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learning

‘Supervised
B Notation
— Features X
— Targets y

— Predictions y
— Parameters 6

Program (“Learner”)

Characterized by
some “parameters” 0

Procedure (using 0)
that outputs a prediction

Feedback /
Target values

Learning algorithm

Change 0
Improve performance




Linear regression

“Predictor”:
Evaluate line:

r =0+ 6121

return r

* Define form 'of" functlon f(x) explicitly

* Find a good f(x) within that family

(c) Alexander lhler




‘ Notation
I

Q(ZC) = 0o+ 0121 + O + . ..

Define “feature” X,= 1 (constant)
Then

@(CE‘)ZHCUT Q:[907°°°79n]

L = [].,513'1,...,£Un]
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Measuring error

Observation Y

Prediction @\

Error or “residual”

J
20



Mean squared error

R How can we quantify the error?

MSE, J(§) = % > Y —g(2))?

1 . .
= — Z(y(J) — 9. z(J)T)Q
J

« Could choose something else, of course...
— Computationally convenient (more later)
— Measures the variance of the residuals
— Corresponds to likelihood under Gaussian model of “noise”

1 1
N(y7 ,U,O'2): WGXP{—FQJ—M)Q}
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‘MSE cost function

MSE, J(¢) = — Z =)’

= — Z(y(j) —9- z(J‘)T)2
J

Rewrite using matrix form ]
Q:[907"°707’L] - X:
= [yw..,m

(c) Alexander lhler

SC(()l) 33511) ]
x(()m) x%m) _

# Python / NumPy:
e =Y — X.dot( theta.T );
J=eT.dot(e)/m #=np.mean(e **2)




learning

‘Supervised
' Notation
— Features x
— Targets y

— Predictions y
— Parameters 6
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‘Visualizing the cost function
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‘Finding good parameters

I . . .
« Want to find parameters which minimize our error...

« Think of a cost “surface”: error residual for that 6....

0o




Machine Learning and Data Mining

Linear regression:
Gradient descent & stochastic gradient descent
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‘Gradient descent

|

* How to change 6 to
improve J(6)?

* Choose a direction in
which J(0) is decreasing

(c) Alexander lhler



‘Gradient descent
I

o7  ° How to change 6 to
| J(6)?
0 BL, improve
J( ) * Choose a direction in
which J(0) is decreasing

 Derivative 0.J(6)
06

» Positive => increasing
* Negative => decreasing



‘Gradient descent in more dimensions
I

* Gradient vector
0o v [270 970)

= 06o 061
—V.J(8)

* Indicates direction of
steepest ascent

f1 (negative = steepest
descent)

(c) Alexander lhler



‘Gradient descent
I

- Initialization Initialize
« Step size Do |
— Can change as a function of iteration 0 <— 0 - Ve J(e)
- Gradient direction }while (af|VJ]| >€)

Stopping condition

.7 (8)

J(@) 96

) Alexander lhler



‘Gradient for the MSE

|
* MSE 7() = 1 Sy -6 27?2

m 4
J
. V=2 40)
J0) = — S @D — oz — 012 — ...
v m : 20 =1
0J _ 0 1 () )2 () G _
o0y 9 m Zj:( i(6) ) aeo a6, ﬁ/ (9909 "0 %

_ x(()])
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‘Gradient for the MSE
I

* MSE 7(§) = 1 Sy -6 27?2

m =
J
V=2 50)
J0) = — S @D — oz — 012 — ...
= m & =0 =1
J
0. d.J
VIO = oo . }



‘Gradient descent

'. Initialization

« Step size
— Can change as a function of iteration
« Gradient direction

+  Stopping condition

Initialize 6

Do {

6 0-aV,J0)
}while (of|VJ|| > ¢€)

1 . T
J(0) = — Z(y(J) 9.z )2

J
2 | .
VJ(8) = —— Z(y(J) —g. ) - [ac(()‘?)xgj) -
J

Error magnitude & Sensitivity to
direction for datum j each 0,

(c) Alexander lhler



Derivative of MSE

|

9 , , . .

