*  What are these probabilities?
— “Dirichlet process” mixture models



Parametric and Nonparametric Models

- Every model has some parameters
— “The stuff you have to store to make your prediction”
— Logistic regression: weights
— Decision tree: feature to split, value at each level
— Gaussian mixture model: means, covariances, sizes

« Parametric vs Nonparametric models
— Parametric: fixed # of parameters
— Nonparametric: # of parameters grows with more data

*  What type are
— Logistic regression?
— Nearest neighbor prediction?
— Decision trees?
— Decision trees of depth < 37
— Gaussian mixture model?



| Summary

|+ Clustering algorithms
— Agglomerative clustering
— K-means
— Expectation-Maximization

Open questions for each application:

«  What does it mean to be “close” or “similar”?
— Depends on your particular problem...

- “Local” versus “global” notions of simliarity
— Former is easy, but we usually want the latter...

- Is it better to “understand” the data itself (unsupervised learning),
to focus just on the final task (supervised learning), or both?

Do we need a generative model? Out-of-sample assignments?



