
Math 220A Fall 00 D.A. Martin

Mathemati
al Logi
 and Set Theory

1 Basi
 set theory

Iterative 
on
ept of set.

(a) Sets are formed in stages 0; 1; : : : ; s; : : : :

(b) For ea
h stage s, there is a next stage s+ 1.

(
) There is an \absolute in�nity" of stages.

(d) V

s

= the 
olle
tion of all sets formed before stage s.

(e) V

0

= ; = the empty 
olle
tion.

(f) V

s+1

= the 
olle
tion of (a) all sets belonging to V

s

and (b) all sub
ol-

le
tions of V

s

not previously formed into sets.

Remarks. (1) A set is formed after its members. (2) V

s

itself is formed

as a set at stage s.

Formal language for talking about sets.

Symbols:

v

0

; v

1

; v

2

; : : : variables

= meaning \is identi
al with"

2 meaning \is a member of"

: meaning \not"

^ meaning \and"

9 meaning \there is a"

(

)

Formulas (indu
tive de�nition):

(i) If x and y are variables, then x = y and x 2 y are (atomi
) formulas.

(ii) If x is a variable and ' and  are formulas, then :', (' ^  ), and

(9x)' are formulas .

(iii) Nothing is a formula unless (i) and (ii) require it to be.
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Free o

uren
es of a variable in a formula:

(i) All o

urren
es of variables in atomi
 formulas x 2 y and x = y are

free.

(ii) An o

urren
e of x in :' is free in just in 
ase the 
orresponding

o

urren
e of x in ' is free.

(iii) An o

urren
e of x in (' ^  ) is free in just in 
ase the 
orresponding

o

urren
e of x in ' or in  is free.

(iv) An o

urren
e of x in (9y)' is free in just in 
ase x is not y and the


orresponding o

urren
e of x in ' is free.

Non-free o

urren
es of a variable in a formula are 
alled bound o

urren
es.

We write \'(x

1

; : : : ; x

n

)" for \'" to indi
ate that all variables o

urring free

in ' are among the (distin
t, in the default 
ase) variables x

1

; : : : ; x

n

.

Abbreviations:

(' _  ) for :(:' ^ : )

('!  ) for (:' _  )

('$  ) for (('!  ) ^ ( ! '))

(8x) for :(9x):

x 6= y for :x = y

x =2 y for :x 2 y

We often omit parentheses, and we often write \x," \y," et
., when when

we should be writing \v" with subs
ripts.

The Zermelo{Fraenkel (ZFC) Axioms. Below we list the formal ZFC

axioms. Following ea
h axiom, we give in parentheses an informal version

of it. Our oÆ
ial axioms are the formal ones.

For all the axioms other those of the Comprehension and Repla
ement

S
hema, let us use the following s
heme of \abbreviation":

x for v

1

y for v

2

z for v

3

u for v

4

w for v

5

y

1

for v

6

y

2

for v

7

For the two s
hemata, the variables are arbitrary. I.e., there is an in-

stan
e of Comprehension for ea
h formula ' and sequen
e x; y; z; w

1

; : : : ; w

n

of distin
t variables that 
ontains all variables o

urring free in ' plus the

variable y that does not so o

ur.
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Axiom of Set Existen
e:

(9x)x = x

(There is a set.)

Axiom of Extensionality:

(8x)(8y) ((8z)(z 2 x$ z 2 y)! x = y)

(Sets that have the same members are identi
al.)

Axiom of Foundation:

(8x) ((9y) y 2 x! (9y)(y 2 x ^ (8z)(z =2 x _ z =2 y)))

(Every non-empty set x has a member that has no members in 
ommon

with x.)

Axiom S
hema of Comprehension: For ea
h formula '(x; z; w

1

; : : : ; w

n

),

(8w

1

) � � � (8w

n

)(8z)(9y)(8x) (x 2 y $ (x 2 z ^ '))

(For any set z and any property P , there is a set whose members are those

members of z that have property P .)

Axiom of Pairing:

(8x)(8y)(9z)(x 2 z ^ y 2 z)

(For any sets x and y, there is a set to whi
h both x and y belong, i.e., of

whi
h they are both members.)

Axiom of Union:

(8x)(9y)(8z)(8w) ((w 2 z ^ z 2 x)! w 2 y)

(For any set x, there is a set to whi
h all members of members of x belong.)

The axioms of Pairing, Union, and Comprehension give us some opera-

tions on sets. For any x and y, fx; yg is the set whose members are exa
tly

x and y. (It exists by Pairing and Comprehension.) Let fx j '(x; : : :)g be

the set of all x su
h that '(x; : : :) holds, if this is a set. For any set x,

U(x) = fz j (9y)(z 2 y ^ y 2 x)g:
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(U(x) exists by Union and Comprehension.) For any sets x and y, x[y is the

set U(fx; yg). For any sets x

1

; : : : ; x

n

, fx

1

; : : : ; x

n

g is the set whose members

are exa
tly x

1

; : : : ; x

n

. (To see that this set exists, note that fxg = fx; xg for

any set x and that fx

1

; : : : ; x

m+1

g = fx

1

; : : : ; x

m

g[fx

m+1

g for 0 � m < n.)

In the statement of the next axiom, \(9!y)" is short for the obvious way

of expressing \there is exa
tly one y."

Axiom S
hema of Repla
ement: For ea
h formula '(x; y; z; w

1

; : : : ; w

n

),

(8w

1

) � � � (8w

n

)(8z) ((8x)(x 2 z ! (9!y)')

! (9u)(8x)(x 2 z ! (9y)(y 2 u ^ ')))

(For any set z and any relation R, if ea
h member x of z bears R to at

exa
tly one set y

x

, then there is a set to whi
h all these y

x

belong.)

Remark. by Comprehension, Repla
ement 
an be strengthened to give

(8w

1

) � � � (8w

n

)(8z) ((8x)(x 2 z ! (9!y)')

! (9u)(8y)(y 2 u$ (9x)(x 2 z ^ '))) :

De�ne S(x) = x [ fxg. Note that ; exists by Set Existen
e and Com-

prehension.

Axiom of In�nity:

(9x) (; 2 x ^ (8y)(y 2 x! S(y) 2 x))

(There is a set that has the empty set as a member and is 
losed under the

operation S.)

Let \z � x" abbreviate \(8w)(w 2 z ! w 2 x)."

Axiom of Power Set.

(8x)(9y)(8z)(z � x! z 2 y)

(For any set x, there is a set to whi
h all subsets of x belong.)

Let P(x) = fz j z � xg. (It exists by Power Set and Comprehension.)

Let x \ y = fz j z 2 x ^ z 2 yg. (It exists by Comprehension.)

4



Axiom of Choi
e:

(8x) ((8y

1

)(8y

2

) ((y

1

2 x ^ y

2

2 x)! (y

1

6= ; ^ (y

1

= y

2

_ y

1

\ y

2

= ;)))

! (9z)(8y)(y 2 x! (9!w)w 2 y \ z)))

(If x is a set of non-empty sets no two of whi
h have any members in 
ommon,

then there is a set that has exa
tly on member in 
ommon with ea
h member

of x.)

Remark. For all the axioms ex
ept Comprehension and Repla
ement, the

formal and informal versions are equivalent. But the formal Comprehension

and Repla
ement S
hemata are prima fa
ie weaker than the informal ver-

sions. The formal s
hemata apply, not to arbitrary properties and relations,

but only to properties and relations 
hara
terizable by formulas of the for-

mal language. (Warning: We shall later use the word \relation" in a pre
ise

te
hni
al sense quite di�erent from the intuitive way we used the word in

stating the informal version of Repla
ement.)

Justi�
ations of the axioms. The ZFC axioms are supposed to be

true of the iterative 
on
ept of set. Following is an axiom-by-axiom attempt

to explain why.

Set Existen
e. ; belongs to V

1

.

Extensionality. It follows from the notion of identity for 
olle
tions.

Foundation. Assume x 6= ;. Let w be the 
olle
tion of all sets formed

before any member of x is formed. Some member of x is formed at some

stage s. Sin
e w is a sub
olle
tion of V

s

, 
lause (f) of the iterative 
on
ept

implies that w is formed as a set at some stage s

1

no later than s. No y 2 x


an be formed at a stage s

2

before s

1

, for then w would be a sub
olle
tion

of V

s

2

and so would be formed at or before s

2

. If no y 2 x were formed at

s

1

, then V

s

1

+1

would be in
luded in w, and so w would belong to itself, an

impossibility. Any y 2 x formed at s

1

has the right properties.

Comprehension. The desired y is a sub
olle
tion of z and so of V

s

, where

z is formed at s.

Pairing. If x and y are formed at or before s, then they belong to V

s+1

,

whi
h therefore works as z.

Union. If x is formed at s, then all members of x, and so all members

of members of x, belong to V

s

. Hen
e V

s

works as y.

Repla
ement. For ea
h x 2 z, let s

x

be the stage at whi
h the unique y

su
h that '(x; y; z; w

1

; : : : ; w

n

) is formed. The 
olle
tion of all these s

x

is no

5



larger than the set z, so \absolute in�nity" demands that there be a stage

s later than all the s

x

. Then V

s

works as u.

In�nity. By absolute in�nity, there is an in�nite stage s. Let x be the


olle
tion of all y in V

s

that are formed at �nite stages. Then x has the

required properties and is formed at or before s.

Power Set. If x is formed at s and if z � x, then z � V

s

and so z 2 V

s+1

.

Thus V

s+1

works for y.

Choi
e. If x is formed at s, then we are looking for a z that might as

well be a sub
olle
tion of U(x) � V

s

. What we have to 
onvin
e ourselves

is that su
h a sub
olle
tion exists.

The ordered pair hx; yi of sets x and y is ffxg; fx; ygg. Note that

hx; yi = hz; wi $ (x = z ^ y = w):

Exer
ise 1.1. Write a formula of the formal language expressing the state-

ment that w = hx; yi.

The Cartesian produ
t u� v of sets u and v is fhx; yi j x 2 u ^ y 2 vg.

Theorem 1.1. u� v always exists.

Proof 1. Let x 2 u . Then (8y2v)(9!w)w = hx; yi. Here, and later, we use

obvious abbreviations, su
h as \(8y 2 v) : : : ;" without expli
it mention. By

Repla
ement and Comprehension, let z

x

= fw j (9y 2 v)w = hx; yig. Then

(8x 2 u)(9!z) z = z

x

. (Note that there is a formula  (x; z; u; v) expressing

the statement that z = z

x

.) By Repla
ement and Comprehension, let q =

fz

x

j x 2 ug. The Cartesian produ
t of u and v is U(q). �

Proof 2. P(P(u [ v)) exists by Power Set and Comprehension. If x 2 u

and y 2 v, then hx; yi 2 P(P(u [ v)). Thus u� v exists by Comprehension.

�

Remark. Proof 1 used Repla
ement but not Power Set. Proof 2 used

Power Set but not Repla
ement.

A relation is a set of ordered pairs. A fun
tion is a relation f su
h that

(8x)(8y

1

)(8y

2

)((hx; y

1

i 2 f ^ hx; y

2

i 2 f)! y

1

= y

2

):
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The de�nitions of a one-one fun
tion, the domain of a fun
tion, and the

range of a fun
tion are the obvious ones. The notation f : x! y means, as

usual, that f is a fun
tion whose domain is x and whose range is � y.

A set r is a linear ordering of a set x if r is a relation in x (i.e., r �

x� x) and r linearly orders x in the usual stri
t sense (i.e., we require that

hy; yi =2 r).

A relation r is wellfounded if

(8x)(x 6= ; ! (9y 2 x)(8z 2 x) hz; yi =2 r):

Example. Let u be a set. Let

2�u = fhz; yi 2 u� u j z 2 yg:

The Axiom of Foundation says that 2�u is wellfounded for every u.

We say that r is a wellordering of x if r is a linear ordering of x and r

is wellfounded. We say that r wellorders x if r is a relation and r \ (x� x)

is a wellordering of x.

A set x is transitive if U(x) � x.

An ordinal number is a set x su
h that

(1) x is transitive;

(2) 2�x wellorders x.

Remark. Foundation implies that (2) is equivalent with the assertion

that 2�x linearly orders x.

Exer
ise 1.2. Let x and y be ordinal numbers. Show, without using Foun-

dation, that

x 2 y _ y 2 x _ x = y:

Hint. Let z = x \ y. Show that z is an ordinal number. Next show

that z 2 x or z = x and also that z 2 y or z = y. For the �rst of

these, assume that z 6= x. Sin
e z � x, Extensionality implies that the set

xnz = fw2x j w =2 zg is non-empty and so has an 2-least member u. Prove

that z and u have the same members.

The set ! is de�ned as follows:

x 2 ! $ (8y)((; 2 y ^ (8z)(z 2 y ! S(z) 2 y)) ! x 2 y):
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! exists by In�nity and Comprehension. Note that

; 2 ! ^ (8z)(z 2 ! ! S(z) 2 !):

The members of ! are 
alled natural numbers.

Remark. In preparation for metamathemati
al results in 220C, we shall

make note of all uses of Foundation or Choi
e in proving theorems, and we

shall avoid using these axioms unne
essarily. In parti
ular, we avoid using

Foundation in the following proofs, although using it would simplify matters.

Theorem 1.2. ! is a set of ordinal numbers; i.e., every natural number is

an ordinal number.

Proof. Let y = fn 2 ! j n is an ordinal numberg; y exists by Comprehen-

sion. It is easy to see that ; 2 y. Let n 2 !. We assume that n 2 y and

show that S(n) 2 y. This will prove that ! � y, and so that y = !.

By the de�nition of S(n),

(8u)(u 2 S(n)$ (u 2 n _ u = n)):

Hen
e, for any v, v 2 U(S(n)), (v 2 U(n) _v 2 n)) (sin
e n is transitive)

v 2 n ) v 2 S(n). Hen
e S(n) is transitive.

n =2 n, sin
e otherwise 2�n is not wellfounded, indeed is not even a linear

ordering of n. Moreover n does not belong to any u 2 n, sin
e otherwise

transitivity gives n 2 n. Thus the relation 2 �S(n) is just the wellordering

2 �n with n stu
k on at the end. It is easy to prove that 2 �S(n) is a

wellordering, using the fa
t that 2�n is wellordering. �

Remark. The method used to prove the last theorem is mathemati
al

indu
tion. To prove that every natural number has a property (su
h as being

an ordinal number), we prove that ; has the property and that if n 2 ! has

the property then so does S(n). By the de�nition of !, this implies that

the set of all natural numbers with the property is all of !, i.e., that every

natural number has the property.