VIO === (4D =020 [afal? . ]
T e d \u=, o/

Error magnitude & Sensitivity to

direction for datum j each 0,
* Rewrite using matrix form - (1) (1) T
55 0, T R o
v _ Oy«-+yUn . X _ : . .
Yy = _y(l) o ,y(m)] aj(()m) e :C%m)
2
VI =—-—(y" —6X") X
m 2

e =Y — X.dot( theta.T ); # error residual
DJ = - e.dot(X) * 2.0/m # compute the gradient

theta -= alpha * DJ # take a step

(c) Alexander Ihler



‘Gradient descent on cost function

! ! -20 . . : . . : . . :
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‘Comments on gradient descent

R Very general algorithm

— we’ |l see it many times

* Local minima
— Sensitive to starting point

(c) Alexander lhler



‘Comments on gradient descent

R Very general algorithm

— we’ ll see it many times

* Local minima
— Sensitive to starting point

- Step size
— Too large? Too small? Automatic ways to choose?
— May want step size to decrease with iteration

— Common choices:
* Fixed
 Linear: C/(iteration)
+ Line search / backoff (Armijo, etc.)
Newton’ s method

W ¢) Alexander h\/



Newton’s method

. Want to find the roots of f(x)
— “Root”: value of x for which f(x)=0

* Initialize to some point x
*  Compute the tangent at x & compute where it crosses x-axis

L 0— f(Z) /I f(Z)
Vi(z)= o, T A=z V)
* Optimization: find roots of V1(6) (“Step size” A = 1/VVJ ; inverse curvature)
0— V.J(6) , v.J(6)
0) = 0 =0— ————=
VVIO) ===~ = vV J(0)

— Does not always converge; sometimes unstable

— If converges, usually very fast

— Works well for smooth, non-pathological functions, locally quadratic

(Multivariate:
V J(0) = gradient vector
V2 J(#) = matrix of 2" derivatives
a/b = a b"!, matrix inverse)




‘Stochastic / Online Gradient Descent

. MSE

10 =S50, 5O =Y -0

« (Gradient

1 . N o
VIO = — 3 VIO V) = @Y —0-29) a2l ]
J

« Stochastic (or “online”) gradient descent:
— Use updates based on individual datum j, chosen at random
~ Atoptima, E|VJ;(8)] =VJ(@) =0
(average over the data)



‘Online gradient descent  rnitializes

Do {
for j=1:m

- Update based on each datum at a time

— Find residual and the gradient of its part
of the error & update 0« 0-aV,J0)

} while (not done)

| | | | | | | _20
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‘Online gradient descent  tnitializes

Do {
for j=1:m

- Update based on each datum at a time

— Find residual and the gradient of its part
of the error & update 0« 0-aV,J0)

} while (not done)
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‘Online gradient descent  tnitializes

Do {
for j=1:m

- Update based on each datum at a time

— Find residual and the gradient of its part
of the error & update 0« 0-aV,J0)

} while (not done)
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‘Online gradient descent  tnitializes

Do {
for j=1:m

- Update based on each datum at a time

— Find residual and the gradient of its part
of the error & update 0« 0-aV,J0)

} while (not done)
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‘Online gradient descent

Update based on each datum at a time

— Find residual and the gradient of its part
of the error & update

20

1 1571

71 10f

R

| _15,

Initialize 6
Do {
for j=1:m
0« 0-aV,J0)
} while (not done)

L -20
(c%‘i\lexandgr Ihfer




‘Online gradient descent

- Update based on each datum at a time

— Find residual and the gradient of its part
of the error & update

20

Initialize 6
Do {
for j=1:m
0« 0-aV,J0)
} while (not done)

1 1571

71 10f

‘o'

R

| _15,
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‘Onllne gradient descent
Initialize 6

T
1j(0) = (v 8- 20"y o |

; T for jJj=1:m
VJi(0) = =29 — 029D ). 22 ]
i (@) ( )< lzg @y ] 0 0-07,0)

i while (not converged
* Benefits } ( ged)

— Lots of data = many more updates per pass
— Computationally faster

*  Drawbacks
— No longer strictly “descent”
— Stopping conditions may be harder to evaluate
(Can use “running estimates” of J(.), etc.)

* Related: mini-batch updates, etc.

