
Last Modified: January 5, 2021

CS 175: Project in AI (in Minecraft): Winter 2021

Assignment 1: Finding the Shortest Path
Sameer Singh
https://canvas.eee.uci.edu/courses/34142

1 Task Description

In this assignment, you have to guide the player agent in Minecraft through a maze to reach the goal block. For
this exercise, we will assume that the agent can see the whole maze, i.e. it is completely observable. Given this
information, the agent has to reach the goal in the minimum number of moves.

This assignment is based heavily on tutorial_7.py in the Malmo Python tutorials, so please follow the
tutorials 1 through 5 to familiarize yourself with the API and the Malmo platform (tutorial 6 is not relevant yet).

1.1 Provided Source Code

We have provided two Python files. The most important one is assignment1.py which contains the complete
code to setup the Malmo environment with different mazes, and have the agent run through it. The provided
implementation is incomplete, and the agent needs your help to solve the maze most efficiently. We have also
provided priorit_dict.py , a simple implementation of a heap-based priority queue. See the implementation
for details, and discuss on Campuswire if you have any doubts. You can ignore this implementation if you prefer.

1.2 Setup and Running the Code

Assuming you have installed Malmo and started working your way through the tutorials, all you need to do to run
this assignment is to copy the two files above to the Python_Examples folder, and after launching Minecraft, run
python assignment1.py (Python 3 or higher). If everything run successfully, the agent should do nothing while
the timer counts down for each of the ten missions. The output in the terminal should look like the following:

Size of maze: 6
Waiting for the mission 1 to start
Mission 1 running.
Output (start,end) 1 : (None, None)
Output (path length) 1 : 0
Output (actions) 1 : []
Error: out of actions, but mission has not ended!
Error: out of actions, but mission has not ended!

Mission 1 ended
Size of maze: 6
Waiting for the mission 2 to start
Mission 2 running.
Output (start,end) 2 : (None, None)
Output (path length) 2 : 0
Output (actions) 2 : []
Error: out of actions, but mission has not ended!
Error: out of actions, but mission has not ended!

1.3 Overview of the Code

As mentioned before, much of this assignment is based on tutorial_7.py , so please refer to the Malmo Tutorials
in the Python_Examples directory. The source code creates a series of increasing difficult mazes made of
diamond_block blocks as the floor, each with a start (emerald_block) and an end (redstone_block) block. The
mission starts with the player at the start block, and ends when the player reaches the end block. Make sure you
are at least somewhat familiar with the whole source code, however the main control code that is relevant for
your implementation are in the following lines:

Assignment 1 UC Irvine 1/ 3

https://canvas.eee.uci.edu/courses/34142


CS 175: Project in AI (in Minecraft) Winter 2021

420

399

378

357

336

315

294

273

252

231

210

189

168

147

126

105

84

63

42

21

0

421

400

379

358

337

316

295

274

253

232

211

190

169

148

127

106

85

64

43

22

1

422

401

380

359

338

317

296

275

254

233

212

191

170

149

128

107

86

65

44

23

2

423

402

381

360

339

318

297

276

255

234

213

192

171

150

129

108

87

66

45

24

3

424

403

382

361

340

319

298

277

256

235

214

193

172

151

130

109

88

67

46

25

4

425

404

383

362

341

320

299

278

257

236

215

194

173

152

131

110

89

68

47

26

5

426

405

384

363

342

321

300

279

258

237

216

195

174

153

132

111

90

69

48

27

6

427

406

385

364

343

322

301

280

259

238

217

196

175

154

133

112

91

70

49

28

7

428

407

386

365

344

323

302

281

260

239

218

197

176

155

134

113

92

71

50

29

8

429

408

387

366

345

324

303

282

261

240

219

198

177

156

135

114

93

72

51

30

9

430

409

388

367

346

325

304

283

262

241

220

199

178

157

136

115

94

73

52

31

10

431

410

389

368

347

326

305

284

263

242

221

200

179

158

137

116

95

74

53

32

11

432

411

390

369

348

327

306

285

264

243

222

201

180

159

138

117

96

75

54

33

12

433

412

391

370

349

328

307

286

265

244

223

202

181

160

139

118

97

76

55

34

13

434

413

392

371

350

329

308

287

266

245

224

203

182

161

140

119

98

77

56

35

14

435

414

393

372

351

330

309

288

267

246

225

204

183

162

141

120

99

78

57

36

15

436

415

394

373

352

331

310

289

268

247

226

205

184

163

142

121

100

79

58

37

16

437

416

395

374

353

332

311

290

269

248

227

206

185

164

143

122

101

80

59

38

17

438

417

396

375

354

333

312

291

270

249

228

207

186

165

144

123

102

81

60

39

18

439

418

397

376

355

334

313

292

271

250

229

208

187

166

145

124

103

82

61

40

19

440

419

398

377

356

335

314

293

272

251

230

209

188

167

146

125

104

83

62

41

20

North

South

EastWest

emerald_block (start)

redstone_block (end)

diamond_block

air

Figure 1: Grid Layout: Layout of the two-dimensional grid laid out as a one-dimensional array. The location of
the maze, especially the start and end blocks, may be different in the assignment. The array contain string-values
representing the four types of possible blocks.