Theorem 1.3. ! is an ordinal number.

Proof. Let y = fn 2 ! j n � !g. To prove that ! is transitive, we must

show that y = !. We use mathemati
al indu
tion. Trivially ; 2 y. Suppose

n 2 y. Then u 2 S(n) , (u 2 n _ u = n) ) u 2 !. Hen
e S(n) � !. But

also S(n) 2 !, so S(n) 2 y.

8



Theorem 1.2 and its proof show that 2�! is irre
exive (n =2 n for n 2 !)

and asymmetri
 (m 2 n ! n =2 m for m and n elements of !). The fa
t

that every member of ! is transitive implies dire
tly that 2�! is a transitive

relation (k 2 m 2 n! k 2 n for for k, m, and n elements of !). Exer
ise 1.2

and Theorem 1.2 imply that 2�! is 
onne
ted (m 2 n_ n 2m_m = n for

m and n elements of !). Thus 2�! is a linear ordering of !.

To show that 2�! is wellfounded, we prove that ea
h non-empty subset

of ! has a (2 �!)-least element. Let v � ! with v 6= ;. Let n 2 v. If

n \ v = ;, then n is the (2 �!)-least element of v. Suppose then that

n \ v 6= ;. By Theorem 1.2, the set n \ v has an (2 �n)-least element m.

The transitivity of n implies that m is also the (2�!)-least element of v. �

Sometimes we shall want to assert theorem s
hemata rather than simple

theorems: we shall want to assert that, for every formula ', some senten
e

derived from ' is a theorem. A 
onvenient way to do this is to speak of


lasses. We shall speak of fx j '(x; : : :)g as a 
lass whether or not there is

a set fx j '(x; : : :)g. When the set exists, we identify the set and the 
lass.

When the set does not exist, we 
all fx j '(x; : : :)g a proper 
lass. Lower


ase letters will be used only for sets. Upper 
ase letters will be used mostly

for 
lasses.

Terms like relation, fun
tion, domain, wellfounded, et
. are de�ned for


lasses just as they are for sets. In 
lass language, the Comprehension

S
hema says that the interse
tion of a 
lass and a set is a set.

Let V = fx j x = xg. V is a proper 
lass, sin
e otherwise Comprehension

would yield the self-
ontradi
tory Russell set fx j x =2 xg.

An example of a proper 
lass relation is 2= fhx; yi j x 2 yg. In the hint

to Exer
ise 1.2, we wrote \2" instead of 2 �x and 2 � y. Retroa
tively this

notation is now explained.

Exer
ise 1.3. Prove that 2 is a proper 
lass.

If F is a 
lass fun
tion and A is a 
lass, then F �A = fhx; yi2F j x 2 Ag.

Theorem 1.4 (S
hema of De�nition by Re
ursion). Let F : V ! V .

There is a unique (set) g : ! ! V su
h that

(8n 2 !) g(n) = F (g � n):

Proof. We �rst show that

(8n 2 !)(9!g)(g : n! V ^ (8m 2 n) g(m) = F (g �m)):
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For n = ;, the empty g (i.e., ;) works. Suppose g : n! V is the unique fun
-

tion with the property (8m 2 n) g(m) = F (g �m). Let g

0

= g [ fhn; F (g)ig.

Clearly g

0

: S(n)! V and (8m 2 S(n)) g

0

(m) = F (g

0

�m). If h : S(n)! V

satis�es (8m 2 S(n))h(m) = F (h � m), then h � n = g by the uniqueness

property of g. But then h(n) = F (h � n) = F (g) = g

0

(n), and so h = g

0

.

Our 
on
lusion follows by indu
tion.

By Repla
ement and Comprehension, let

z = fy j (9n 2 !)(y : n! V ^ (8m 2 n) y(m) = F (y �m))g:

Suppose y

1

and y

2

belong to z. Let y

1

: n

1

! V and y

2

: n

2

! V .

If n

1

= n

2

then the uniqueness part of the assertion proved in the last

paragraph gives y

1

= y

2

. If n

1

2 n

2

then uniqueness gives y

1

= y

2

� n

1

; if

n

2

2 n

1

then uniqueness gives y

2

= y

1

� n

1

. Thus y

1

� y

2

or y

2

� y

1

. Let

g = U(z). It is easy to see that g is a fun
tion and that domain (g) � !.

To see that ! � domain (g), use the existen
e part of the assertion of the

last paragraph to get, for ea
h n 2 !, a y 2 z with y : S(n) ! V . It

is easy to see that (8n 2 !) g(n) = F (g � n). For uniqueness, assume that

(8n 2 !)h(n) = F (h � n). For ea
h n 2 !, g � S(n) = h � S(n), and so

g(n) = h(n). �

Remark. We needed Repla
ement only to get that g is a set (rather than

a proper 
lass).

Theorem 1.5. (8x)(9y)(y is transitive ^ x � y).

Proof. De�ne F : V ! V by

F (z) = u $

�

z is not a fun
tion and u = ;

or z is a fun
tion and u = x [ U(U(range (z))):

Let g be given by Theorem 1.4. Let y = U(range (g)). Suppose v 2 y. Then

v 2 g(n) for some n 2 !. Hen
e v 2 U(range (g � S(n))). Therefore

v � U(U(range (g � S(n)))) � F (g � S(n)) = g(S(n)) � y:

Sin
e x = g(0), it follows that x � y. �

For any 
lass A, let

\

A = fz j (8y 2A) z 2 yg:
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Comprehension gives that

T

A is a set if A is non-empty. Note that ! =

T

fy j ; 2 y ^ (8z 2 y)S(z) 2 yg. The operation dual, in a natural sense, to

T

is the operation U . We shall hen
e sometimes write

S

x for U(x).

For any set x let

tr
l (x) =

\

fy j y is transitive ^ x � yg:

Theorem 1.5 implies that tr
l (x), the transitive 
losure of x, is always a set.

Theorem 1.6. Let

ON = fx j x is an ordinal numberg:

The (
lass) relation 2 �ON is a wellordering of ON. Indeed 2 �ON is well-

founded in the strong sense that every non-empty sub
lass of ON has an

2-minimal element. Furthermore ON is transitive.

Proof. The proofs that 2 �ON is irre
exive, asymmetri
, transitive, and


onne
ted are just like the 
orresponding parts of the proof of of Theo-

rem 1.3.

Suppose that A � ON is a non-empty 
lass. Let x 2 A. If x \ A = ;,

then we are done. Otherwise apply the fa
t that x 2 ON to x \ A. This

gives a y 2 x\A with y \x\A = ;. If z 2 y \A then z 2 y 2 x 2 ON, and

so z 2 x.

To prove that ON is transitive, suppose x 2 y 2 ON. By the transitivity

of y, we have that x � y. The fa
t that 2 �x is a wellordering thus follows

easily from the fa
t that 2� y is a wellordering. To show that x is transitive,

and so that x is an ordinal number, let z 2 w 2 x. We have that w, and

hen
e z, belongs to y. Sin
e 2� y is a transitive relation, we get that z 2 x.

�

When we talk of ; in its role as an ordinal number, we shall 
all it 0.

We denote 2 �ON by <. For ordinals � and �, we write the natural � < �

to mean that h�; �i 2 <, i.e., that � 2 �.

Exer
ise 1.4. Show, for any ordinal number �, that S(�) is the immediate

su

essor of � with respe
t to <.

Exer
ise 1.5. Let x be any set of ordinal numbers. Prove that U(x) is an

ordinal number.
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Theorem 1.6 makes possible proof by trans�nite indu
tion. If we want

to show that all ordinal numbers have some property expressed by a formula

', it is enough to show that, for every ordinal number �,

(8� < �)'(�; : : :) ! '(�; : : :):

For then Theorem 1.6 implies that the 
lass of � 2 ON su
h that :'(�; : : :)


annot be non-empty. The following theorem gives us a useful division into


ases when we are using trans�nite indu
tion.

Theorem 1.7. If � is an ordinal number, then one of the following holds:

(1) (9� < �)� = S(�);

(2) � = U(�).

Proof. Let � be an ordinal number, and assume that (1) fails. Sin
e

U(�) � � for any ordinal �, we need only show that � � U(�). Let � 2 �.

By Exer
ise 1.4, S(�) is an ordinal number � �. Sin
e (1) fails, we must

have S(�) < �. But then � 2 S(�) 2 �, so � 2 U(�). �

Ordinals satisfying (1) are 
alled su

essor ordinals. Non-zero ordinals

satisfying (2) are 
alled limit ordinals.

Theorem 1.8 (S
hema of De�nition by Trans�nite Re
ursion). Let

F : V ! V . There is a (unique) G : ON! V su
h that

(8� 2ON)G(�) = F (G � �):

Proof. We �rst show that

(8� 2ON)(9!g)(g : �! V ^ (8� < �) g(�) = F (G � �)):

We argue by trans�nite indu
tion. Let � be an ordinal and assume that

the statement holds for all smaller ordinals. The 
ase � = 0 is trivial. If

� = S(�) for some ordinal �, then we argue as in the proof of Theorem 1.4.

If � is a limit ordinal, then we use Repla
ement as for the spe
ial 
ase � = !

in the last part of the proof of Theorem 1.4 to get a z that is the set of all

g

0

that work for ordinals � < �. We let g = U(z).

Let

G = U(fg j (9� 2ON)(g : �! V ^ (8� < �) g(�) = F (g � �))g:

It is easy to 
he
k that G, and only G, has the required property. �

12



Remark. Note that the proof gives an expli
it de�nition of G from a

de�nition of F . Thus the theorem really is a theorem s
hema, and the

quanti�
ation over proper 
lasses in its statement 
ould be avoided.

Theorem 1.9. There is a unique V : ON ! V su
h that (where we write

V

�

for V(�))

(a) V

0

= ;;

(b) V

S(�)

= P(V

�

);

(
) V

�

= U(fV

�

j � < �g) if � is a limit ordinal.

Proof. Let F (x) = ; if x = ; or x is not a fun
tion whose domain is an

ordinal number. If � an ordinal and x : S(�)! V , then let F (x) = P(x(�)).

If � is a limit ordinal and x : �! V , let F (x) = U(range (x)). The desired

fun
tion is given by Theorem 1.8. �

Exer
ise 1.6. Show that � < � ! V

�

� V

�

.

Theorem 1.10. (Uses Foundation) (8x)(9�)x 2 V

�

.

Proof. Suppose x belongs to no V

�

. Let

z = fu 2 tr
l (x) [ fxg j (8� 2ON)u =2 V

�

g:

Sin
e z 6= ;, Foundation gives a u 2 z su
h that u \ z = ;. Every member

of u belongs to tr
l (x), and so every member of u belongs to some V

�

.

For y 2 u, let �

y

be the least � su
h that y 2 V

�

. By Repla
ement and

Comprehension, let � = U(f�

y

j y 2 ug). By Exer
ise 1.5, � 2 ON. By

Exer
ise 1.6, u � V

�

. This gives the 
ontradi
tion that u 2 V

S(�)

. �

By tran�nite re
ursion, one 
an de�ne addition, multipli
ation, and ex-

ponentiation of ordinal numbers as follows:

�+ 0 = � ;

�+ S(�) = S(�+ �) ;

�+ � = U(f� + � j � < �g) if � is a limit ordinal:

� � 0 = 0 ;

� � S(�) = � � � + � ;

�+ � = U(f� � � j � < �g) if � is a limit ordinal:

13



�

0

= 1 (= S(0)) ;

�

S(�)

= �

�

� � ;

�

�

= U(f�

�

j � < �g) if � is a limit ordinal:

The way this is done is as follows: Consider the de�nition of +. We 
an

de�ne a fun
tion F : ON � V ! V , so that, e.g., if � and � are ordinals

and x : S(�) ! V , then F (h�; xi) = S(x(�)). If we de�ne F

�

: V ! V

by F

�

(x) = F (h�; xi), then Theorem 1.8 applied to F

�

gives a fun
tion

+

�

: ON! ON. Sin
e the proof of Theorem 1.8 gives us a de�nition of the

+

�

from the parameter �, we get an expli
it de�nition of +.

Note that �+ 1 = S(�) for every ordinal �. We shall often write �+ 1

instead of S(�). For the rest of this se
tion, however, we shall 
ontinue to

write S(�) in order to avoid 
onfusion with the di�erent kind of addition

that we shall shortly de�ne.

We now turn to the subje
t of 
ardinal numbers. If x and y are sets, let

us say that x � y if there is a one-one f : x ! y. By x � y we mean that

there is a one-one onto f : x! y.

Theorem 1.11 (S
hr�oder{Bernstein Theorem). If x � y and y � x

then x � y.

Proof. Let f : x! y and g : y ! x be one-one. Using Theorem 1.4, de�ne

h : x� ! ! x by

h(z; 0) = z ;

h(z;S(n)) = g(f(h(z; n))) :

Let

u = fz 2 x j (9v 2 x)(9n 2 !)(h(v; n) = z ^ v =2 range (g))g:

Note that if z =2 u then z 2 range (g). Let k : x! y be given by

k(z) =

�

f(z) if z 2 u;

g

�1

(z) if z =2 u:

(If r is any relation, r

�1

= fhw;w

0

i j hw

0

; wi 2 rg. Sin
e g is a one-one

fun
tion, we have that g

�1

: range (g)! y.)

14



To see that k is one-one, assume that k(z

1

) = k(z

2

). Ex
hanging z

1

and

z

2

if ne
essary, we may assume that either z

1

= z

2

or else z

1

2 u and z

2

=2 u.

Assume for a 
ontradi
tion that the latter is the 
ase. Then f(z

1

) = g

�1

(z

2

),

and so g(f(z

1

)) = z

2

. Let v and n witness that z

1

2 u. Sin
e h(v; n) = z

1

,

we get that g(f(h(v; n))) = g(f(z

1

)) = z

2

. This means that h(v;S(n)) = z

2

,


ontradi
ting the fa
t that z

2

=2 u.

Assume that z 2 y n range (k). Then g(z) 2 u, sin
e otherwise k(g(z)) =

g

�1

(g(z)) = z. Let v and n witness that g(z) 2 u. Obviously n 6= 0. Thus

n = S(m) for somem. We have then that g(z) = h(v;S(m)) = g(f(h(v;m)).

Hen
e z = f(h(v;m)). But h(v;m) 2 u, and so we get the 
ontradi
tion

that

k(h(v;m)) = f(h(v;m)) = z:

�

A 
ardinal number is an ordinal number � su
h that (8� < �)� 6� �.

Theorem 1.12. Every natural number is a 
ardinal number. ! is a 
ardinal

number.

