#### Machine Learning and Data Mining

#### Collaborative Filtering & Recommender Systems

Prof. Alexander Ihler





+

## Recommender systems

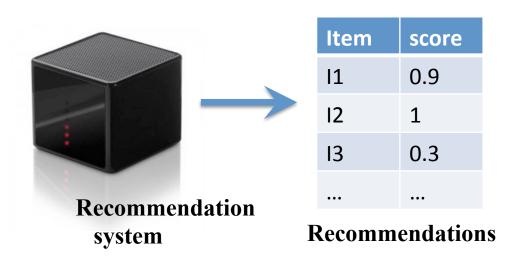
- Automated recommendations
- Inputs
  - User information
    - Situation context, demographics, preferences, past ratings
  - Items
    - Item characteristics, or nothing at all
- Output
  - Relevance score, predicted rating, or ranking

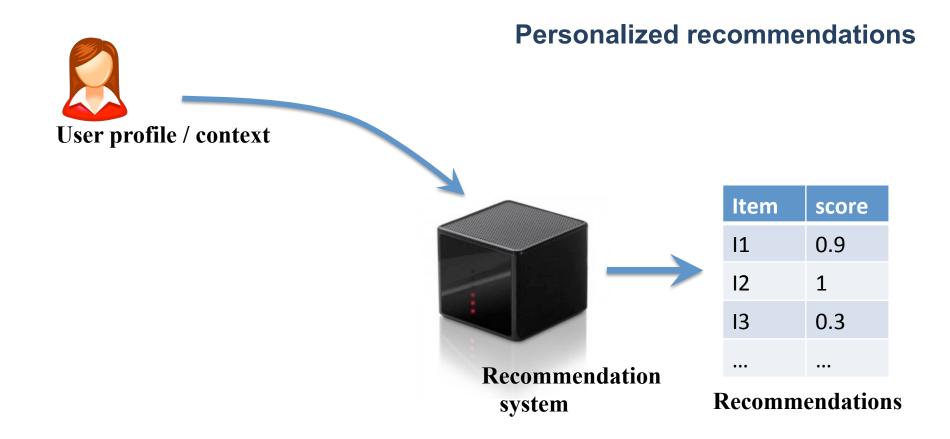
## Recommender systems: examples

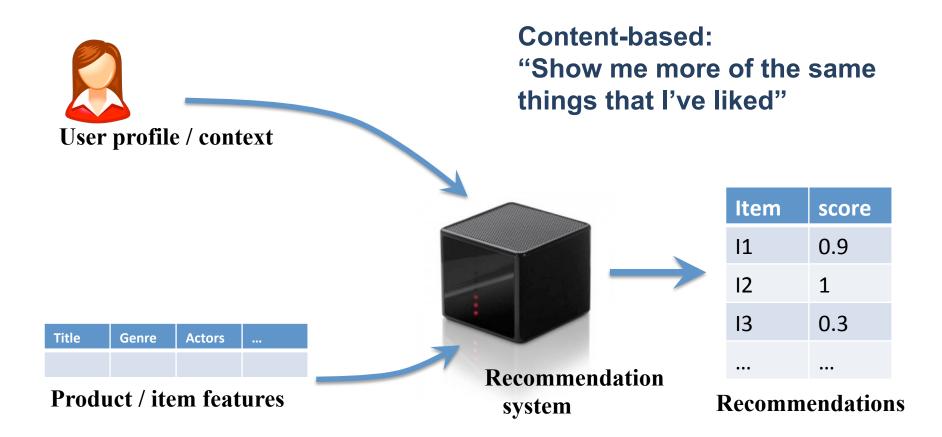
Your Amazon.com Your Browsing History Recommended For You Amazon Betterizer Improve Your Recommendations Your