(c) Alexander lhler



Machine Learning and Data Mining

Linear regression: direct minimization
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\MSE Minimum

« Consider a simple problem

— One feature, two data points
— Two unknowns: 6,, 6,
— Two equations:

y(l) — 90 + 9133(1)
y(Z) — 90 + 9133(2)

« Can solve this system directly:
T=gxT = 6=y"(X")"

 However, most of the time, m >n

— There may be no linear function that hits all the data exactly
— Instead, solve directly for minimum of MSE function

(c) Alexander lhler



|SSE Minimum
I

VI@)=-@y' -6x")- X = 0

- Reordering, we have ®
I X —0xT X = 0
—0XT . X

y"
6 = vy X(XTX)—1

« X (XT X)1is called the “pseudo-inverse”

- |If XT is square and independent, this is the inverse
* If m>n: overdetermined; gives minimum MSE fit

(c) Alexander lhler



|Python SSE
I

* This is easy to solve in Python / NumPy...

Q _ QT X(XT X)—l
# y = np.matrix( [[yl], .. , [ym]] )
# X = np.matrix( [[x1 O .. x1 n], [x2 0 .. x2 n], ..] )

(o)

$ Solution 1: “manual”
th = y.T * X * np.linalg.inv(X.T * X);

[o)

% Solution 2: “least squares solve”
th = np.linalg.lstsqg(X, Y);

(c) Alexander Ihler



Normal equations

|
V@) =0 = @' -6x")-X = 0

* Interpretation:
— (y - 6X) = (y - yhat) is the vector of errors in each example
— X are the features we have to work with for each example
— Dot product = 0: orthogonal

J_1 gT — [y(l) o y(m)]
xT; = [56,51) .. .a:(m)]

1

(c) Alexander lhler



Normal equations

|
V@) =0 = @' -6x")-X = 0

* Interpretation:
— (y - 6X) = (y - yhat) is the vector of errors in each example
— X are the features we have to work with for each example
— Dot product = 0: orthogonal

« Example:

y=1[1 3 37
zo=[1 11"  9g—11.00 057
O O L1 = []‘ 2 4]T

e=(y—g)=[-057 0.85 —0.28]"

(c) Alexander lhler



Effects of MSE choice

R Sensitivity to outliers

18

162 cost for this one datum

Heavy penalty for large errors

Do -15 10

ot KR
o )
0 2 4 6 8 10 12 14 16 1‘3. N

0 1 1 ‘ ! 1 ! 1 1 !
*

o, a®
(c) Alexander lhler e



L1 error

18

(c) Alexander Ihler

m— .2, original data
m— .1, original data

L1, outlier data



‘Cost functions for regression
I

by : (y—19)° (MSE)

A

b ly—9] AR

Something else entirely...

¢ — log(exp(—(y — §)%) + ¢)

(22?)

“Arbitrary” functions can’ t be — (y—19) —
solved in closed form...
- use gradient descent

(c) Alexander lhler



Machine Learning and Data Mining

Linear regression: nonlinear features
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‘More d

/ / / / /
———l__ @l _ L __L_ \0 t 4 y /
. B

IIIII —_—— — —_—— — _—
\ ° ‘e Q/ J SN
\ \ \ [ ) \ /y\ ¥ d
3 & X

_A_ @ N\

[ Y \ \ vo\e o
l @\ \ e, \/
\ \ o ) b4

S W S W VN A
ol A
o \0 ] \ @\,

\ \ A
WII{IILII.ILIIILI.\ \

o \ \ \

\ \ \ \

@ \ \ ™~

—— ] 5 X

7 7 7 7 3

O < AN o

N N (qV] N

>

6o 61 65]
x = |1 1 2]

S
|

BN

(c) Alexander Ihler



Nonlinear functions

* What if our hypotheses are not lines?
— EX: higher-order polynomials

Order 1 polynomial Order 3 polynomial
1 8 T T T T T T T T T 1 8 T 3 3 T

16|

14L

12

10

0 r r - r r r r r r r
0

0 2 4 6 8 10 12 14 16 18 20

(c) Alexander lhler



‘ Nonlinear functions
I

» Single feature x, predict target y:

D:{(:U(j),y(j))} 3)(33):90+91x+92£62+93x3

\U, Add features: \U,

D = {([x(j)a (CU(j))Qa (x(j))g}ay(j))} §(x) = 0o + 0121 + O2x2 + 0323

Linear regression in new features

« Sometimes useful to think of “feature transform”
q)(x):[laxaxzaxga"'] Q(I’):Q(I)(CC)

(c) Alexander lhler



‘Higher-order polynomijals

* Fitin the same way
» More “features”

Order 2 polynomial
18 T T T . c .