Proof. For the �rst assertion, we show that

(�) (8n 2 !)(8f)((f : n! n ^ f one-one) ! f onto).

The 
ase n = 0 is trivial. Let f : S(n) ! S(n) be one-one. We must have

that n 2 range (f), sin
e otherwise f � n : n! n is not onto. Let a = f(n)

and let f(b) = n. De�ne g : n! n by

g(m) =

�

f(m) if m 6= b;

a if m = b.

By the indu
tion hypothesis, range (g) = n. Thus

range (f) = fng [ range (g) = S(n):

For the se
ond assertion, note that if n 2 ! and f : ! ! n is one-one,

then f � S(n) : S(n)! n 
ontradi
ts (�). �

Theorem 1.13. Let � 2 ON n !. Then S(�) is not a 
ardinal number.

15



Proof. De�ne f : S(�)! � by

f(�) =

8

<

:

S(n) if n < !;

� if ! � � < �;

0 if � = �:

�

Let 
ard (x) (= jxj) be the least 
ardinal number � su
h that x � �, if

it exists. Note that 
ard (�) exists for all ordinals �. The following theorem

implies that that 
ard (x) exists if x 
an be wellordered, i.e., if there is a

wellordering of x.

Theorem 1.14. Let r be a wellordering of x. Then there is an ordinal

number � su
h that hx; ri is isomorphi
 to h�;2��i, i.e., there is a one-one

onto f : �! x su
h that

� < 
 < �! hf(�); f(
)i 2 r:

Furthermore, both � and the isomorphism f are unique.

Proof. Note that � and f must satisfy

(8� < �) f(�) is the r-least element of x n range (f � �).

De�ne F : V ! V as follows. Let F (z) be the r-least element of xnrange (z)

if (9� 2ON)( z : � ! x ^ range (z) 6= x), and let F (z) = ; otherwise. Let

G be given by Theorem 1.8.

For ea
h ordinal �, if range (G � �) ( x then G(�) 2 x n range (G � �).

Suppose that range (G � �) ( x for every ordinal �. Then G : ON ! x

and G is one-one. By Repla
ement (and Comprehension), we get that ON

is a set. By Theorem 1.6, this implies that ON 2 ON, whi
h 
ontradi
ts

Theorem 1.6.

Thus there is a � 2 ON su
h that range (G��) is not a proper subset of x.

Let � be the least su
h ordinal. If � is a limit ordinal, then range (G��) � x

and so range (G � �) = x. This follows also if � = S(�), sin
e G(�) 2 x. In

both 
ases is it easy to see that G � � is the desired isomorphism. �

For 
ardinal numbers � and Æ, we de�ne the 
ardinal sum �+ Æ of � and

Æ by

�+ Æ = 
ard (f0g � �) [ (f1g � Æ));

16



if it exists. Our notation is ambiguous; we use the same symbol \+" both

for the 
ardinal sum and for the ordinal sum, i.e., for the + operation on

ordinal numbers de�ned on page 13. For the rest of this se
tion, we shall

avoid 
onfusion by writing �+

ON

� for the ordinal sum of � and �.

Theorem 1.15. (a) For all 
ardinal numbers � and Æ, �+ Æ exists.

(b) For m and n 2 !, m+ n = m+

ON

n 2 !.

(
) If either of � and Æ does not belong to !, then � + Æ = maxf�; Æg

(= U(f�; Æg)).

Proof. (a) De�ne an ordering r

�;Æ

of (f0g��) [ (f1g�Æ) by pla
ing hi; �i

before hj; �i if and only if

� < � _ (� = � ^ i < j):

It is easy to show that r

�;Æ

is a wellordering. Let f

�;Æ

: �

�;Æ

! (f0g � �) [

(f1g � Æ) be given by Theorem 1.14. Then �+ Æ = 
ard (�

�;Æ

).

(b) For �xed m 2 !, we prove by indu
tion on n that m+

ON

n 2 ! and

m+

ON

n � (f0g�m) [ (f1g�n). By de�nition, m+

ON

0 = m 2 !, and we


an de�ne a one-one onto f : m! f0g�m by setting f(k) = h0; ki for ea
h

k < m. Assume that m +

ON

n 2 ! and that f : m +

ON

n ! (f0g �m) [

(f1g � n) is one-one and onto. Then m+

ON

S(n) = S(m+

ON

n) 2 !. Let

f

0

= f [ fhm+

ON

n; h1; niig:

It is easy to see that f

0

: m+

ON

S(n)! (f0g�m) [ (f1g�S(n)) is one-one

and onto.

(
) It is enough to prove that �+� = � for every 
ardinal number � =2 !.

Assume that this is false, and let � be the <-least 
ounterexample. Note

that r

�;�

is a wellordering of 2� �, where 2 = f0; 1g. We have that

� < �+ � � �

�;�

:

Let f

�;�

(�) = hi; �i. Thus

� � fhj; 
i j hj; 
i r

�;�

hi; �ig � (2� �) [ fh0; �ig � S(
ard (�) + 
ard (�)):

If � 2 !, then we would also have � 2 !. Hen
e the minimality of � gives

that � � S(
ard (�)), and Theorems 1.11 and 1.13 then give the 
ontradi
-

tion that � � 
ard (�). �

For 
ardinal numbers � and Æ, we de�ne the 
ardinal produ
t � � Æ of �

and Æ by

� � Æ = 
ard (�� Æ);
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if it exists. Our notation is on
e more ambiguous, so for the rest of this

se
tion we shall write �

ON

for the ordinal produ
t de�ned on page 13.

Theorem 1.16. (a) For all 
ardinal numbers � and Æ, � � Æ exists.

(b) For m and n 2 !, m � n = m �

ON

n 2 !.

(
) If either of � and Æ does not belong to ! and neither of � and Æ is 0,

then � � Æ = maxf�; Æg.

Exer
ise 1.7. Prove Theorem 1.16.

Hint: (a) De�ne an ordering s

�;Æ

of �� Æ as follows:

h�; �i s

�;Æ

h�

0

; �

0

i $

8

<

:

maxf�; �g < maxf�

0

; �

0

g _

maxf�; �g = maxf�

0

; �

0

g ^ � < �

0

_

maxf�; �g = maxf�

0

; �

0

g ^ � = �

0

^ � < �

0

:

Show that s

�;Æ

is a wellordering. Let f

�

�;Æ

: �

�

�;Æ

! � � Æ be given by

Theorem 1.14. Then � � Æ = 
ard (�

�

�;Æ

).

(b) For �xed m 2 !, prove by indu
tion that, for all n 2 !, m �

ON

n 2 !

and m �

ON

n � m� n. The 
ase n = 0 is trivial. Assume that m �

ON

n 2 !

and that f : m �

ON

n ! m � n is one-one and onto. Then m �

ON

S(n) =

m �

ON

n+

ON

m 2 !. Let

f

0

= f [ fhm �

ON

n+ k; hk; nii j k < mg:

Show that f

0

: m �

ON

S(n)! m� S(n) is one-one and onto.

(
) It is enough to prove that � � � = � for every 
ardinal number � =2 !.

Assume that this is false, and let � be the <-least 
ounterexample. Let

f

�

�;�

: �

�

�;�

! �� � be de�ned as in the hint for part (a). Then

� < � � � � �

�

�;�

:

Let h�; �i = f

�

�;�

(�). Let � = maxf�; �g. Use the de�nition of s

�;�

, the

minimality of �, and Theorem 1.15 to dedu
e the 
ontradi
tion that � �


ard (�) � � < �.

For sets x and y, let

x

y = ff j f : x ! yg. (Note that

x

y is 
ontained

in the set P(x � y).) Sin
e we to not have a 
onvenient spe
ial notation

for the ordinal exponentiaton de�ned on page 14, we defer de�ning 
ardinal

exponentiation until after the next theorem, whi
h 
on
erns ordinal expo-

nentiation.
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Theorem 1.17. For m and n 2 !,

m

n � n

m

2 !, where n

m

is as de�ned

on page 14.

Proof. Fix n 2 !. For the 
ase m = 0, note that

0

n = f;g = 1 = n

0

.

Assume that n

m

2 ! and that n

m

�

m

n. Then n

S(m)

= n

m

�

ON

n 2 !.

Moreover

n

m

�

ON

n = n

m

� n � n

m

� n �

m

n� n �

S(m)

n:

(For the last �, de�ne a one-one onto f by setting f(hg; ki) = g [ fhm; kig

for g : m! n and k < n.) �

We now de�ne 
ardinal exponentiation by setting �

�

= 
ard (

�

�), if it

exists, for 
ardinal numbers � and �. We shall make no more use of ordinal

exponentiation in this se
tion.

Theorem 1.18. If 0 6= n 2 ! and � =2 ! is a 
ardinal number, then �

n

= �.

Proof. Fix a 
ardinal number � =2 !. For n 2 !, de�ne f

n

:

S(n)

�!

n

���

by setting f

n

(g) = hg � n; g(n)i. The fun
tions f

n

are one-one and onto.

Clearly

1

� � �. Assume that n > 0 and that

n

� � �. Then

S(n)

� �

n

�� � � �� � � �. �

For ordinal numbers � and sets y, let

<�

y = ff j (9� < �) f : � ! yg.

For 
ardinal numbers � and �, let �

<�

= 
ard (

<�

�), if it exists.

Theorem 1.19. If � =2 ! is a 
ardinal number, then �

<!

= �.

Proof. The theorem is an easy 
onsequen
e of Theorem 1.18 and the Axiom

of Choi
e, but we wish to avoid the latter. Let f

n

be as in the proof of

Theorem 1.18. Let h : �� �! � be one-one and onto.

De�ne g

n

:

S(n)

� ! � and g

�

n

:

S(n)

� � � ! � � � simultaneously by

re
ursion as follows. Let g

0

be given by h. Given g

n

, let

g

�

n

(hq; �i) = hg

n

(q); �i:

Now let

g

S(n)

= h Æ g

�

n

Æ f

S(n)

;

where Æ means 
omposition. (It is easy to justify this method of de�nition

via Theorem 1.4.) By indu
tion we see that ea
h g

n

is one-one and onto.

Next de�ne a one-one p : ! � � !

<!

� by setting p(n; �) = g

n

�1

(�).

(Here we write p(n; �) for p(hn; �i).) Sin
e

<!

� = range (p) [ f1g, we get

that

<!

� � (! � �) [ f1g � �. �
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Theorem 1.20. For every set x, x �

x

2, i.e., x �

x

2 and x 6�

x

2.

Proof. Fix x. It is easy to see that

x

2 � P(x). We show that x � P(x).

To show that x � P(x) de�ne a one-one f : x ! P(x) by setting

f(y) = fyg for all y 2 x.

Suppose that f : x ! P(x) is onto. Let z = fy 2 x j y =2 f(y)g. Let

z = f(y). Then y 2 f(y) , y =2 z , y =2 f(y). �

Theorem 1.21. There is no greatest 
ardinal number.

Proof. Let � be a 
ardinal number. Let

a = fhx; ri j x � � ^ r is a wellordering of xg:

For hx; ri 2 a, let g(x; r) be the unique � su
h that h�;2 ��i is isomorphi


to hx; ri. If � is an ordinal number and � � �, then there is an hx; ri 2 a

with � = g(hx; ri). (Let f : � ! � be one-one; let x = range(f); let

hf(�); f(
)i 2 r , � < 
.) Let Æ = U(range(g)). Then Æ 2 ON and � � Æ.

Indeed, Æ is the least 
ardinal number > �. �

For any set x su
h that 
ard (x) exists, let x

+

be the least 
ardinal

number greater than 
ard (x).

By trans�nite re
ursion de�ne

�

0

= ! ;

�

S(�)

= �

�

+

;

�

�

=

[

f�

�

j � < �g for limit ordinals �:

It is easy to see that the �

�

, � 2 ON, are all the 
ardinal numbers � !.

Theorem 1.22. (Uses Choi
e) Every set 
an be wellordered.

Proof. Fix a set x. For y ( x, let a

y

= fyg� (x n y). Let u = fa

y

j y ( xg.

Let v be given by Choi
e. De�ne F : V ! V as follows. Let F (z) be the

unique w su
h that hrange (z); wi 2 v if (9� 2ON)( z : � ! x ^ range (z) 6=

x), and let F (z) = ; otherwise. Let G be given by trans�nite re
ursion.

Just as in the proof of Theorem 1.14, one 
an show that there is an ordinal

� su
h that G � � is a one-one onto fun
tion from � to x. �

Corollary 1.23. (Uses Choi
e) For every set x, 
ard (x) exists. For all


ardinals � and �, both �

�

and �

<�

are de�ned.

By Theorems 1.20, we have that 2

�

�

> �

�

for every ordinal �. The

Continuum Hypotheses (CH) asserts that 2

�

0

= �

1

, and the Generalized

Continuum Hypothesis (GCH) asserts that 2

�

�

= �

S(�)

for all ordinals �.
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2 Models, 
ompa
tness, and 
ompleteness

Informally we shall 
onsider a language to be a set of symbols, the union of

the following:

(1) a set of 
onstant symbols;

(2) for ea
h n, 0 < n 2 !, a set of n-pla
e fun
tion symbols;

(3) for ea
h n, 0 < n 2 !, a set of n-pla
e relation symbols.

Sin
e we want to use theorems of set theory in doing model theory (and for

other reasons 
on
erning 220C), we adopt the following purely set theoreti


de�ntion as our oÆ
ial one.

A language is a pair hf; pi where

(a) f : ! ! V ;

(b) p : ! n f0g ! V ;

(
) (8m 2 !)(8n 2 !)(f(m) \ p(n) = ; ^ (m 6= n ! (f(m) \ f(n) = ; =

p(m) \ p(n)))) ;

(d) ea
h f(n) and ea
h p(n) is disjoint from f2�n j n 2 !g[f1; 3; 5; 7; 9; 11g;

(e) no fun
tion whose domain is in ! n f;g belongs to any f(n) or p(n).

If L = hf; pi, then f(0) is the set of 
onstant symbols of L; for n > 0,

f(n) is the set of n-pla
e fun
tion symbols of L; for n > 0, p(n) is the set of

n-pla
e relation symbols of L. Clause (
) says that no symbol has two uses.

Logi
al symbols. The following symbols will be used with every language:

Informal OÆ
ial

v

0

; v

1

; v

2

; : : : 0; 2; 4; : : :

( 1

) 3

= 5

: 7

^ 9

9 11

The symbols v

0

; v

1

; v

2

; : : : (oÆ
ially 0; 2; 4; : : :) are variables.