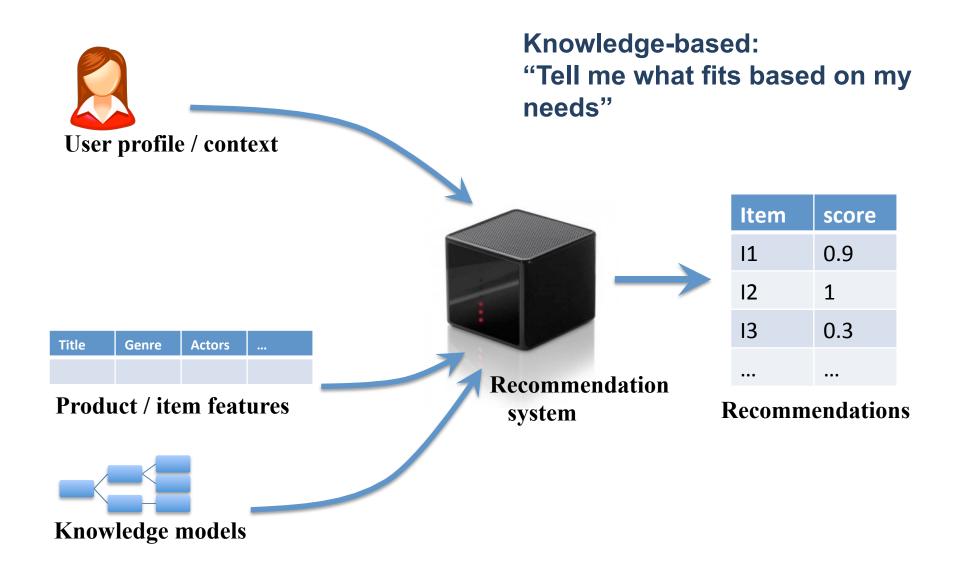


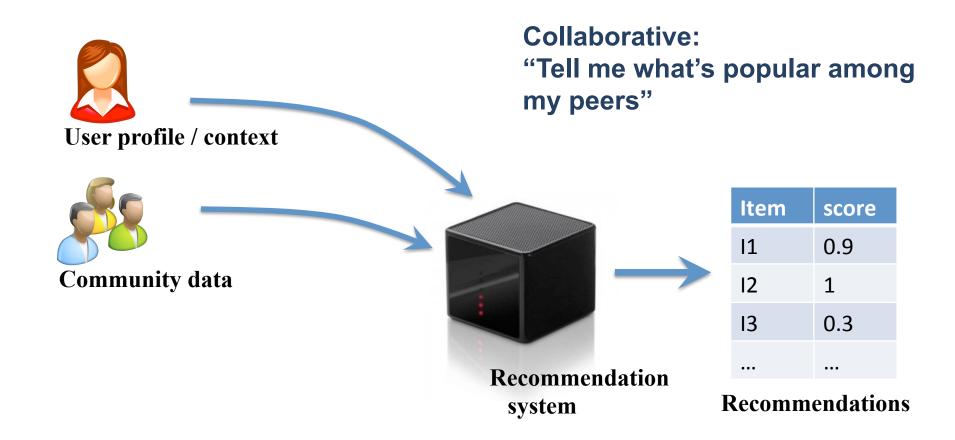
Recommender systems reduce information overload by estimating relevance

