Machine Learning and Data Mining

Nearest neighbor methods

Prof. Alexander Ihler

Supervised learning

Notation

- Features
- Targets
- Predictions \hat{y}

Regression; Scatter plots

- Suggests a relationship between x and y
- Regression: given new observed $x^{(new)}$, estimate $y^{(new)}$

Nearest neighbor regression

"Predictor":
Given new features:
Find nearest example
Return its value

Find training datum $x^{(i)}$ closest to $x^{(new)}$; predict $y^{(i)}$

Nearest neighbor regression

"Predictor":

Given new features: Find nearest example Return its value

- Find training datum x⁽ⁱ⁾ closest to x^(new); predict y⁽ⁱ⁾
- Defines an (implict) function f(x)
- "Form" is piecewise constant

More Data Points

More Complex Decision Boundary

Machine Learning and Data Mining

Nearest neighbor methods: K-Nearest Neighbors

Prof. Alexander Ihler

K-Nearest Neighbor (kNN) Classifier

- Find the k-nearest neighbors to <u>x</u> in the data
 - i.e., rank the feature vectors according to Euclidean distance
 - select the k vectors which are have smallest distance to x

Regression

Usually just average the y-values of the k closest training examples

Classification

- ranking yields k feature vectors and a set of k class labels
- pick the class label which is most common in this set ("vote")
- classify <u>x</u> as belonging to this class
- Note: for two-class problems, if k is odd (k=1, 3, 5, ...) there will never be any "ties"
- "Training" is trivial: just use training data as a lookup table, and search to classify a new datum

kNN Decision Boundary

- Piecewise linear decision boundary
- Increasing k "simplifies" decision boundary
 - Majority voting means less emphasis on individual points

$$K = 1$$
 $K = 3$

kNN Decision Boundary

- Recall: piecewise linear decision boundary
- Increasing k "simplifies" decision boundary
 - Majority voting means less emphasis on individual points

$$K = 5$$
 $K = 7$

kNN Decision Boundary

- Recall: piecewise linear decision boundary
- Increasing k "simplifies" decision boundary
 - Majority voting means less emphasis on individual points

$$K = 25$$

Complexity & Overfitting

- Complex model predicts all training points well
- Doesn't generalize to new data points
- K=1 : perfect memorization of examples (complex)
- K=M: always predict majority class in dataset (simple)
- Can select K using validation data, etc.

K-Nearest Neighbor (kNN) Classifier

- Theoretical Considerations
 - as k increases
 - we are averaging over more neighbors
 - the effective decision boundary is more "smooth"
 - as N increases, the optimal k value tends to increase
 - k=1, m increasing to infinity : error < 2x optimal</p>
- Extensions of the Nearest Neighbor classifier
 - weighted distances
 - e.g., if some of the features are more important
 - · e.g., if features are irrelevant

$$d(x,x') = \sqrt{\sum_{i} w_i (x_i - x_i')^2}$$

fast search techniques (indexing) to find k-nearest neighbors in d-space

Summary

- K-nearest neighbor models
 - Classification (vote)
 - Regression (average or weighted average)
- Piecewise linear decision boundary
 - How to calculate
- Test data and overfitting
 - Model "complexity" for knn
 - Use validation data to estimate test error rates & select k