Terms. Informally we 
an des
ribe the terms of a language L as 
onsti-

tuting the smallest set su
h that

(i) all variables and 
onstant symbols are terms;
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(ii) if F is an n-pla
e fun
tion symbol and t

1

; : : : ; t

n

are terms, then the

expression F (t

1

: : : t

n

) is a term.

More informally, we shall often add 
ommas for 
larity: F (t

1

; : : : ; t

n

).

OÆ
ially terms of L are �nite sequen
es of symbols, where a �nite se-

quen
e is a fun
tion whose domain is a natural number. To give the oÆ
ial

set-theoreti
 de�nition we �rst de�ne some operations on �nite sequen
es.

If g : m ! V and h : n ! V are �nite sequen
es, let g

_

h : m+ n ! V

be given by

(g

_

h)(k) =

�

g(k) if k < m ;

h(j) if k = m+ j with j < n :

If h is a �nite sequen
e of �nite sequen
es, we de�ne 
on
at (h), the 
on-


atenation of h, by re
ursion on domain (h) as follows:


on
at (h) =

�

; if domain (h) = 0 ;

(
on
at (h � n))

_

h(n) if domain (h) = n+ 1 :

For �nite sequen
es f , let `h(f) = domain (f). For any a, let hai be the

unique element of

1

fag, i.e., let it be fh0; aig.

Now let

Term

L

0

= fhai j a is a variable or a 
onstant symbolg :

For n 2 !, let Term

L

n+1

be the set of all 
on
at (h) su
h that, for some

k 2 ! n f0g,

(a) h : k + 3! V ;

(b) h(0) 2

1

(f(k)), where L = hf; pi;

(
) h(1) = h(i (i.e., h(1) = h1i);

(d) h(k + 2) = h)i ;

(e) (8j < k)h(2 + j) 2

S

fTerm

L

m

j m � ng .

A term of L is any member of

S

fTerm

L

n

j n 2 !g.

Exer
ise 2.1. (a) Prove unique readability for terms. That is, show that

if t is a term of a language L not belonging to Term

L

0

, then there are unique

k 2 ! and h : k + 3 ! V su
h that t = 
on
at (h) and (a){(e) above hold

of k and h, with (e) modi�ed by repla
ing \m � n" by \m 2 !." You may

(informally) prove the informal version of this fa
t.

(b) Would unique readabilty for terms still hold if we dropped the paren-

theses? Prove your answer.
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Formulas. Informally we 
an des
ribe the formulas of L as forming the

the smallest set satisfying the 
onditions

(i) if t

1

and t

2

are terms, then t

1

= t

2

is a formula;

(ii) if P is a a k-pla
e relation symbol and t

1

; : : : ; t

k

are terms, then

P (t

1

: : : t

k

) is a formula;

(iii) if ' is a formula, then so is :';

(iv) if ' and  are formulas, then so is (' ^  );

(v) if ' is a formula and x is a variable, then (9x)' is a formula.

OÆ
ially we take formulas, like terms, to be �nite sequen
es of symbols.

We let Formula

L

0

be the set of all atomi
 formulas, i.e., the set of all �nite

sequen
es 
orresponding to 
lauses (i) and (ii) above. For n 2 !, we let

Formula

L

n+1

be the set of all the sequen
es gotten from

S

fFormula

L

m

j m �

ng via 
lauses (iii), (iv) and (v). We omit the oÆ
ial de�nition, whi
h is

similar to that of the sets Term

n

.

Exer
ise 2.2. (a) Prove unique readability for formulas. That is, show

that every formula either is atomi
 or else has a unique analysis via (iii),

(iv), or (v).

(b) Would unique readabilty for formulas still hold if we dropped the

parentheses? Prove your answer.

OÆ
ially let us de�ne an o

urren
e of a variable x in a formula ' to be

hm;'i for any m < `h(') su
h that '(m) = x. Similarly de�ne the notion

of an o

urren
e of a variable in a term.

By the 
omplexity of a formula ', we mean the least n su
h that ' 2

Formula

L

n

. By re
ursion on 
omplexity of formulas, we de�ne the free o

ur-

ren
es of a variable in a formula. Every o

urren
e of a variable in an atomi


formula is free. An o

urren
e hm+1;:'i is free just in 
ase the 
orrespond-

ing o

urren
e hm;'i is free. An o

urren
e hm+1; ('^ )i withm < `h(')

is free just in 
ase hm;'i is free. An o

urren
e h`h(') +m + 2; (' ^  )i

is free just in 
ase hm; i is free. An o

urren
e h2; (9x)'i is not free. An

o

urren
e hm+4; (9y)'i of x is free just in 
ase hm;'i is free and x and y

are di�erent variables.

Models. A model A for a language L is a an ordered pair 
onsisting of

(a) a non-empty set A = jAj, the universe or domain of the model, and (b)

a fun
tion assigning

(1) to ea
h 
onstant symbol 
, an element 


A

of A ;
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(2) to ea
h k-pla
e fun
tion symbol F , a fun
tion F

A

:

k

A! A ;

(3) to ea
h k-pla
e relation symbol P , a subset P

A

of

k

A.

As a 
onvention, when we denote a model by a Fraktur letter, then we denote

the universe of the model by the 
orresponding itali
 Roman letter.

In order to de�ne the notions of satisfa
tion and truth, let us �x a

language L and a model A for L.

The 
omplexity of term t is the least n su
h that t 2 Term

L

n

. For terms

t and for s 2

<!

A su
h that all variables o

urring in t belong to fv

i

j i <

`h(s)g, we de�ne, by re
ursion on the 
omplexity of t, an element t

s

A

of A:




s

A

= 


A

for 
 a 
onstant;

v

i

s

A

= s(i) ;

(F (t

1

: : : t

n

))

s

A

= F

A

(t

1

s

A

; : : : t

n

s

A

) ;

where \F

A

(t

1

s

A

; : : : t

n

s

A

)" is an abbreviation for \F

A

(q), where q : n! A and

q(i) = t

i+1

s

A

for all i < n." Note that t

s

A

is independent of s if no variables

o

ur in t.

Satisfa
tion. We de�ne, by re
ursion, for ea
h n 2 ! a relation

Sat

A

n

� Formula

L

n

�

<!

A:

If h'; si 2 Sat

A

n

, then the variables having free o

urren
es in ' must be

among fv

i

j i < `h(s)g. Also ' must of 
ourse belong to Formula

L

n

. We

shall omit mentioning these two requirements below.

(i) ht

1

= t

2

; si 2 Sat

A

0

$ t

1

s

A

= t

2

s

A

.

(ii) hP (t

1

: : : t

k

); si 2 Sat

A

0

$ q 2 P

A

, where q : k ! A and q(i) = t

i+1

s

A

for ea
h i < k .

(iii) h:'; si 2 Sat

A

n+1

$ h'; si =2

S

fSat

A

m

j m � ng.

(iv) h(' ^  ); si 2 Sat

A

n+1

$ (h'; si 2

S

fSat

A

m

j m � ng ^ h ; si 2

S

fSat

A

m

j m � ng) .

(v) h(9v

j

)'; si 2 Sat

A

n+1

$ (9s

0

)(s

0

� s�domain (s)nfjg^ j 2 domain (s

0

)^

h'; s

0

i 2

S

fSat

A

m

j m � ng) .

We let Sat

A

=

S

fSat

A

n

j n 2 !g. We say that A satis�es '[s℄ (in symbols,

A j= '[s℄) if h'; si 2 Sat

A

. If only v

i

1

; : : : ; v

i

n

have free o

urren
es in ',

then we may indi
ate this by writing '(v

i

1

; : : : ; v

i

n

) for '. Moreover we

write A j= '[a

1

; : : : ; a

n

℄ to mean that, for some (or equivalently, every) s

su
h that s(i

j

) = a

j

for ea
h j, A j= '[s℄.
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If a term t has 
ontains no variables, then we write t

A

for t

s

A

. If a formula

� has no free o

urren
es of variables (� is a senten
e), then we write A j= �

for A j= �[s℄. If � is a senten
e and A j= � then we say that A is a model of

� and that � is true in A.If � is a set of senten
es then we de�ne

A satis�es � $ A j= � $ A is a model of � $ (8� 2 �)A j= �:

Exer
ise 2.3. Theorem 1.4 shows that the de�nition above of Sat

A

yields

an expli
it de�nition of Sat

A

from the parameter A and so gives us a proper


lass fun
tion A 7! Sat

A

. Consider the language L of set theory, whi
h

(informally) is the set f\2"g. Think of V as giving a \model" V with

jVj = V and with \2"

V

=2. Can Theorem 1.4 be used de�ne, via 
lauses

like (i){(v) above, a proper 
lass Sat

V

� Formula

L

�

<!

V ? Explain.

A senten
e or a set of senten
es of a language L is valid in L if every

model A for L satis�es it. A senten
e or a set of senten
es of L is 
onsistent

(satis�able) in L if some model A for L satis�es it. It is easy to see by indu
-

tion that validity and 
onsisten
y in L of a senten
e � or set � of senten
es

is independent of L (for L 
ontaining all symbols in � or � respe
tively),

so we shall usually omit \in L." A senten
e � logi
ally implies a senten
e

� in L (in symbols, � j=

L

�) if every model for L that is a model of � is a

model of � . Similarly de�ne � logi
ally implies � in L (� j=

L

�) for sets �

of senten
es and senten
es � . It is easy to see that � j=

L

� and � j=

L

� are

independent of L, so we shall usually omit the subs
ript \L" and the phrase

\in L."

A set � of senten
es has Henkin witnesses if whenever (9x)'(x) 2 �

then there is a 
onstant symbol 
 su
h that '(
) 2 �, where '(
) is the

result of substituting 
 for the free o

urren
es of x in '(x).

Theorem 2.1 (Henkin Models). (Uses Choi
e) Let � be a set of sen-

ten
es of a language L. Suppose that

(1) every �nite subset of � is 
onsistent in L;

(2) � has Henkin witnesses;

(3) for ea
h senten
e � of L, either � 2 � or :� 2 �.

Then � has a model A su
h that 
ard (A) � the 
ardinal number of the set of


onstant symbols of L, where we mean by \
ard (A)" not the literal 
ard (A)

(namely 2) but rather 
ard (A).

(The model A will be 
onstru
ted without using Choi
e. We need Choi
e

to guarantee that the set of all 
onstant symbols of L has a 
ardinal number.)
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We 
all a set x �nite (e.g., in hypothesis (1)), if 
ard (x) 2 !.

Proof. In preparation for the proof of the Completeness Theorem, we shall

expli
itly re
ord all fa
ts about logi
al impli
ation needed for the proofs

of Theorem 2.1 and Theorem 2.8. (We shall later see that all these fa
ts


orrespond to fa
ts about a proof-theoreti
 notion of impli
ation.)

Note that

� 
onsistent $ :(9�)(� j= � ^ � j= :�):

For the purpose of listing fa
ts about j=, let us take this as the de�nition of


onsisten
y.

f�g j= �(I)

(�

1

j= � ^ �

1

� �

2

) ! �

2

j= �(II)

Lemma 2.2. Assume that � � � is �nite and su
h that � j= � . Then

� 2 �.

Proof. Otherwise hypothesis (3) gives that :� 2 �. By (I) and (II),

� [ f:�g j= :� ^ � [ f:�g j= �:

This 
ontradi
ts hypothesis (1). �

Let us 
all a formula ' prime if ' is either atomi
 or of the form (9x) .

The formulas of L 
onstitute the smallest set 
ontaining the prime formulas

of L and 
losed under the operations ' 7! :' and h'; i 7! (' ^  ). This

gives rise to a variant notion of 
omplexity of formulas, with respe
t to whi
h

we may use indu
tion and de�nition by re
ursion.

A valuation for L is a fun
tion v from the set of prime formulas of L to

f0; 1g. Given any valuation v for L we 
an de�ne by re
ursion a 
anoni
al

v

�

: Formula

L

! f0; 1g su
h that v

�

extends v :

v

�

(') = v(') for ' prime;

v

�

(:') = 1� v

�

(') ;

v

�

((' ^  )) = minfv

�

('); v

�

( )g :

(For n � m 2 !, m�n is the k su
h that n+ k = m. It is easy to show the

existen
e and uniquness of su
h a k.)
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A formula ' of L is true under a valuation v if v

�

(') = 1. We say that

a set � of formulas of L truth-fun
tionally implies in L a formula ' of L if,

for every valuation v for L, if ea
h member of � is true under v then ' is

true under v. A tautology of L is a formula true under every valuation for L.

It is easy to show by indu
tion that truth-fun
tional impli
ation and being

a tautology are, in the natural sense, independent of L, so we shall usually

omit \in L"and \of L." We write � j=

tf

' to mean that � truth-fun
tionally

implies '.

Lemma 2.3. Suppose that � is a set of senten
es of L and that � is a

senten
e of L. If � j=

tf

� then � j= � .

Proof. Suppose that A is a model for L su
h that A j= � but A 6j= � .

De�ne a valuation v for L as follows:

v(') =

8

<

:

0 if ' is not a senten
e;

0 if ' is a senten
e and A 6j= ' ;

1 if ' is a senten
e and A j= ' .

It is easy to prove by indu
tion on 
omplexity that, for any senten
e � of L,

� is true under v if and only if A j= �. Hen
e v witnesses that � 6j=

tf

� . �

Our the next fa
t in our list is a weakening of Lemma 2.3.

(� �nite ^ � j=

tf

�) ! � j= �(III)

The reason for not taking the full lemma as (III) will be explained later.

Let us write j= � to mean that ; j= �, i.e., that � is valid.

For 
onstants (
onstant symbols) 


1

and 


2

of L, set




1

� 


2

$ 


1

= 


2

2 � :

Lemma 2.4. � is an equivalen
e relation.

Proof. Note that

j= 
 = 
 for 
 a 
onstant.(IV)

By Lemma 2.2, this gives 
 � 
.

Assume that 


1

� 


2

.

j= (t

1

= t

2

! ('(t

1

)! '(t

2

))

for '(x) atomi
, t

1

and t

2

terms without variables

(V)
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Here '(t

i

) is the result of repla
ing the free o

urren
es of x in '(x) by

o

urren
es of t

i

. Here also we make use of the abbreviation \!." (See

page 2.)

With x = 


1

for '(x), we get from (V) that

j= 


1

= 


2

! (


1

= 


1

! 


2

= 


1

) :

Lemma 2.2 then implies that this senten
e belongs to �. Now one read-

ily 
he
ks that f�; (� ! �)g j=

tf

� for any � and � . By (III) and two

appli
ations of Lemma 2.2, we get that 


1

= 


2

2 � and so that 


2

� 


1

.