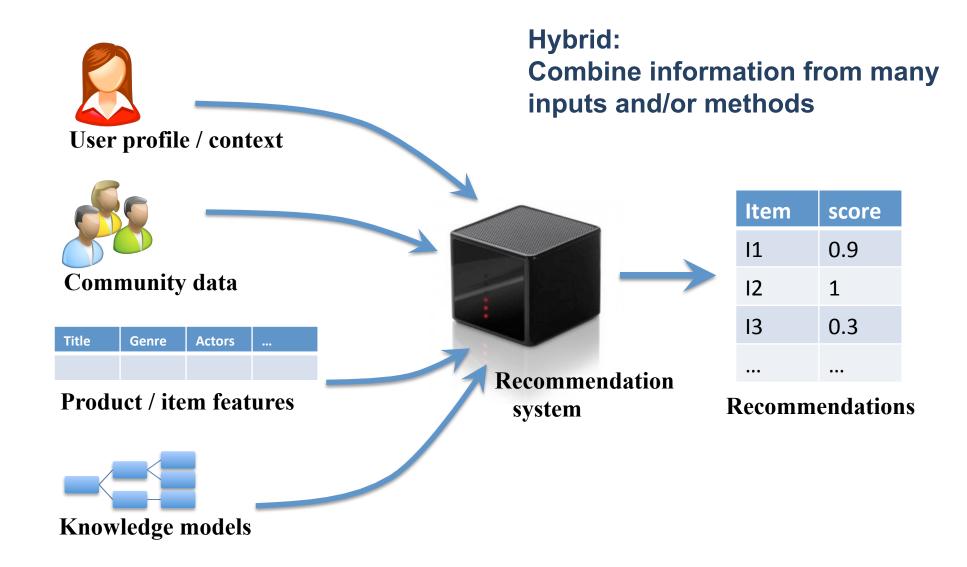












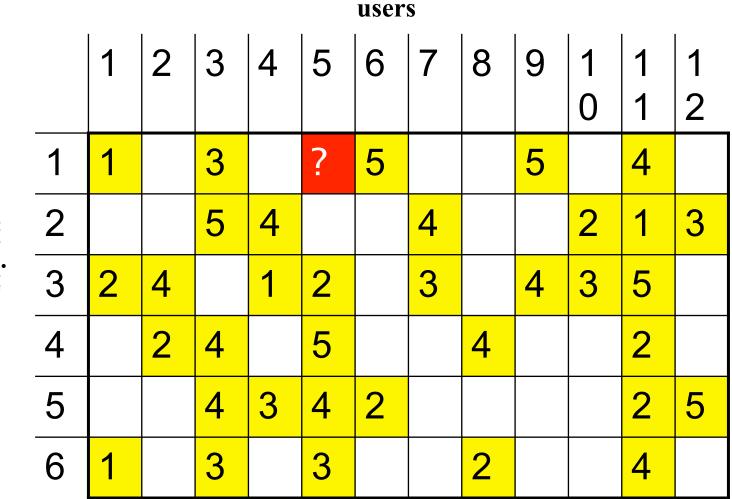
## Measuring success

- Prediction perspective
  - Predict to what degree users like the item
  - Most common evaluation for research
  - Regression vs. "top-K" ranking, etc.
- Interaction perspective
  - Promote positive "feeling" in users ("satisfaction")
  - Educate about the products
  - Persuade users, provide explanations
- "Conversion" perspective
  - Commercial success
  - Increase "hit", "click-through" rates
  - Optimize sales and profits

## Why are recommenders important?

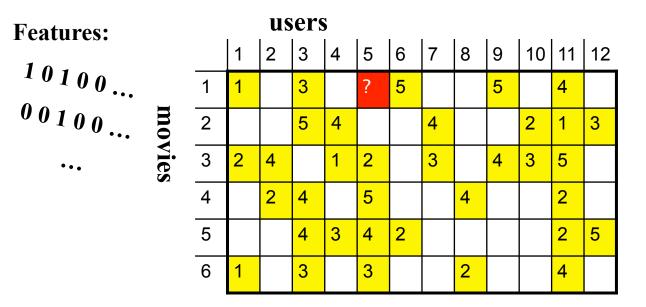
- The "long tail" of product appeal
  - A few items are very popular
  - Most items are popular only with a few people
- Goal: recommend not-widely known items that the user might like!



