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Recommender systems 

•  Automated recommendations 

•  Inputs 
–  User information 

•  Situation context, demographics, preferences, past ratings 

–  Items 
•  Item characteristics, or nothing at all 

•  Output 
–  Relevance score, predicted rating, or ranking 



Recommender systems: examples 



Paradigms of recommender systems 
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Paradigms of recommender systems 

User profile / context  

Recommendation 
   system 

Personalized recommendations 
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Paradigms of recommender systems 

User profile / context  

Product / item features 
Recommendation 
   system 

Content-based: 
“Show me more of the same 
things that I’ve liked”  
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Paradigms of recommender systems 

Title	 Genre	 Actors	 …	

		
		

		
		

		 		

User profile / context  

Product / item features 

Knowledge models  
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Knowledge-based: 
“Tell me what fits based on my 
needs” 
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Paradigms of recommender systems 

User profile / context  
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Recommendation 
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Collaborative: 
“Tell me what’s popular among 
my peers” 
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Paradigms of recommender systems 
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Hybrid: 
Combine information from many 
inputs and/or methods  
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Measuring success 
•  Prediction perspective 

–  Predict to what degree users like the item 
–  Most common evaluation for research 
–  Regression vs. “top-K” ranking, etc. 

•  Interaction perspective 
–  Promote positive “feeling” in users (“satisfaction”) 
–  Educate about the products 
–  Persuade users, provide explanations 

•  “Conversion” perspective 
–  Commercial success 
–  Increase “hit”, “click-through” rates 
–  Optimize sales and profits 



Why are recommenders important? 
•  The “long tail” of product appeal 

–  A few items are very popular 
–  Most items are popular only with a few people 

•  Goal: recommend not-widely known items that the user 
might like! 

Recommend the best-seller list 

Recommendations need to be targeted! 



Collaborative filtering 
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Collaborative filtering 
•  Simple approach: standard regression 

–  Use “user features”  Áu,  “item features” Ái 

–  Train  f(Áu, Ái) ¼ rui 

–  Learn “users with my features like items with these features” 

•  Extreme case: per-user model  /  per-item model 
•  Issues:  needs lots of side information! 
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Collaborative filtering 
•  Example: nearest neighbor methods 

–  Which data are “similar”? 

•  Nearby items? (based on…) 
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Collaborative filtering 
•  Example: nearest neighbor methods 

–  Which data are “similar”? 

•  Nearby items? (based on…) 
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Based on ratings alone? 
 
Find other items that 
are rated similarly… 

Good match on 
observed ratings 



Collaborative filtering 
•  Which data are “similar”? 

•  Nearby items? 
•  Nearby users?   

–  Based on user features? 
–  Based on ratings? 
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Collaborative filtering 
•  Some very simple examples 

–  All users similar, items not similar? 
–  All items similar, users not similar? 
–  All users and items are equally similar? 
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Measuring	similarity	
•  Nearest	neighbors	depends	significantly	on	distance	func@on	

–  “Default”:	Euclidean	distance	

•  Collabora@ve	filtering:	
–  Cosine	similarity:		 	 	 	 	 	(measures	angle	between	x^i,	x^j)	

–  	 	 	 	 	 	 	 	 	 	 	

–  Pearson	correla@on:		measure	correla@on	coefficient	between	x^i,	x^j	

–  ORen	perform	beSer	in	recommender	tasks	

•  Variant:	weighted	nearest	neighbors	
–  Average	over	neighbors	is	weighted	by	their	similarity	

•  Note:	with	ra@ngs,	need	to	deal	with	missing	data!	
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Identify movies similar to 1, rated by user 5 
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Nearest-Neighbor	methods	



Latent space methods 
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From Y. Koren 
of BellKor team 

X ¼ N x D U 
N x K 

VT 
K x D 

S 
K x K 



Latent Space Models 
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Latent Space Models 
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Some SVD dimensions 
See timelydevelopment.com 

Dimension 1 
Offbeat / Dark-Comedy    Mass-Market / 'Beniffer' Movies 
Lost in Translation    Pearl Harbor 
The Royal Tenenbaums    Armageddon 
Dogville     The Wedding Planner 
Eternal Sunshine of the Spotless Mind  Coyote Ugly 
Punch-Drunk Love    Miss Congeniality 
 
Dimension 2 
Good     Twisted 
VeggieTales: Bible Heroes: Lions   The Saddest Music in the World 
The Best of Friends: Season 3   Wake Up 
Felicity: Season 2    I Heart Huckabees 
Friends: Season 4    Freddy Got Fingered 
Friends: Season 5    House of 1 
 
Dimension 3 
What a 10 year old boy would watch   What a liberal woman would watch 
Dragon Ball Z: Vol. 17: Super Saiyan   Fahrenheit 9/11 
Battle Athletes Victory: Vol. 4: Spaceward Ho!  The Hours 
Battle Athletes Victory: Vol. 5: No Looking Back  Going Upriver: The Long War of John Kerry 
Battle Athletes Victory: Vol. 7: The Last Dance  Sex and the City: Season 2 
Battle Athletes Victory: Vol. 2: Doubt and Conflic  Bowling for Columbine 



•  Latent representation encodes some “meaning” 
•  What kind of movie is this?  What movies is it similar to? 

•  Matrix is full of missing data  
–  Hard to take SVD directly 
–  Typically solve using gradient descent 
–  Easy algorithm (see Netflix challenge forum) 

Latent	space	models	

# for user u, movie m, find the kth eigenvector & coefficient by iterating: 
predict_um = U[m,:].dot( V[:,u] )  # predict: vector-vector product 
err = ( rating[u,m] – predict_um )  # find error residual 
V_ku, U_mk = V[k,u], U[m,k]  # make copies for update 
U[m,k] += alpha * err * V_ku  # Update our matrices 
V[k,u]  += alpha * err * U_mk  #    (compare to least-squares gradient) 



Latent	space	models	
•  Can	be	a	bit	more	sophis@cated:	

	riu	¼	µ	+	bu	+	bi	+	∑k	Wik	Vku	

–  “Overall	average	ra@ng”	
–  “User	effect”	+	“Item	effect”	
–  Latent	space	effects	(k	indexes	latent	representa@on)	
–  (Satura@ng	non-linearity?)	

•  Then,	just	train	some	loss,	e.g.	MSE,	with	SGD	
–  Each	(user,	item,	ra@ng)	is	one	data	point	



Ensembles	for	recommenders	
•  Given	that	we	have	many	possible	models:	

–  Feature-based	regression	
–  (Weighted)	kNN	on	items	
–  (Weighted)	kNN	on	users	
–  Latent	space	representa@on	
	perhaps	we	should	combine	them?	

•  Use	an	ensemble	average,	or	a	stacked	ensemble	
–  “Stacked”	:	train	a	weighted	combina@on	of	model	predic@ons	