Assume that 


1

� 


2

and 


2

� 


3

. Applying (V) with x = 


3

for '(x),

we get that

j= (


2

= 


1

! (


2

= 


3

! 


1

= 


3

)) :

Sin
e 


2

= 


1

2 � and 


2

= 


3

2 �, it follows by (III) and Lemma 2.2 that




1

= 


3

2 � and so that 


1

� 


3

. �

For 
onstants 
 of L, let [
℄ = f


0

j 


0

� 
g. Let

A = f[
℄ j 
 is a 
onstant of Lg .

j= (9v

1

) v

1

= v

1

(VI)

Lemma 2.5. The set A is non-empty.

Proof. By (VI) and Lemma 2.2, the senten
e (9v

1

) v

1

= v

1

belongs to �.

Hypothesis (2) yields a 
onstant 
 of L su
h that 
 = 
 2 �. Hen
e there is

a 
onstant of L. �

De�ne 


A

= [
℄ for ea
h 
onstant 
 of L.

j= (9x)F (


1

: : : 


k

) = x

for F a k-pla
e fun
tion symbol

and 


1

; : : : ; 


k


onstants

(VII)

For F and 


1

; : : : ; 


k

as in (VII), we get by (VII), Lemma 2.2, and hy-

pothesis (2) that there is a 
onstant 
 with F (


1

: : : 


k

) = 
 2 �. De�ne

F

A

([


1

℄; : : : ; [


k

℄) = [
℄ :

Here and hereafter we use the following notational 
onvention: a

1

; : : : ; a

k

denotes the sequen
e q of length k su
h that q(i) = a

i+1

for ea
h i < k.
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We must show that this does not depend on the representatives 


1

; : : : ; 


k

and on the 
hoi
e of 
.

j= (t

1

= t

2

! u(t

1

) = u(t

2

))

for u(x) a term, t

1

and t

2

terms without variables

(VIII)

Suppose that F (


1

: : : 


k

) = 
 and F (


0

1

: : : 


0

k

) = 


0

both belong to � and

that 


i

� 


0

i

for 1 � i � k. For 1 � j � k + 1, let t

j

be the term

F (


0

1

: : : 


0

j�1




j

: : : 


k

) :

(VIII) and (III) give us that t

j

= t

j+1

belongs to � for 1 � j � k. Let

0 � i < k and assume that t

k+1�i

= t

k+1

2 �. By (V),

j= (t

k+1�i

= t

k+1

! (t

k+1�(i+1)

= t

k+1�i

! t

k+1�(i+1)

= t

k+1

)) :

(III) and Lemma 2.2 then give that t

k+1�(i+1)

= t

k+1

2 �. By indu
tion

we get that t

1

= t

k+1

2 �, that is, F (


1

: : : 


k

) = F (


0

1

: : : 


0

k

) belongs to �.

(V) and (III) give that F (


0

1

: : : 


0

k

) = 
 belongs to � ; (V) and (III) again

give that 
 = 


0

2 �.

Exer
ise 2.4. Prove that, for all terms t without variables, t

A

= [
℄ if and

only if t = 
 belongs to �.

We 
omplete the de�nition of A by stipulating that

P

A

([


1

℄; : : : ; [


k

℄) $ P (


1

: : : 


k

) 2 � :

Here we let P

A

(q) $ q 2 P

A

, and we also use the notational 
onvention

introdu
ed above. The proof that the P

A

are well-de�ned is like the 
orre-

sponding proof for the F

A

.

Lemma 2.6. Let '(x) be a formula of L, let 
 be a 
onstant of L, and let

B be a model for L. Then B j= '[


B

℄ if and only if B j= '(
), where '(
) is

the result of repla
ing the free o

urren
es of x in '(x) by o

urren
es of 
.

We omit the proof, an easy indu
tion on the 
omplexity of '(x).

The following lemma 
ompletes the proof of the theorem.

Lemma 2.7. For every senten
e � of L, A j= � if and only if � 2 �.
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Proof. We pro
eed by indu
tion of the 
omplexity of �.

Suppose � is t

1

= t

2

. Let t

1
A

= [


1

℄ and t

2
A

= [


2

℄. The A j= � ,

[


1

℄ = [


2

℄ , 


1

= 


2

2 � , (by Exer
ise 2.4, (V), and (III)) t

1

= t

2

2 �.

The 
ase that � is P (t

1

: : : t

k

) is similar to the 
ase that � is t

1

= t

2

.

If � is :� , then A j= � , A 6j= � , � =2 � , (by (1) and (3)) � 2 �.

We have the following truth-fun
tional impli
ations:

f(�

1

^ �

2

)g j=

tf

�

1

f(�

1

^ �

2

)g j=

tf

�

2

f�

1

; �

2

g j=

tf

(�

1

^ �

2

) :

If � is (�

1

^�

2

) then A j= � , (A j= �

1

and A j= �

2

) , (�

1

2 � and �

2

2 �)

, (by (III) and Lemma 2.2) (�

1

^ �

2

) 2 �.

j= ('(
)! (9x)'(x)

for 
 a 
onstant

(IX)

Suppose that � is (9x)'(x). Then A j= � , there is an a 2 A su
h

that A j= '[a℄ , there is a 
onstant 
 of L su
h that A j= '[[
℄℄ , (by

Lemma 2.6) there is a 
onstant 
 of L su
h that A j= '(
) , there is a


onstant 
 of L su
h that '(
) 2 � , () by (IX), (III), and Lemma 2.2;

( by hypothesis (2)) (9x)'(x) 2 �. �

Theorem 2.8. (Uses Choi
e) Let L be a language and let L

�

be obtained

from L by adding maxf
ard (L);�

0

g new 
onstant symbols, where 
ard (L)

is the 
ardinal number of the set of all non-logi
al symbols of L. Let � be a

set of senten
es of L su
h that every �nite subset of � is 
onsistent (in L).

Then there is a set �

�

� � of senten
es of L

�

su
h that (1) every �nite

subset of �

�

is 
onsistent (in L

�

), (2) �

�

has Henkin witnesses, and (3) for

ea
h senten
e � of L

�

, either � 2 �

�

or :� 2 �

�

.

Proof. Let

� = maxf�

0

; 
ard(L)g:

By Theorem 1.19, �

<!

= �. Sin
e � is the 
ardinal of the set of all symbols

of L

�

, the 
ardinal of the set of all senten
es of L

�

is � �

<!

. There are at

least � senten
es of L

�

. (Consider senten
es 
 = 
 for 
onstants 
.) Thus �

is the 
ardinal of the set of all senten
es of L

�

. Let

� 7! �

�

be a one-one onto fun
tion from � to the set of all senten
es of L

�

.

Let r be a wellordering of the set of all 
onstant symbols of L

�

.

By trans�nite re
ursion, we de�ne sets �

�

of senten
es of L

�

for � � �.

We shall arrange that
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(a) �

0

= � ;

(b) �

�

=

S

f�

�

j � < �g for limit ordinals � � � ;

(
) for � � � � �, �

�

� �

�

;

(d) for � � �, every �nite subset of �

�

is 
onsistent (in L

�

);

(e) 
ard (�

�+1

n �

�

) � 2 for � < � ;

(f) for � < �, either �

�

2 �

�+1

or :�

�

2 �

�+1

;

(g) if � < �, if �

�

is (9x)'(x), and if �

�

2 �

�+1

, then '(
) 2 �

�+1

for

some 
onstant 
 of L

�

.

On
e we 
arry out this 
onstru
tion, we 
an �nish the proof by setting

�

�

= �

�

.

For � = 0 and for limit �, we de�ne �

�

as required by 
onditions (a)

and (b) respe
tively. Sin
e 
onsisten
y in L implies 
onsisten
y in L

�

,

(d) holds for � = 0. Furthermore (d) holds for limit �

�

unless (
) fails

for some � and � < � or (d) fails for some � < �. for � in pla
e of �. This

is be
ause, as is not diÆ
ult to prove, if � is a �nite subset of �

�

then there

is a � < � su
h that � � �

�

.

It follows that, however we de�ne �

�

for su

essor ordinals �, the small-

est ordinal 
 � � su
h that (a){(g) fail for the �

�

, � � 
, would have to be

a su

essor ordinal.

Assume then that � < � and that we are given �

�

, � � �, violating

none of (a){(g).

Suppose �rst that � [ f:�

�

g is 
onsistent for every �nite � � �

�

. Set

�

�+1

= �

�

[ f:�

�

g:

Clearly none of (a){(g) are violated by the �

�

, � � �+ 1.

Before 
onsidering the other 
ase, we prove the following lemma.

Lemma 2.9. Let � be a set of senten
es and let � be a senten
e. If �[f:�g

is in
onsistent, then � j= �.

Proof. We use two more fa
ts about j= :

� [ f�g j= � ! � j= (� ! �)(X)

(� j= � ^ (8� 2 �)� j= �) ! � j= �(XI)

We also need that

j=

tf

((:� ! �) ! ((:� ! :�)! �)):
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Suppose that � [ f:�g is in
onsistent. For some senten
e � , we have

that

� [ f:�g j= � ;

� [ f:�g j= :� :

By (X) we get that � j= both (:� ! �) and (:� ! :�). By (III) and (XI)

we get that � j= �. �

Now suppose that there is a �nite � � �

�

su
h that � [ f:�

�

g is

in
onsistent. Fix su
h a �. By Lemma 2.9, we have that � j= �

�

.

The 
ardinal number of �

�

n � is � 2 � 
ard(�) < �. Therefore the


ardinal number of the set of all new 
onstants of L

�

(i.e., those that are

not 
onstants of L) o

urring in �

�

[ f�

�

g is < �. Sin
e � is the 
ardinal

number of the set of all new 
onstants of L

�

, let 


�

be the r-least 
onstant

of L

�

not o

urring in �

�

[ f�

�

g.

Let

�

�+1

= �

�

[ f�

�

g;

unless �

�

is (9x)'

�

(x) for some formula '

�

, in whi
h 
ase let

�

�+1

= �

�

[ f�

�

; '

�

(


�

)g:

If we 
an prove that every �nite subset of �

�+1

is 
onsistent, then we

will have shown that (a){(g) do not fail for the �

�

, � � � + 1, and so we

will have 
ompleted the proof of the theorem.

Assume that �

0

[ f�

�

g is in
onsistent for some �nite subset �

0

of �

�

.

By (XI), (III), and the fa
t that f::�

�

g j=

tf

�

�

, we get that �

0

[ f::�

�

g

is in
onsistent. By Lemma 2.9, we get that �

0

j= :�

�

. But then � [�

0

is

an in
onsistent �nite subset of �

�

.

� [ f (
)g j= � ! � [ f(9x) (x)g j= �

for 
 is a 
onstant not o

urring in �,  (x), or �

(XII)

(If B is a model satisfying �[f(9x) (x)g but not � , then let b 2 B be su
h

that B j=  [b℄. Let B

0

be like B, ex
ept that 


B

0

= b. Then B

0

satis�es

� [ f (
)g but not � .)

Assume that some �nite subset of �

�+1

is in
onsistent. Then �

�+1

=

�

�

[ f�

�

; '

�

(


�

)g, and there is a �nite

�

� � �

�

and there is a senten
e �

su
h that

�

� [ f�

�

; '

�

(


�

)g j= � ;

�

� [ f�

�

; '

�

(


�

)g j= :� :
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Using the the truth-fun
tional impli
ation f�;:�g j=

tf

�

0

, we may assume

that 


�

does not o

ur in � . By (XII) we have

�

� [ f�

�

; (9x)'

�

(x)g j= � ;

�

� [ f�

�

; (9x)'

�

(x)g j= :� :

But �

�

is (9x)'

�

(x), so we have the 
ontradi
tion that �

�

[f�

�

g is in
on-

sistent. �

Theorem 2.10. (Compa
tness I and Weak L�owenheim{Skolem The-

orem) (Uses Choi
e) Let � be a set of senten
es of a language L su
h that

every �nite subset of � is 
onsistent. Then there is a model A of � su
h

that 
ard(A) � maxf�

0

; 
ard(L)g.

Proof. Let L

�

be as in the statement of Theorem 2.8. Let �

�

be given by

that theorem. Let A

�

be the model of �

�

given by Theorem 2.1. Let A be

the redu
t of A

�

to L. Clearly A j= �. �

Theorem 2.11 (Compa
tness II). (Uses Choi
e) Let � be a set of sen-

ten
es and let � be a senten
e. If � j= � then there is a �nite � � � su
h

that � j= �.

Proof. Suppose that � j= �. Then � [ f:�g is in
onsistent. By Theo-

rem 2.10, there is a �nite � � � su
h that � [ f:�g is in
onsistent. But

then � j= �. �

Exer
ise 2.5. Let L be any language. A 
lass K of models for L is EC (is

an elementary 
lass) if there is a senten
e � of L su
h that

K = fA j A j= �g :

A 
lass K is EC

�

if there is a set � of senten
es of L su
h that

K = fA j A j= �g :

Whi
h of the following are EC

�

?

(i) fA j A is in�niteg ;

(ii) fA j A is �niteg .

Show that neither is EC.
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Theorem 2.12. Assume that ZFC (i.e., the set of axioms of ZFC) is 
on-

sistent. For variables x, let Number (x) be the formula \x is a natural

number."

There is a model A of ZFC and an a 2 A su
h that A j= Number [a℄ and

su
h that 2

A

� fb j b 2

A

ag is not wellfounded.

Proof. For n 2 !, let �

n

(x) be the formula \x = n." (�

n

(x) is de�ned by

re
ursion on n.) Let L

�

be the result of adding to the language of set theory

a 
onstant 
. Let

� = ZFC [ fNumber (
)g [ f(8v

0

)(�

n

(v

0

)! v

0

2 
) j n 2 !g :

Let � be a �nite subset of �. Then there is some m 2 ! su
h that

� � ZFC [ fNumber (
)g [ f(8v

0

)(�

n

(v

0

)! v

0

2 
) j n < mg :

Let B be a model of ZFC. For ea
h n 2 ! there is a unique b 2 B su
h that

B j= �

n

[b℄; let n

B

be this unique b. Expand B to a model B

�

for L

�

by

letting 


B

�

= m

B

. Clearly B

�

j= �.

Sin
e every �nite subset of � is 
onsistent, there is by Theorem 2.10 a

model A

�

of �. Let A be the redu
t of A

�

to L, and let a = 


A

�

.