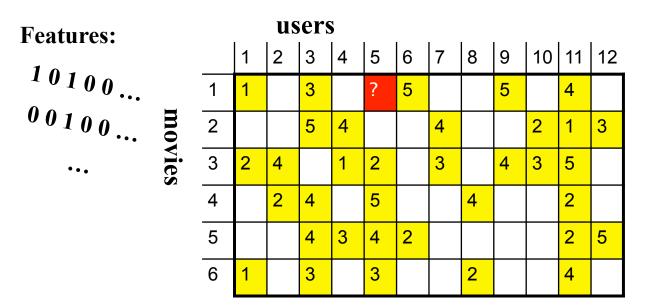


movies

- Simple approach: standard regression
  - Use "user features"  $\phi_{\rm u}$ , "item features"  $\phi_{\rm i}$
  - Train f( $\phi_{\rm u}$ ,  $\phi_{\rm i}$ ) pprox r<sub>ui</sub>
  - Learn "users with my features like items with these features"
- Extreme case: per-user model / per-item model
- Issues: needs lots of side information!



- Example: nearest neighbor methods
  Which data are "similar"?
- Nearby items? (based on...)



- Example: nearest neighbor methods
  Which data are "similar"?
- Nearby items? (based on...)

**Based on ratings alone?** 

Find other items that are rated similarly...

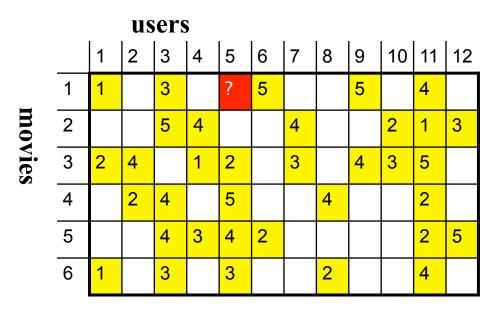
Good match on observed ratings

|      |   |   | us | ers | 5 |   |   |   |   |   |    |    |    |
|------|---|---|----|-----|---|---|---|---|---|---|----|----|----|
|      |   | 1 | 2  | 3   | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| _    | 1 | 1 |    | 3   |   | ? | 5 |   |   | 5 |    | 4  |    |
| mov  | 2 |   |    | 5   | 4 |   |   | 4 |   |   | 2  | 1  | 3  |
| vies | 3 | 2 | 4  |     | 1 | 2 |   | 3 |   | 4 | 3  | 5  |    |
| -    | 4 |   | 2  | 4   |   | 5 |   |   | 4 |   |    | 2  |    |
|      | 5 |   |    | 4   | 3 | 4 | 2 |   |   |   |    | 2  | 5  |
|      | 6 | 1 |    | 3   |   | 3 |   |   | 2 |   |    | 4  |    |

- Which data are "similar"?
- Nearby items?
- Nearby users?
  - Based on user features?
  - Based on ratings?

|                 |   | users |   |   |   |   |   |   |   |   |    |    |    |
|-----------------|---|-------|---|---|---|---|---|---|---|---|----|----|----|
|                 |   | 1     | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
|                 | 1 | 1     |   | 3 |   | ? | 5 |   |   | 5 |    | 4  |    |
| m0 <sup>1</sup> | 2 |       |   | 5 | 4 |   |   | 4 |   |   | 2  | 1  | 3  |
| movies          | 3 | 2     | 4 |   | 1 | 2 |   | 3 |   | 4 | 3  | 5  |    |
|                 | 4 |       | 2 | 4 |   | 5 |   |   | 4 |   |    | 2  |    |
|                 | 5 |       |   | 4 | 3 | 4 | 2 |   |   |   |    | 2  | 5  |
|                 | 6 | 1     |   | 3 |   | 3 |   |   | 2 |   |    | 4  |    |

- Some very simple examples
  - All users similar, items not similar?
  - All items similar, users not similar?
  - All users and items are equally similar?