18

Order 1 polynomial

T T T T T r r

r r r r
6  OrBerapdQnomih2 14 16 18 20

T T T T r r




Features

e In general, can use any features we think are useful

« Other information about the problem
— Sq. footage, location, age, ...

* Polynomial functions
— Features [1, x, x2, x3, ...]

* Other functions
— 1/x, sqrt(x), X4 * X, ...

“Linear regression” = linear in the parameters
— Features we can make as complex as we want!

(c) Alexander lhler



‘Higher-order polynomials
I

*  Are more features better?

- “Nested” hypotheses

— 2"d order more general than 1,
— 3 order “ “than 2, ...

* Fits the observed data better

0.5

0.57

0.57

0.5

0.5




‘Overfitting and complexity

* More complex models will always fit the training data
better

- But they may “overfit” the training data, learning
complex relationships that are not really present

Simple model omplex model

X (c) Alexander lhler X ]



Test data

 After training the model

« Go out and get more data from the world

— New observations (x,y)
« How well does our model perform?

L
%

B

*

(c) Alexander lhler
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‘Tralmng versus test error

Plot MSE as a function
of model complexity

— Polynomial order

Decreases

— More complex function
fits training data better

What about new data?

Oth to 1st order
— Error decreases

— Underfitting
Higher order
— Error increases
— Opverfitting

30

25

201

15¢

101

Mean squared error

Training data

New, “test” data

o

0.5 1 1.5 2

Polynomial order
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Machine Learning and Data Mining

Linear regression: bias and variance
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Inductive bias

The assumptions needed to predict examples we
haven’t seen

Makes us “prefer’ one model over another
Polynomial functions; smooth functions; etc

Some bias is necessary for learning!

Simple model Complex model




‘Bias & variance
I

“The world” Data we observe
o
o
y(z) =6y + 012 + 1D
o
o
eo®
o
o

Three different possible data sets:
12 T T T 12 - -

12
10} 10}
» at » at
6 o 3
- »
- 4t S 4t
* * ! % ol
of ot
5 10 15 20 % 5 10 15 20 D

(c) Alexander Ihler
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‘Bias & variance
I

“The world”

Data we observe

Each would give
different
predictors for any
polynomial degree:

Three different possible data sets:
12 - - - 12 - -

10t
» at
6t .
-
e 4
» * !
0.
5 10 15 20 % 10 15 20
Poly Order 0 Poly Order 1
12 T T . 12 - . .
10t
8t L
»
di : LY 4
*
4 G" L
! * g%
0 L
_2 L N
0 5 10 15 20

(c) Alexander lhler
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‘Detecting overfitting
I

Overfitting effect

— Do better on training data than on future data
— Need to choose the “right” complexity

«  One solution: “Hold-out” data

» Separate our data into two sets
— Training
— Test

* Learn only on training data

* Use test data to estimate generalization quality
— Model selection

« All good competitions use this formulation
— Often multiple splits: one by judges, then another by you

(c) Alexander lhler



What to do about under/overfitting?

+ Ways to increase complexity?

— Add features, parameters

— We’ll see more...

- Ways to decrease complexity?
— Remove features (“feature selection”™)

— “Fail to fully memorize data”

» Partial training
+ Regularization

A

Predictive
Error

Error on Test Data

Error on Training Data

»

Model Complexity

+“—>

Ideal Range
for Model Complexity

(c) Alexander Ihiet

v

Underfitting Overfitting



Machine Learning and Data Mining

Linear regression: regularization
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Linear regression

B Linear model, two data

Quadratic model, two data?

— Infinitely many settings with zero error
— How to choose among them?

Higher order coefficents = 07

— Uses knowledge of where features came from...

Could choose e.g. minimum magnitude:
min 807 s.t. J(@) =0

A type of bias: tells us which models to prefer

(c) Alexander lhler



‘ Regularization

'. Can modify our cost function J to add “preference” for

certain parameter values

1
J(0) = §(Q—QXT) ° (g—QXT)TJrOzOQT

L, penalty:
* New solution (derive the same way) Ridge regression

0 = yXX'X+al)!