To see that 2

A

� fb j b 2

A

ag is not wellfounded, let

y = fb j b 2

A

a ^ (8n 2 !)A 6j= �

n

[b℄g:

Sin
e the 2

A

-immediate prede
essor of a belongs to y, y is nonempty. For

any b 2 y, the 2

A

-immediate prede
essor of b belongs to y, so y has no

2

A

-least element. �

Remark. If A and a are as in the statement of Theorem 2.12, then a is

a non-standard natural number of A. In x3, we shall 
onstru
t models with

non-standard real numbers.

If A and B are models for a language L, then A and B are elementarily

equivalent (A � B) if they satisfy the same senten
es of L.

Theorem 2.13. Let L be a language and let � = maxf�

0

; 
ard(L)g. Every

model for L is elementarily equivalent to a model of 
ardinal � �.

Proof. Let B be a model for L. The theory of B (Th(B)), the set of all

senten
es � su
h that B j= �, is 
onsistent. Apply Theorem 2.10. �
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Formal Dedu
tion

Fix a language L.

Logi
al Axioms:

(1) All tautologies.

(2) Identity Axioms:

(a) t = t

for t a term;

(b) (t

1

= t

2

! ('(t

1

; y

1

; : : : ; y

n

)! '(t

2

; y

1

; : : : ; y

n

)))

for t

1

and t

2

terms and '(x; y

1

; : : : ; y

n

) an atomi
 formula.

(3) Quanti�er Axioms:

( (t; y

1

; : : : ; y

n

)! (9x) (x; y

1

; : : : ; y

n

));

for  (x; y

1

; : : : ; y

n

) a formula and t a term su
h that no o

urren
e of a

variable in t gives a bound o

urren
e of the variable in  (t; y

1

; : : : ; y

n

).

Rules:

(1) Modus Ponens:

' ('!  )

 

for ' and  formulas;

(2) Quanti�er Rule:

('!  )

((9x)'!  )

for ' and  formulas with x not free in  .

Remark. In stating the axioms and rules, we have used abbreviations

involving the symbol \!" (introdu
ed on page 2).

A dedu
tion in L from a set � of senten
es is a �nite sequen
e of formulas

(the lines of the dedu
tion) su
h that every formula in the sequen
e either

(i) belongs to �, (ii) is a logi
al axiom, or (iii) follows from earlier formulas

by one of the two rules. A dedu
tion in L of a senten
e � from � is a

dedu
tion in L from � with last line � .

A set � of senten
es dedu
tively implies in L a senten
e � (� `

L

�) if

there is a dedu
tion in L of � from �.

Remark. It will turn out that dedu
tive impli
ation is independent of L,

but this is not as easy to prove as the 
orresponding fa
t for the semanti
al

notion of logi
al impli
ation.
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Theorem 2.14 (Soundness). For any language L, if � `

L

� then � j= � .

Proof. Let D be a dedu
tion from � in L and let A be any model of �. By

indu
tion one 
an show that, for all lines ' of D and for every s (with large

enough domain), A j= '[s℄. This is trivial for ' 2 � and is easily 
he
ked

for logi
al axioms. Moreover it is easy to see that appli
ations of the rules

preserve this property. �

Theorem 2.15. For any language L, (I){(XII) hold with \`

L

" in pla
e

of \j=."

Remark. The modi�ed (III), like the original (III), remains true if the

restri
tion that � be �nite, is removed. This is be
ause|as is not diÆ
ult

to show|
ompa
tness holds for truth-fun
tional impli
ation. Our reason

for the restri
tion to �nite � is to save ourselves the e�ort of proving the

unrestri
ted version.

Proof. (I), (II), and (XI) follow dire
tly from the notion of a dedu
tion,

and do not depend on our parti
ular axioms and rules.

(IV) and (V) are Identity Axioms, and (VIII) follows from Identity Ax-

ioms (a) and (b) using Modus Ponens.

For (III), suppose that � j=

tf

� with � �nite. Let � be f�

i

j i < ng.

Then

(�

0

! (�

1

! : : :! (�

n�1

! �) � � �)

is a tautology. By n appli
ations of Modus Ponens, we 
an get a dedu
tion

of � from �.

(VI) follows by Modus Ponens from the Identity Axiom v

1

= v

1

and the

Quanti�er Axiom (v

1

= v

1

! (9v

1

) v

1

= v

1

).

For (VII), note that

F (


1

; : : : ; 


k

) = F (


1

; : : : ; 


k

)

is an Identity Axiom and that

(F (


1

; : : : ; 


k

) = F (


1

; : : : ; 


k

) ! (9x)F (


1

; : : : ; 


k

) = x)

is a Quanti�er Axiom. (VI) follows from these axioms by Modus Ponens.

(IX) is a Quanti�er Axiom.

(X) is 
ommonly 
alled the Dedu
tion Theorem. To prove it, let D be a

dedu
tion in L of � from � [ f�g. Get a new sequen
e D

0

of formulas by
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repla
ing ea
h line ' of D by (� ! '). We shall show how to turn D

0

into

a dedu
tion of (� ! �) from � by inserting additional lines.

If a line ' of D belongs to � or is a logi
al axiom, then insert ' and the

tautology ('! (� ! ')). The line (� ! ') then 
omes by Modus Ponens.

If a line of D is �, then the 
orresponding line of D

0

is the tautology

(� ! �).

If a line ' of D 
omes from earlier lines  and ( ! ') by Modus Ponens,

then insert the tautology

(y) ((� !  )! ((� ! ( ! '))! (� ! ')))

and the formula

(z) ((� ! ( ! '))! (� ! ')) .

(z) 
omes from the (y) and (� !  ) by Modus Ponens, and (� ! ') then


omes from the (z) and (� ! ( ! ')) by another appli
ation of Modus

Ponens.

Suppose �nally that a line of D is ((9x)' !  ) and that it 
omes from

an earlier line ('!  ) by the Quanti�er Rule. That earlier line 
orresponds

to the line (� ! ('!  )) of D

0

. Insert the following lines:

((� ! ('!  ))! ('! (� !  )))

('! (� !  ))

((9x)'! (� !  ))

(((9x)'! (� !  ))! (� ! ((9x)'!  )))

(� ! ((9x)'!  )))

The �rst and fourth of these lines are tautologies. The se
ond and �fth 
ome

by Modus Ponens. The third 
omes by the Quanti�er Rule. Finally, the line

(� ! ') 
omes by Modus Ponens.

It remains only to show that (XII) holds. Assume that � [ f (
)g `

L

�

and that the 
onditions of (XII) are met. By (X) we have that � `

L

( (
)!

�). Let D be a dedu
tion witnessing this fa
t. Let y be a variable not

o

urring in D. We get a dedu
tion D

0

from � with last line ( (y) ! �)

by repla
ing ea
h o

urren
e of 
 in D by an o

urren
e of y. Applying the

Quanti�er Rule to the last line of D

0

, we get ((9y) (y)! �). From this, the

Quanti�er Axiom ( (x) ! (9y) (y)), and tautologies and Modus Ponens,

we get ( (x)! �). The Quanti�er Rule now gives ((9x) (x)! �). �
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Let us say that a set � of senten
es of a language L is dedu
tively 
on-

sistent in L if there is no senten
e � of L su
h that � `

L

� and � `

L

:� .

Otherwise � is dedu
tively in
onsistent in L. Sin
e dedu
tions are �nite,

a � is dedu
tively 
onsistent in L if and only if every �nite subset of � is

dedu
tively 
onsistent in L.

Theorem 2.16. (Uses Choi
e) Let � be a set of senten
es of a language L.

Suppose that

(1) � is dedu
tively 
onsistent in L;

(2) � has Henkin witnesses;

(3) for ea
h senten
e � of L, either � 2 � or :� 2 �.

Then � has a model A su
h that 
ard (A) � the 
ardinal number of the set

of 
onstant symbols of L.

(As with Theorem 2.1, Choi
e is needed only to guarantee that the set of

all 
onstant symbols of L has a 
ardinal number.)

Proof. The proof is exa
tly like that of Theorem 2.1, using Theorem 2.15.

�

Theorem 2.17. Let � be a set of senten
es of a language L su
h that �

is dedu
tively 
onsistent in L. Let L

�

be obtained from L by adding new


onstant symbols. Then � is dedu
tively 
onsistent in L

�

.

Proof. Assume that � is dedu
tively in
onsistent in L

�

Then there is a

senten
e � , whi
h we may without loss of generality assume to be a senten
e

of L, su
h that � `

L�

� and � `

L�

:� . Let D

1

and D

2

be dedu
tions

witnessing these fa
ts. Let 


1

; : : : ; 


n

be distin
t and be all the 
onstants of

L

�

o

urring in either of D

1

or D

2

that are not 
onstants of L. Let y

1

; : : : ; y

n

be distin
t variables not o

urring in D

1

or D

2

. Obtain D

0

1

and D

0

2

from

D

1

and D

2

respe
tively by repla
ing, for ea
h i, ea
h o

urren
e of 


i

by

an o

urren
e of y

i

. Then D

0

1

and D

0

2

witness that � `

L

� and � `

L

:�

respe
tively.

Theorem 2.18. (Uses Choi
e) Let L be a language and let L

�

be obtained

from L by adding maxf
ard (L);�

0

g new 
onstant symbols. Let � be a set

of senten
es of L su
h that � is dedu
tively 
onsistent in L.

Then there is a set �

�

� � of senten
es of L

�

su
h that (1) �

�

is

dedu
tively 
onsistent in L

�

, (2) �

�

has Henkin witnesses, and (3) for ea
h

senten
e � of L

�

, either � 2 �

�

or :� 2 �

�

.
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Proof. The proof is exa
tly like that of Theorem 2.8, using Theorem 2.15

and using Theorem 2.17 to get that �

0

= � is dedu
tively 
onsistent in L

�

.

�

Theorem 2.19. (Uses Choi
e) Let � be a set of senten
es of a language L

su
h � is dedu
tively 
onsistent in L. Then there is a model A of � su
h

that 
ard(A) � maxf�

0

; 
ard(L)g.

Proof. The proof is like that of Theorem 2.10. �

Theorem 2.20 (G�odel Completeness Theorem). (Uses Choi
e.) Let

� be a set of senten
es of a language L and let � be a senten
e of L. If

� j= � then � `

L

�.

Proof. Assume that � 6`

L

�. Then, by the analogue of Lemma 2.9, �[f:�g

is dedu
tively 
onsistent in L. By Theorem 2.19, there is a model A for L

su
h that A j= � [ f:�g. But then � 6j= �. �

Be
ause of the Soundness and Completenenss Theorems, the symbol

\`

L

," is super
uous, and we shall make no further use of it.

Exer
ise 2.6. Let L be a language with a one-pla
e relation symbol F .

Give a dedu
tion witnessing the following

f:(9v

1

):F (v

1

)g `

L

:(9v

2

):F (v

2

):

Exer
ise 2.7. Suppose we repla
ed our Quanti�er Rule with the following

additional Logi
al Axioms:

(('!  )! ((9x)'!  ))

for x not o

urring free in  :

Would Soundness still hold? Would Completeness still hold? Prove your

answers.
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3 Model theory

For the next several de�nitions, �x a language L.

If A and B are models for L, then A and B are isomorphi
 (A

�

=

B) if

there is a one-one onto f : A! B su
h that

(1) f(


A

) = 


B

for every 
onstant 
 of L ;

(2) f(F

A

(a

1

; : : : ; a

k

)) = F

B

(f(a

1

); : : : ; f(a

k

)) for all k 2 !nf0g, all k-pla
e

fun
tion symbols of F of L, and all (a

1

; : : : ; a

k

) 2

k

A ;

(3) P

A

(a

1

; : : : ; a

k

))$ P

B

(f(a

1

); : : : ; f(a

k

)) for all k 2 ! n f0g, all k-pla
e

relation symbols P of L, and all (a

1

; : : : ; a

k

) 2

k

A .

Let A and B be models for L. The model A is a submodel of B (A � B)

if A � B and

(1) 


A

= 


B

for all 
onstants 
 of L ;

(2) F

A

= F

B

�

k

A for all k 2 ! n f0g and all k-pla
e fun
tion symbols F

of L ;

(3) P

A

= P

B

\

k

A for all k 2 ! n f0g and all k-pla
e relation symbols P

of L .

We say that A is an elementary submodel of B (A � B) if A � B and, for

every formula '(x

1

; : : : ; x

n

) of L and any elements a

1

; : : : ; a

n

of A,

A j= '[a

1

; : : : ; a

n

℄$ B j= '[a

1

; : : : ; a

n

℄ :

The 
ondition that A � B 
an be weakend to A � B without a�e
ting the

de�ned 
on
ept. To see why this is so, note, for example, that (2) in the

de�nition of A � B 
an be dedu
ed using the formula F (v

1

: : : v

n

) = v

n+1

.

If A is a model for L, let L

A

be the language resulting from adding

to L distin
t new 
onstants 


a

for ea
h a 2 A. (This 
an be done in a

de�nable fashion.) The elementary diagram of A is Th(A

A

), where A

A

is

the expansion of A resulting from setting 


a

A

A

= a.

Theorem 3.1. Let A be a model for a language L. Suppose that B

�

is a

model for L

A

su
h that B

�

is a model of the elementary diagram of A. Let

B be the redu
t of B

�

to L. Then there is a B

0

�

=

B su
h that A � B

0

.

Proof. We may assume without loss of generality that A \B = ;.
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De�ne f : A! B by setting

f(a) = 


a

B

�

;

for a 2 A. For any formula '(x

1

; : : : ; x

n

) of L and for any elements a

1

; : : : ; a

n

of A,

A j= '[a

1

; : : : ; a

n

℄ $ A

A

j= '(


a

1

; : : : ; 


a

n

)

$ B

�

j= '(


a

1

; : : : ; 


a

n

)

$ B

�

j= '[


a

1

B

�

; : : : ; 


a

n

B

�

℄

$ B j= '[


a

1

B

�

; : : : ; 


a

n

B

�

℄

$ B j= '[f(a

1

); : : : ; f(a

n

)℄ :

Taking for ' the formula v

1

= v

2

, we get that f is one-one.