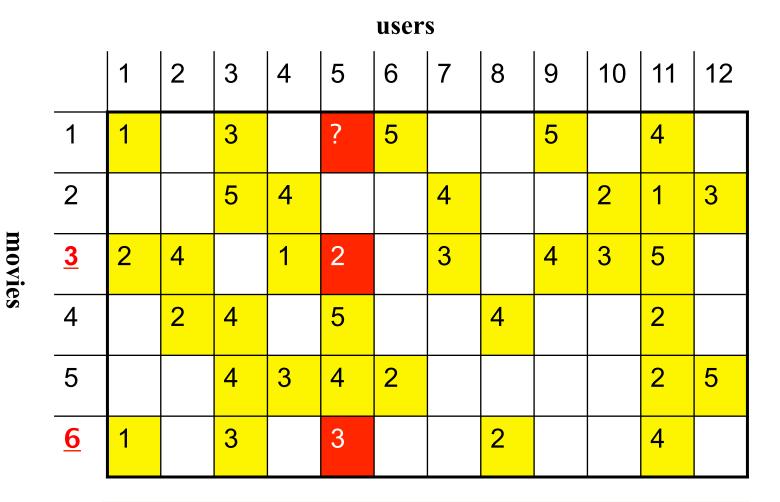
## Measuring similarity

- Nearest neighbors depends significantly on distance function
  - "Default": Euclidean distance
- Collaborative filtering:
  - Cosine similarity:  $\frac{x^{(i)} \cdot x^{(j)}}{\|x^{(i)}\| \|x^{(j)}\|}$

(measures angle between x^i, x^j)

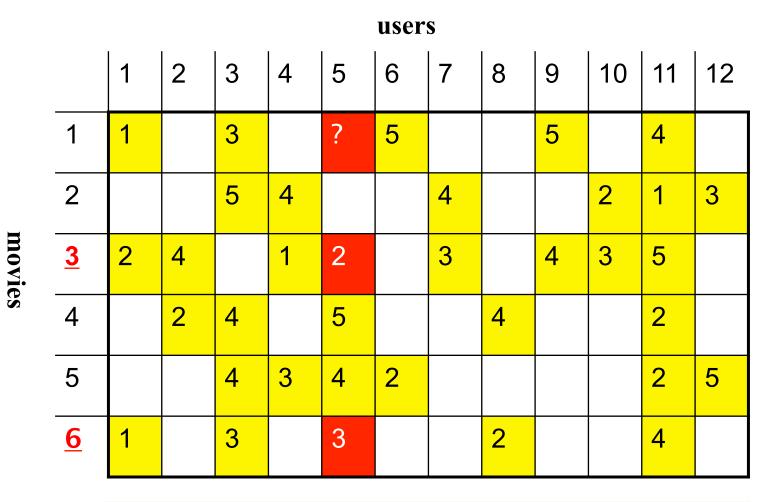
- Pearson correlation: measure correlation coefficient between x^i, x^j
- Often perform better in recommender tasks
- Variant: weighted nearest neighbors
  - Average over neighbors is weighted by their similarity
- Note: with ratings, need to deal with missing data!