223 grid = load_grid(world_state)
224 start, end = find_start_end(grid) # implement this
225 path = dijkstra_shortest_path(grid, start, end) # implement this
226 action_list = extract_action_list_from_path(path)

We first get the array of blocks that consists of the 2-dimensional maze from Malmo in load_grid . Then, we want
to identify the start and the end blocks (each represented by an integer index into the grid array). Given the
start and the end blocks, and the whole maze, we want to compute the shortest path of blocks from the start to
the end, computed using Djikstra’s algorithm. Finally, we convert these list of blocks into Malmo actions that are
carried out by the agent. We provide the correct implementation of the first and the last functions, but leave the
correct implementation of the second and the third functions to you (more on this later).

1.4 Grid Layout

It is important for you to understand how the grid is laid out. We have requested the 21 × 21 grid of blocks
from the world that lie at the floor of the player, with the player at the center of it ((10,10), if zero-indexed).
This two-dimensional is laid out as a single-dimensional array of strings (representing the type of the block) in
a row-major way (where row is the east-west direction), i.e. the (i, j) coordinate is represented by the index
j × 21+ i, where j is the east-west coordinate, and i is the north-south coordinate. For the precise indexing, see
the illustration in Figure 1.

Since the grid is represented by a single-dimensional array, you need to get the neighboring blocks of the
current block, represented by an integer index i. Looking at extract_action_list_from_path should give you
a hint; the blocks to the immediate left (west) and right (east) are of course represented by i − 1 and i + 1, while
the blocks in the north and south require jumping one whole row, thus i−21 and i+21, respectively. The function
extract_action_list_from_path uses this to go the other way: if block i and j are next to each other on the
grid, the action to get from i to j is represented by j − i, i.e. if j − i is +1, the move is moveeast , if −1, the move
is movewest , if −21, the move is movenorth , and if +21, the move is movesouth .

Note: The player is facing south, so do not get confused if movesouth is forward.

Assignment 1 UC Irvine 2/ 3



CS 175: Project in AI (in Minecraft) Winter 2021

2 What Do I Submit?

Note: On Canvas, after pasting your code, highlight all the lines, click on the drop
down that says "Paragraph", then select "Preformatted". The font of those lines
should change. When you submit those lines will be formatted as code.

Here we’ll describe what exactly you need to submit to the assignment on Canvas.

1. Code: Finding Start and End Blocks (5 points): As a simple exercise, implement the find_start_end
function, that takes the grid as an array of string describing the block types, and returns the indices of the
start and the end block. This should only require, at maximum, a few lines of code. Submit this snippet as
your submission.

2. Output: Start and End Block Indices (5 points): Run the code with the above implemented, and look at
the output lines that start with Output (start,end) and paste them as your submission. There should be
10 lines, one for each mission.

3. Code: Shortest Path Implementation (50 points): Implement Dijkstra’s algorithm in order to find the
shortest path from the source to the destination. The set of possible actions from each block is one step in
north, south, east, or west directions, i.e. taking multiple or diagnol steps is not allowed. The path you
compute should be shortest in terms of number of moves (all of them cost the same), should be a list of
block indices (integers), should include both the start and the end blocks, and of course, should not contain
any air blocks. Submit the complete implementation of your function.

4. Output: Length of the Shortest Paths (30 points): Run the code with the above implemented, and look
at the output lines that start with Output (path length) and with Output (actions) and paste them
as your submission. There should be 20 lines, two for each mission.

5. Comments: Any comments about your submission that you want to bring to our attention as we are grading
it. This is completely optional, I expect most of you to leave this empty.

6. Statement of Collaboration (10 points): It is mandatory to include a Statement of Collaboration with
respect to the guidelines below. Include the names of everyone involved in the discussions (especially
in-person ones), and what was discussed. You should also include the links to all online resources you used
for the assignment in this section.

All students are required to follow the academic honesty guidelines posted on the course website. For
programming assignments, in particular, I encourage the students to organize (perhaps using Campuswire) to
discuss the task description, assignment requirements, bugs in our/Malmo code, and the relevant technical content
before they start working on it. However, you should not discuss the specific solutions, and, as a guiding principle,
you are not allowed to take anything written or drawn away from these discussions (i.e. no recordings/screenshots,
or if in person, photographs of the blackboard, written notes, etc.). The same holds for online resources: you are
allowed to read the description of algorithms, but your code should be your own. Especially after you have started
working on the assignment, try to restrict the discussion to Campuswire as much as possible, so that there is no
doubt as to the extent of your collaboration.

Acknowledgements

This homework was originally created with help from Moshe Lichman.

Assignment 1 UC Irvine 3/ 3


	Task Description
	Provided Source Code
	Setup and Running the Code
	Overview of the Code
	Grid Layout

	What Do I Submit?