Let C = range (f). Let C be the model with universe C su
h that

f : A

�

=

C. To see that C � B, let ' be a formula of L and let b

1

; : : : ; b

n

be

elements of C. Then

C j= '[b

1

; : : : ; b

n

℄ $ A j= '[f

�1

(b

1

); : : : ; f

�1

(b

n

)℄ $ B j= [b

1

; : : : ; b

n

℄ :

Let B

0

= (B n C) [ A. De�ne B

0

as follows. Let 


B

0

= 


A

for ea
h


onstant 
 of L. For b

0

2 B

0

let

g(b

0

) =

�

b

0

if b

0

2 B ;

f(b

0

) if b

0

2 A .

Now de�ne the interpretation of fun
tion and relation symbols by setting

F

B

0

(b

0

1

; : : : ; b

0

k

) = g

�1

(F

B

(g(b

0

1

); : : : ; g(b

0

k

))) ;

P

B

0

(b

0

1

; : : : ; b

0

k

) $ P

B

(g(b

0

1

); : : : ; g(b

0

k

)) :

It is easy to see that B

0

is as required. �

Theorem 3.2. (Uses Choi
e) Let

L = f0;1;<;+; �g:

Let R be the obvious model for L whose universe is the set R of all real

numbers. The model R has a non-ar
himedean elementary extension; i.e.,

there is a A su
h that R � A and

(9a 2A)(8n 2 !)(0

A

<

A

a ^ a+

A

� � �+

A

a

| {z }

n

<

A

1

A

) :
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Proof. Let L

�

be the result of adding to L

R

a new 
onstant 
. Let

� = Th(R

R

) [ f0<
g [ f
+ � � �+


| {z }

n

<1 j n 2 !g :

Every �nite subset of � is satis�ed by some expansion of R

R

. By Theo-

rem 2.10, let B

�

j= �. Apply Theorem 3.1. �

Theorem 3.3. (Upward L�owenheim{Skolem{Tarski Theorem) Let

A be a model for a language L and suppose that � is a 
ardinal number su
h

that

� � 
ard(A) � �

0

^ � � 
ard(L) :

Then there is an elementary extension B of A su
h that 
ard(B) = �.

Proof. Let L

�

be the result of adjoining to L

A

distin
t new 
onstants 


�

,

� < �. Let

� = Th(A

A

) [ f


�

6= 


�

j � 6= �g :

Every �nite subset of � is satis�ed by an expansion of A

A

. By Theorem 2.10,

this means that there is a model C for � with 
ard(C) � �. But then


ard(C) = �. Apply Theorem 3.1 to get B. �

If A is a model for a language L and ; 6= B � A, then a ne
essary and

suÆ
ient 
ondition for B to be the universe of a submodel of A is that (i) 


A

belongs to B for ea
h 
onstant 
 of L and (ii) that B is 
losed under F

A

for ea
h fun
tion symbol F of A. The following theorem gives a ne
essary

and suÆ
ient 
ondition for B to be the universe of an elementary submodel

of A.

Theorem 3.4. Let A be a model for a language L. Let B be a non-empty

subset of A. Then the following are equivalent:

(1) There is a (unique) B � A su
h that jBj = B.

(2) For every formula '(y; x

1

; : : : ; x

n

) of L and any elements b

1

; : : : ; b

n

of B, there is an element b of B su
h that

A j= ((9y)')[b

1

; : : : ; b

n

℄ ! A j= '[b; b

1

; : : : ; b

n

℄ :

Proof. That (1) implies (2) is easy to see. Suppose then that (2) holds.

We �rst argue that (i) and (ii) of the paragraph pre
eding the theorem

are satis�ed, and so there is a submodel B of A with universe B. If 
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is a 
onstant then A j= (9x)x = 
. By (2) there is a b 2 B su
h that

A j= (x = 
)[b℄. Hen
e 


A

2 B. If F is a k-pla
e fun
tion symbol and

b

1

; : : : ; b

k

are elements of B, then A j= ((9y)F (x

1

; : : : ; x

k

) = y)[b

1

; : : : ; b

k

℄.

By (2) there is a b 2 B su
h that A j= (F (x

1

; : : : ; x

k

) = y)[b; b

1

; : : : ; b

k

℄.

Thus b = F

A

(b

1

; : : : ; b

k

). This argument shows that B is 
losed under F

A

.

By indu
tion on 
omplexity, we show that for all formulas '(x

1

; : : : ; x

n

)

of L and any elements b

1

; : : : ; b

n

of B,

B j= '[b

1

; : : : ; b

n

℄ $ A j= '[b

1

; : : : ; b

n

℄ :

For ' atomi
 this follows from B � A. The 
ases that ' is : and that '

is ( ^ �) are straightforward. Suppose that ' is (9y) (y; x

1

; : : : ; x

n

). If

B j= '[b

1

; : : : ; b

n

℄, then it follows easily that A j= '[b

1

; : : : ; b

n

℄. Assume that

A j= '[b

1

; : : : ; b

n

℄. By (2) there is an b 2 B su
h that A j=  [b; b

1

; : : : ; b

n

℄.

By indu
tion, B j=  [b; b

1

; : : : ; b

n

℄. Hen
e B j= '[b

1

; : : : ; b

n

℄. �

Theorem 3.5 (Downward L�owenheim{Skolem Theorem). (Uses

Choi
e) Let A be a model for a language L and let X � A. Then there

is a B � A su
h that X � B and 
ard (B) � maxf�

0

; 
ard (X); 
ard (L)g.

Proof. Fix a wellordering r of A. For ea
h formula ' of L, let n

'

be 0 if

' is a senten
e and let n

'

be the largest number n su
h that v

n

o

urs free

in ' otherwise. For ea
h '(v

0

; v

1

; : : : ; v

n

'

), let f

'

:

n

'

A! A be given by

f

'

(a

1

; : : : ; a

n

'

) =

8

<

:

the r-least a 2 A su
h that A j= '[a; a

1

; : : : ; a

n

'

℄

if A j= (9v

0

)'[a

1

; : : : ; a

n

'

℄ ;

the r-least element of A otherwise.

(The fun
tions f

'

are 
alled Skolem fun
tions.)

Let Y

0

= X. For k 2 ! let

Y

k+1

= Y

k

[

[

frange (f

'

�

n

'

(Y

k

)) j ' a formula of Lg :

It is easy to prove by indu
tion that 
ard (Y

k

) � maxf�

0

; 
ard (X); 
ard (L)g

for ea
h k 2 !.

Let B =

S

fY

k

j k 2 !g. Then 
ard (B) � maxf�

0

; 
ard (X); 
ard (L)g.

Obviously B 6= ;. Sin
e B is 
losed under all the f

'

, it follows that A and

B satisfy (2) of Theorem 3.4, and so (1) of Theorem 3.4 holds. �

Suppose that / is a linear ordering of a set I 6= ;. If A

i

, i 2 I, are models

for a language L and are su
h that

(8i 2 I)(8j 2 I)(i / j ! A

i

� A

j

) ;
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then h/; hA

i

j i 2 Iii is a 
hain of models. (By hA

i

j i 2 Ii we mean the

fun
tion f with domain I su
h that f(i) = A

i

for ea
h i. We shall often use

su
h notation.)

Let h/; hA

i

j i 2 Iii be a 
hain of models for a language L. Let A =

S

i2I

A

i

(i.e.,

S

fA

i

j i 2 Ig). We de�ne a model A with universe A as

follows:

(i) For 
onstants 
 of L, set 


A

= 


A

i

for some (all) i 2 I.

(ii) Let F be a k-pla
e fun
tion symbol of L and let a

1

; : : : ; a

k

be elements

of A. There is an i su
h that all the a

m

belong to A

i

. For some (any)

su
h i, set F

A

(a

1

; : : : ; a

k

) = F

A

i

(a

1

; : : : ; a

k

).

(iii) Let P be a k-pla
e fun
tion symbol of L and let a

1

; : : : ; a

k

be elements

of A. For some (any) i su
h that all the a

m

belong to A

i

, de�ne

P

A

(a

1

; : : : ; a

k

)$ P

A

i

(a

1

; : : : ; a

k

).

Note that A

i

� A for ea
h i 2 I. We 
all A the union of the 
hain of models.

A 
hain of models h/; hA

i

j i 2 Iii is an elementary 
hain if

(8i 2 I)(8j 2 I)(i / j ! A

i

� A

j

) :

Theorem 3.6. Let A be the union of an elementary 
hain h/; hA

i

j i 2 Iii.

Then A

i

� A for every i 2 I.

Proof. By indu
tion on the 
omplexity of formulas '(x

1

; : : : ; x

n

), we show

that

(8i 2 I)(8a

1

; : : : ; a

n

2A

i

)(A

i

j= '[a

1

; : : : ; a

n

℄$ A j= '[a

1

; : : : ; a

n

℄) :

The 
ases that ' is atomi
, that it is a negation, and that it is a 
on-

jun
tion are routine.

For the 
ase that ' is (9y) for some formula  (y; x

1

; : : : ; x

n

), let i 2 I

and assume �rst that A

i

j= '[a

1

; : : : ; a

n

℄. Then there is a b 2 A

i

su
h

that A

i

j=  [b; a

1

; : : : ; a

n

℄. By indu
tion, A j=  [b; a

1

; : : : ; a

n

℄ and hen
e

A j= '[a

1

; : : : ; a

n

℄.

Now suppose that A j= '[a

1

; : : : ; a

n

℄. Let b 2 A be su
h that A j=

 [b; a

1

; : : : ; a

n

℄. There is a j 2 I with i / j or i = j and su
h that b 2 A

j

. By

indu
tion we get that A

j

j=  [b; a

1

; : : : ; a

n

℄ and so that A

j

j= '[a

1

; : : : ; a

n

℄.

Sin
e A

i

� A

j

, it follows that A

i

j= '[a

1

; : : : ; a

n

℄. �

Exer
ise 3.1. Let (!;<) be the obvious model for the language f<g. (We

shall frequently spe
ify models in this way.) For models A of Th(!;<)|we
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omit a set of parentheses for appearan
e's sake|and elements a and b of

A, say that a �

A

b if there are only �nitely many elements of A that are

between a and b with respe
t to <

A

. Let [a℄

A

be the equivalen
e 
lass of

a 2 A with respe
t to �

A

. Say that [a℄

A

<<

A

[b℄

A

if a<

A

b and there are

in�nitely many 
 su
h that a<

A


<

A

b. Use elementary 
hains to show that

there is a model B of Th(!;<) su
h that <<

B

is a dense linear ordering of

the set of equivalen
e 
lasses of �

B

with no last element.

Hint. First show that, for any model A of Th(!;<); there is an elemen-

tary extension C of A with the following properies:

(1) (8a 2A)(9
 2C) [a℄

C

<<

C

[
℄

C

;

(2) (8a 2A)(8a

0

2A)([a℄

A

<<

A

[a

0

℄

A

! (9
 2C) [a℄

C

<<

C

[
℄

C

<<

C

[a

0

℄

C

).

(Note that [a℄

C

= [a℄

A

for a 2 A.) To show that C exists, use 
ompa
tness

and Theorem 3.1. Your expanded language 
ould have one or in�nitely many


onstants for ea
h instan
e of (2), though one 
onstant suÆ
es to take 
are

of (1).

If A and B are models for a language L, f is an elementary embedding

of A into B (f : A � B or A

f

� B) if, for all formulas '(x

1

; : : : ; x

n

)

of L and any elements a

1

; : : : ; a

n

of A, A j= '[a

1

; : : : ; a

n

℄ if and only if

B j= '[f(a

1

); : : : ; f(a

n

)℄.

A theory in a language L is a set � of senten
es su
h that whenever

� j= � then � 2 �. A theory in L is 
omplete if it is 
onsistent and, for

every senten
e � of L, either � or :� belongs to �.

Theorem 3.7 (Robinson Joint Consisten
y Theorem). (Uses Choi
e.)

Let L

0

and L

00

be languages and let L = L

0

\L

00

. Let T

0

be a 
onsistent theory

in L

0

. Let T

00

be a 
onsistent theory in L

00

. Let T be a 
omplete theory in L

su
h that T � T

0

\ T

00

. Then T

0

[ T

00

is 
onsistent.

Remark. The statement of the theorem is somewhat impre
ise. By

saying that L = L

0

\ L

00

we mean to imply that the only 
ommon symbols

of L

0

and L

00

are those of L, and that ea
h of these 
ommon symbols is the

same kind of symbol in the three languages.

Proof. In order to do an elementary 
hain 
onstru
tion, we need the fol-

lowing two lemmas.
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Lemma 3.8. (Uses Choi
e.) Let L

1

and L

2

be languages ea
h of whi
h

extends a language L

0

. Let A and B be models for L

1

and L

2

respe
tively.

Suppose that

Th(A � L

0

) = Th(B � L

0

) ;

where, e.g., A � L

0

is the redu
t of A to L

0

. Then there is a model A

�

for

L

1

and there is a fun
tion g su
h that

(i) A � A

�

;

(ii) g : B � L

0

� A

�

� L

0

.

Proof. We may assume that the 
onstants of (L

1

)

A

n L

1

are not symbols

of (L

2

)

B

and vi
e versa. We may also assume that (L

0

)

B

and (L

2

)

B

have

the same 
onstants 


b

.

We �rst show that Th((B � L

0

)

B

) [ Th(A

A

) is 
onsistent. Assume oth-

erwise. Using 
ompa
tness and forming 
onjun
tions, we get that there are

senten
es � 2 Th((B �L

0

)

B

) and � 2 Th((A)

A

) su
h that f�; �g is in
onsis-

tent. Hen
e � j= :� . There is a formula '(x

1

; : : : ; x

n

) of L

0

su
h that � is

'(


1

; : : : ; 


n

) for 
onstants 


1

; : : : ; 


n

of (L

0

)

B

nL

0

. Hen
e '(


1

; : : : ; 


n

) j= :� .

Sin
e the 
onstants 


1

; : : : ; 


n

are not 
onstants of (L

1

)

A

, we 
an apply n

times property (XII) of j= and get that

(9x

1

) � � � (9x

n

)'(x

1

; : : : ; x

n

) j= :� :

The senten
e (9x

1

) � � � (9x

n

)'(x

1

; : : : ; x

n

) belongs to Th(B�L

0

). By hypoth-

esis it must then belong to Th(A �L

0

), and so to Th(A

A

). This 
ontradi
ts

the fa
t that it implies :� .

Let C be a model of Th((B �L

0

)

B

) [Th(A

A

). By Theorem 3.1, there is

a model A

�

for L

1

su
h that

A � A

�

�

=

C � L

1

:

The fun
tion b 7! 


b

C

is an elementary embedding of B � L

0

into C � L

0

�

=

A

�

� L

0

, so we get a g satisfying (ii). �

Lemma 3.9. (Uses Choi
e). Let L

0

, L

1

, L

2

, A, and B be as in Lemma 3.8.

In addition, let

f : A � L

0

� B � L

0

:

Then there are A

�

and g satisfying (i) and (ii) of Lemma 3.8 and su
h that

(iii) g Æ f is the identity.