— Problem is now well-posed for any degree

* Notes:
— “Shrinks” the parameters toward zero
— Alpha large: we prefer small theta to small MSE

— Regularization term is independent of the data: paying more
attention reduces our model variance

(c) Alexander lhler



‘ Regularization
I

- Compare between unreg. & reg. results

Alpha =0
(Unregularized) o5t

Alpha =1

Iexalader Thier

0.5 1 0 0.5 1



Different regularization functions
' More generally, for the L, regularizer: () |6;” )%

[sosurfaces: [|0)]|, = constant

\ i
2N

p=2
Quadratic

e
\

p=0.5 p=1 p=4
Lasso

L, =limitas p — 0: “number of nonzero weights”, a natural notion of complexity

(c) Alexander lhler



‘Regularization: L1 vs L2

. Estimate balances data term & regularization term

Minimizes data term

Minimizes combination

91 —
Minimizes regularization

(c) Alexander lhler
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‘Regularization: L1 vs L2

. Estimate balances data term & regularization term

 Lasso tends to generate sparser solutions than a quadratic regularizer.

.

Data term only:
all 6. non-zero

Regularized estimate:
some 6. may be zero

|<D>

?
-
NN
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Machine Learning and Data Mining

Linear regression: hold-out, cross-validation
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Model selection

| *  Which of these models fits the data best?

— p=0 (constant); p=1 (linear); p=3 (cubic); ...
*  Or, should we use KNN? Other methods?

*  Model selection problem
— Can’t use training data to decide (esp. if models are nested!)

* Wanttoestimate [ T(u.i(x: D J = loss function (MSE)
(x’y)[ <y’ y( ’ ))] D = training data set
p=0
17 .
e ®
P L ]
>
0.5r ™
%
0.




Hold-out method

. Validation data
— “Hold out” some data for evaluation (e.g., 70/30 split)

— Train only on the remainder

* Some problems, if we have few data:
— Few data in hold-out: noisy estimate of the error
— More hold-out data leaves less for training!

- 88 79

Training 32 2

data %7 =

68 73

7 -16

20 43

MISE=331.8 Validation - -

L L L L L L L ! 17 16
(c) Alexander Ihler data
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Cross-validation method

B K-fold cross-validation

— Divide data into K disjoint sets
— Hold out one set (= M / K data) for evaluation
— Train on the others (= M*(K-1) / K data)

Split 1:
MSE = 331.8
Training
data
Split 2: Validation
MSE = 361.2 data
3-Fold X-Val MSE
Split 3: » =464.1
MSE = 669.8
(c) Alexander lhler
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Cross-validation method

* K-fold cross-validation
— Divide data into K disjoint sets
— Hold out one set (= M / K data) for evaluation
— Train on the others (= M*(K-1) / K data)

Split 1:
MSE = 280.5
Training
data
Split 2: Validation
MSE = 3081.3 data
[
° »3-Fo|d X-Val MSE
/o 1 Split 3: =1667.3
. | MSE =1640.1
. (c) Alexander lhler
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Cross-validation

I
* Advantages:
— Lets us use more (M) validation data
(= less noisy estimate of test performance)

* Disadvantages:

— More work
* Trains K models instead of just one

— Doesn’t evaluate any particular predictor
* Evaluates K different models & averages
* Scores hyperparameters / procedure, not an actual, specific predictor!

* Also: still estimating error for M’ < M data...

(c) Alexander lhler



Learning curves

Plot performance as a function of training size
— Assess impact of fewer data on performance
Ex: MSEO - MSE (regression)
or 1-Err (classification)

* Few data
— More data significantly
improve performance
*  “Enough” data
— Performance saturates

1/ MSE

S

Training data size,(m)

* If slope is high, decreasing m (for validation / cross-validation) might have a
big impact...

(c) Alexander lhler



Leave-one-out cross-validation

B When K=M (# of data), we get

— Train on all data except one
— Evaluate on the left-out data
— Repeat M times (each data point held out once) and average

Loy
MSE = ... . T
rainin
datag > ;
o 27 30
Validation = -
MSE = ... data I
20 43
»LOO_X-VaI MSE - =
17 16
87 94
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Cross-validation Issues

* Need to balance:
— Computational burden (multiple trainings)
— Accuracy of estimated performance / error

* Single hold-out set:
— Estimates performance with M’ < M data (important? learning curve?)
— Need enough data to trust performance estimate
— Estimates performance of a particular, trained learner

* K-fold XVal
— K times as much work, computationally
— Better estimates, still of performance with M’ < M data

* LOO XVal
— M times as much work, computationally
— M’ &= M, but overall error estimate may have high variance

(c) Alexander lhler