### Nearest-Neighbor methods



Neighbor selection: Identify movies similar to 1, rated by user 5

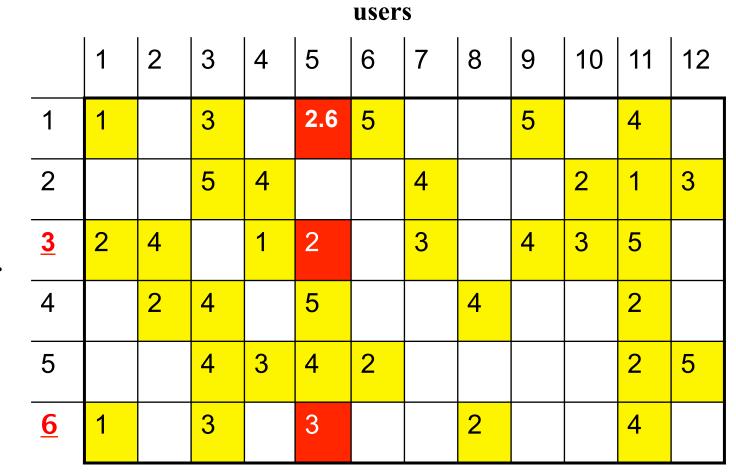
### Nearest-Neighbor methods



**Compute similarity weights:** 

 $s_{13}=0.2, s_{16}=0.3$ 

### Nearest-Neighbor methods

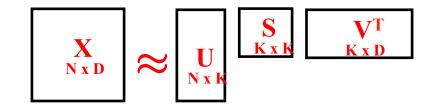


Predict by taking weighted average: (0.2\*2+0.3\*3)/(0.2+0.3)=2.6

movies

## Latent space methods

| users  |   |   |   |   |   |   |   |   |   |   |    |    |    |
|--------|---|---|---|---|---|---|---|---|---|---|----|----|----|
|        |   | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
|        | 1 | 1 |   | 3 |   | ? | 5 |   |   | 5 |    | 4  |    |
| mc     | 2 |   |   | 5 | 4 |   |   | 4 |   |   | 2  | 1  | 3  |
| movies | 3 | 2 | 4 |   | 1 | 2 |   | 3 |   | 4 | 3  | 5  |    |
|        | 4 |   | 2 | 4 |   | 5 |   |   | 4 |   |    | 2  |    |
|        | 5 |   |   | 4 | 3 | 4 | 2 |   |   |   |    | 2  | 5  |
|        | 6 | 1 |   | 3 |   | 3 |   |   | 2 |   |    | 4  |    |



## Latent Space Models

Model ratings matrix as "user" and "movie" positions

Infer values from known ratings

3 5 5 4 2 5 3 4 4 items 2 3 3 5 2 4 4 2 5 2 4 4 3 2 2 4 4 5 3 3 2 4

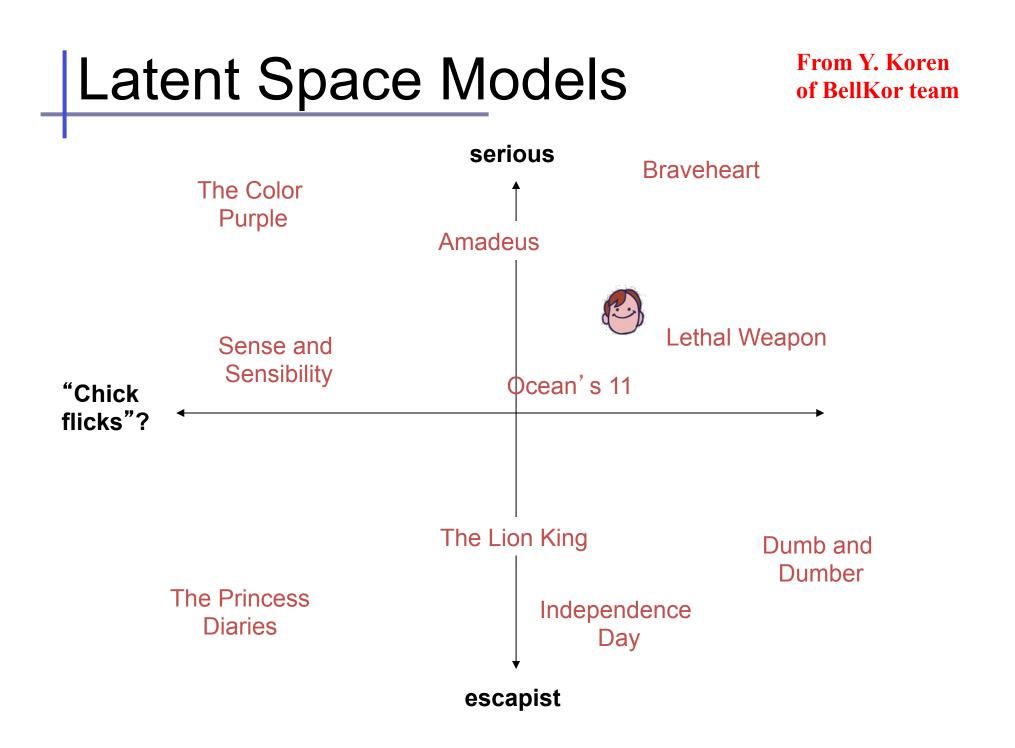
users

#### Extrapolate to unranked

.2 -.4 .1 items -.5 .6 .5 -.2 .3 .5 2.1 .3 1.1 2.1 -2 -.7 .7 .3 -1

| 1.1 | 2  | .3 | .5  | -2  | 5  | .8  | 4   | .3 | 1.4 | 2.4 | 9   |
|-----|----|----|-----|-----|----|-----|-----|----|-----|-----|-----|
| 8   | .7 | .5 | 1.4 | .3  | -1 | 1.4 | 2.9 | 7  | 1.2 | 1   | 1.3 |
| 2.1 | 4  | .6 | 1.7 | 2.4 | .9 | 3   | .4  | .8 | .7  | 6   | .1  |

users



## Some SVD dimensions

#### See timely development.com

#### **Dimension 1** Offbeat / Dark-Comedy

Lost in Translation The Royal Tenenbaums Dogville Eternal Sunshine of the Spotless Mind Punch-Drunk Love

#### **Dimension 2**

#### Good

VeggieTales: Bible Heroes: Lions The Best of Friends: Season 3 Felicity: Season 2 Friends: Season 4 Friends: Season 5

#### **Dimension 3**

What a 10 year old boy would watch

Dragon Ball Z: Vol. 17: Super Saiyan Battle Athletes Victory: Vol. 4: Spaceward Ho! Battle Athletes Victory: Vol. 5: No Looking Back Battle Athletes Victory: Vol. 7: The Last Dance Battle Athletes Victory: Vol. 2: Doubt and Conflic Bowling for Columbine

#### Mass-Market / 'Beniffer' Movies

Pearl Harbor Armageddon The Wedding Planner Coyote Ugly Miss Congeniality

#### Twisted

The Saddest Music in the World Wake Up I Heart Huckabees Freddy Got Fingered House of 1

#### What a liberal woman would watch

Fahrenheit 9/11 The Hours Going Upriver: The Long War of John Kerry Sex and the City: Season 2

## Latent space models

- Latent representation encodes some "meaning"
- What kind of movie is this? What movies is it similar to?
- Matrix is full of missing data
  - Hard to take SVD directly
  - Typically solve using gradient descent
  - Easy algorithm (see Netflix challenge forum)

| # for user u, movie m, find the kth eige     | envector & coefficient by iterating:        |
|----------------------------------------------|---------------------------------------------|
| <pre>predict_um = U[m,:].dot( V[:,u] )</pre> | <pre># predict: vector-vector product</pre> |
| err = ( rating[u,m] – predict_um )           | # find error residual                       |
| $V_{ku}, U_{mk} = V[k,u], U[m,k]$            | # make copies for update                    |
| U[m,k] += alpha * err * V_ku                 | # Update our matrices                       |
| $V[k,u] += alpha * err * U_mk$               | # (compare to least-squares gradient)       |

# Latent space models

• Can be a bit more sophisticated:

 $\mathsf{r}_{\mathsf{iu}} pprox \mu + \mathsf{b}_{\mathsf{u}} + \mathsf{b}_{\mathsf{i}} + \sum_{\mathsf{k}} \mathsf{W}_{\mathsf{ik}} \mathsf{V}_{\mathsf{ku}}$ 

- "Overall average rating"
- "User effect" + "Item effect"
- Latent space effects (k indexes latent representation)
- (Saturating non-linearity?)
- Then, just train some loss, e.g. MSE, with SGD
  - Each (user, item, rating) is one data point

## **Ensembles for recommenders**

- Given that we have many possible models:
  - Feature-based regression
  - (Weighted) kNN on items
  - (Weighted) kNN on users
  - Latent space representation

perhaps we should combine them?

• Use an ensemble average, or a stacked ensemble

"Stacked" : train a weighted combination of model predictions