46



Proof. We assume that (L

0

)

A

and (L

1

)

A

have the same 
onstants 


a

, and

we let (L

2

)

A

be the extension of L

2

with these same 
onstants, whi
h we

assume are not symbols of L

2

. Let

^

B be the expansion of B to (L

2

)

A

gotten

by setting 


a

^

B

= f(a) for ea
h a 2 A. The hypotheses of Lemma 3.8 are

satis�ed by the languages (L

0

)

A

, (L

1

)

A

, and (L

2

)

A

and the models A

A

and

^

B. By that lemma, we get

~

A and g su
h that

(1) A

A

�

~

A ;

(2) g :

^

B � (L

0

)

A

�

~

A � (L

0

)

A

:

Let A

�

=

~

A � L

1

. Clause (i) follows from (1), and 
lause (ii) follows from

(2). (Note that g is literally a fun
tion with domain B.) For (iii), let a 2 A.

Then

g(f(a)) = g(


a

^

B

) = 


a

~

A

= 


a

A

A

= a . �

Let A

0

andB

0

be models of T

0

and T

00

respe
tively. Applying Lemma 3.8

with languages L, L

00

, and L

0

and models B

0

and A

0

, we get B

1

� B

0

and

f

0

: A

0

� L � B

1

� L.

Suppose indu
tively that we have (1) a model A

n

of T

0

, (2) a modelB

n+1

of T

00

, and (3) an elementary embedding f

n

: A

n

� L � B

n+1

� L. Applying

Lemma 3.9 with languages L, L

0

, and L

00

and models A

n

and B

n+1

, we get

A

n+1

� A

n

and g

n+1

: B

n+1

� L � A

n+1

� L, su
h that g

n+1

Æ f

n

is the

identity. By another appli
ation of Lemma 3.9, we get B

n+2

� B

n+1

and

f

n+1

: A

n+1

� L � B

n+2

� L, su
h that f

n+1

Æ g

n+1

is the identity.

Both h<; hA

n

j n 2 !ii and h<; hB

n

j n 2 !ii are elementary 
hains.

Moreover, for ea
h n 2 !,

f

n

= (f

n+1

Æ g

n+1

) Æ f

n

= f

n+1

Æ (g

n+1

Æ f

n

) = f

n+1

� A

n

:

Similarly g

n+1

= g

n+2

�B

n+1

for ea
h n 2 !.

Let A and B the unions of the elementary 
hains h<; hA

n

j n 2 !ii and

h<; hB

n

j n 2 !ii. By Theorem 3.6, A j= T

0

and B j= T

00

.

Let f : A! B be given by f =

S

n2!

f

n

and let g : B ! A be given by

g =

S

n2!

g

n

. It is easy to see that f and g are inverses of one another and

that f : A � L

�

=

B � L. De�ne an expansion C of A to L

0

[ L

00

by making

f : C � L

00

�

=

B. The model C witnesses that T

0

[ T

00

is 
onsistent. �

Corollary 3.10 (Craig's Lemma). Let � and � be senten
es of some lan-

guage su
h that � j= � . Then there is a senten
e � of the language su
h that

every 
onstant, fun
tion symbol, and relation symbol o

urring in � o

urs

in both � and � and su
h that � j= � and � j= � .

47



Proof. Let the non-logi
al symbols of L be those o

urring in both � and

� . Let the non-logi
al symbols of L

0

be those o

urring in �, and let the

non-logi
al symbols of L

00

be those o

urring in � . Let T

0

be the set of all

senten
es � of L su
h that � j= �. If T

0

j= � , then we get the desired � by


ompa
tness. Let then A be a model for L

00

su
h that A j= T

0

[ f:�g. Let

T

00

= Th(A) and let T = Th(A � L). Let T

0

be the set of 
onsequen
es in

L

0

of T [f�g. If T

0

were in
onsistent, then 
ompa
tness would give a � 2 T

su
h that � j= :�. This would yield the 
ontradi
tion that � j= :� and

so that :� 2 T

0

� T . Thus the hypotheses of Theorem 3.7 are satis�ed.

By that theorem, T

0

[ T

00

is 
onsistent, 
ontradi
ting the assumption that

� j= � . �

Let L be a language, and let L [ fP; P

0

g be the result of adding to L

new k-pla
e relation symbols P and P

0

. Let �(P ) be a set of senten
es of

L [ fPg and let �(P

0

) result from �(P ) by repla
ing ea
h o

urren
e of P

by an o

urren
e of P

0

.

We say that �(P ) de�nes P impli
itly if

�(P ) [ �(P

0

) j= (8x

1

) � � � (8x

k

)(P (x

1

; : : : ; x

k

)$ P

0

(x

1

; : : : ; x

k

)) :

(In other words, if A is a model for L, then there is at most on way to

expand A to a model of �(P ).)

We say that �(P ) de�nes P expli
itly if there is a formula '(x

1

; : : : ; x

k

)

of L su
h that

�(P ) j= (8x

1

) � � � (8x

k

)(P (x

1

; : : : ; x

k

)$ '(x

1

; : : : ; x

k

)) :

Theorem 3.11 (Beth's Theorem). (Uses Choi
e.) �(P ) de�nes P im-

pli
itly if and only if �(P ) de�nes P expli
itly.

Proof. The \if" part of the theorem is obvious. For the \only if" part,

assume that �(P ) de�nes P impli
itly.

Adjoin new 
onstants 


1

; : : : ; 


k

to L. We have that

�(P ) [ �(P

0

) j= P (


1

; : : : ; 


k

)! P

0

(


1

; : : : ; 


k

) :

By 
ompa
tness, we get a �nite � � �(P ) and a �nite �

0

� �(P

0

) su
h

that

� [�

0

j= P (


1

; : : : ; 


k

)! P

0

(


1

; : : : ; 


k

) :

We may assume without loss of generality that �

0

is the set of senten
es

that result from � when all o

urren
es of P are repla
ed by o

urren
es of

P

0

.
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Let �(P ) be the 
onjun
tion of all the members of � and let �(P

0

) be

the 
onjun
tion of all the members of �

0

. Then

�(P ) ^ �(P

0

) j= P (


1

; : : : ; 


k

)! P

0

(


1

; : : : ; 


k

) :

From this it follows that

�(P ) ^ P (


1

; : : : ; 


k

) j= �(P

0

)! P

0

(


1

; : : : ; 


k

) :

By Craig's Lemma there is a senten
e �(


1

; : : : ; 


k

) of L [ f


1

; : : : ; 


k

g su
h

that

(a) �(P ) ^ P (


1

; : : : ; 


k

) j= �(


1

; : : : ; 


k

) ;

(b) �(


1

; : : : ; 


k

) j= �(P

0

)! P

0

(


1

; : : : ; 


k

) .

From (b) we it follows that

�(


1

; : : : 


k

) j= �(P )! P (


1

; : : : ; 


k

) ;

and so that

�(P ) j= �(


1

; : : : 


k

)! P (


1

; : : : 


k

) :

But (a) implies that

�(P ) j= P (


1

; : : : ; 


k

)! �(


1

; : : : ; 


k

) :

Hen
e

�(P ) j= P (


1

; : : : ; 


k

)$ �(


1

; : : : ; 


k

) :

Sin
e 


1

; : : : ; 


k

do not o

ur in �(P ),

�(P ) j= (8x

1

) � � � (8x

k

)(P (x

1

; : : : ; x

k

)$ �(x

1

; : : : ; x

k

)) :

Sin
e �(P ) j= �(P ), the proof is 
omplete. �

Exer
ise 3.2. Prove the Robinson Joint Consisten
y Theorem dire
tly from

Craig's Lemma.

Exer
ise 3.3. A model a for a language L is �nitely generated if there is a

�nite X � A su
h that there is no B ( A with X � B. Let T be a theory

in L and let A be a model for L. Assume that every �nitely generated

submodel of A is isomorphi
 to a submodel of a model of T . Show that A

is isomorphi
 to a submodel of a model of T .

Hint. First prove an analogue of Theorem 3.1 for �.
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Exer
ise 3.4. Let L be a language 
ontaining a two-pla
e relation symbol

R. If A is a model for L, then an end extension of A (with respe
t to R) is

a B ) A su
h that

(8a 2 A)(8a 2B n A)(R

B

(a; b) ^ :R

B

(b; a)) :

Let T be a theory in L and suppose that every 
ountable model of T has

an elementary end extension. Show that every 
ountable model of T has an

un
ountable elementary end extension.

Assume until further noti
e that L is a 
ountable language.

For n 2 !, an n-type (in L) is a set �(x

1

; : : : ; x

n

) of formulas with only

the (distin
t) variables x

1

; : : : ; x

n

free and su
h that

(1) If new 
onstants 


1

; : : : ; 


n

are adjoined to L, then f'(


1

; : : : ; 


n

) j

'(x

1

; : : : ; x

n

) 2 �(x

1

; : : : ; x

n

)g is 
onsistent.

(2) If ' is a formula of L with only x

1

; : : : ; x

n

free, then either ' 2

�(x

1

; : : : ; x

n

) or :' 2 �(x

1

; : : : ; x

n

).

A 0-type is just a 
omplete theory.

If T is a theory in L, an n-type of T is n-type of whi
h T is a subset.

A model A for L realizes an n-type �(x

1

; : : : ; x

n

) if there are elements

a

1

; : : : ; a

n

of A su
h that

(8' 2 �(x

1

; : : : ; x

n

))A j= '[a

1

; : : : ; a

n

℄ :

If A does not realize �(x

1

; : : : ; x

n

), then we say that A omits �(x

1

; : : : ; x

n

).

If A is a model for L and Y � A, let L

Y


ome from L by adding the new


onstants 


a

for a 2 Y . Let A

Y

be the obvious expansion of A to L

Y

.

For in�nite 
ardinal numbers �, a model A is �-saturated if, for every

Y � A with jY j < �, A

Y

realizes every one-type �(x) of Th(A

Y

). If A is

jAj-saturated, then A is saturated. If A is both 
ountable and !-saturated

(i.e. �

0

-saturated), then A is 
ountably saturated.

Theorem 3.12. Let T be a 
omplete theory in L. Then T has a 
ountably

saturated model if and only if, for all n 2 !, T has only 
ountably many

n-types.

Proof. Suppose that A is an !-saturated model of T . We show by indu
tion

on n that every n-type of T is realized in A. The 
ase n = 0 is trivial. (So

is the 
ase n = 1: take Y = ;.)

50



Let n 2 ! and let �(x

1

; : : : ; x

n+1

) be an n+1-type of T . Let

�

�(x

1

; : : : ; x

n

)

� �(x

1

; : : : ; x

n+1

) be the 
orresponding n-type of T . By indu
tion, let

a

1

; : : : ; a

n

be elements of A su
h that

(8'(x

1

; : : : ; x

n

) 2

�

�(x

1

; : : : ; x

n

))A j= '[a

1

; : : : ; a

n

℄ :

Let Y = fa

1

; : : : ; a

n

g. Let

�

�

(x

n+1

) = f'(


a

1

; : : : ; 


a

n

; x

n+1

) j '(x

1

; : : : ; x

n+1

) 2 �(x

1

; : : : ; x

n+1

)g :

If 
 is a new 
onstant, then

f (
) j  (x

n+1

) 2 �

�

(x

n+1

)g

= f'(


a

1

; : : : ; 


a

n

; 
) j '(x

1

; : : : ; x

n+1

) 2 �(x

1

; : : : ; x

n+1

)g ;

and so this set is 
onsistent. The set �

�

(x

n+1

) fails to satisfy requirement (2)

for being a type in L

Y

, but it satis�es (2) ex
ept for formulas ' of L

Y

that


ontain an o

urren
e of some 


a

i

within the s
ope of a quanti�er 
ontaining

the 
orresponding x

i

. Moreover �

�

(x

n+1

) fails only for the same trivial

reason to in
lude Th(A

Y

). Thus there is a one-type �

��

(x

n+1

) of Th(A

Y

)

su
h that �

�

(x

n+1

) � �

��

(x

n+1

). By !-saturation, let a

n+1

2 A be su
h

that A

Y

j=  [a

n+1

℄ for all  (x

n+1

) 2 �

��

(x

n+1

). Thus A j= '[a

1

; : : : ; a

n+1

℄

for all '(x

1

; : : : ; x

n+1

) 2 �(x

1

; : : : ; x

n+1

), so A realizes �(x

1

; : : : ; x

n+1

).

To see that what we have proved implies the \only if" part of the the-

orem, suppose that A is a 
ountably saturated model of T . Sin
e

n

A is


ountable, A realizes only 
ountably many n-types. But these are all the

n-types of T .

For the \if" part of the theorem, �rst let A be a 
ountable model of T .

(Re
all that L is 
ountable.) We show that there is a 
ountable B su
h that

A � B and, for all �nite Y � A and all one-types �(x) of Th(A

Y

), B

Y

realizes �(x). Starting with some 
ountable model A

0

of T and repeatedly

applying this lemma, we get

A

0

� A

1

� A

2

� � � � ;

su
h that ea
h (A

i+1

)

Y

is 
ountable and realizes ea
h one-type of (A

i

)

Y

for

ea
h �nite Y � A

i

. The union of this elementary 
hain is thus 
ountable

and !-saturated.

To show that B exists, let Let

W = fhY;�(x)i j Y � A ^ Y is �nite ^ �(x) is a one-type of Th(A

Y

)g
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and let L

�

be the language

L

A

[ fd

Y;�(x)

j hY;�(x)i 2Wg ;

where the d

Y;�(x)

are new 
onstants. Sin
e distin
t one-types of Th(A

Y

)

give rise to distin
t (jY j + 1)-types of T , we know that ea
h Th(A

Y

) has

only 
ountably many one-types. Thus L

�

is 
ountable.

Let

� = Th(A

A

) [ f'(d

Y;�(x)

) j hY;�(x)i 2W ^ '(x) 2 �(x)g :

Every �nite subset of � is satis�able in an expansion of A

A

. To see this, let

hY;�(x)i 2W . Then note that, for any �nite 
onjun
tion '(x) of members

of �(x), the senten
e (9x)'(x) 2 Th(A

Y

) � Th(A

A

). Thus 
ompa
tness

gives a 
ountable model B

�

of �. Using Theorem 3.1, let B be isomorphi


to the redu
t of B

�

to L and su
h that A � B. �

Exer
ise 3.5. Prove that a model A is �-saturated if and only if, for every

n 2 ! and every Y � A with jY j < �, A

Y

realizes every n-type �(x) of

Th(A

Y

). (You don't have to give the detailed argument.)

Exer
ise 3.6. Let T be a 
omplete theory and suppose that all 
ountable

models of T are !-saturated. Show that all models of T are !-saturated.

Exer
ise 3.7. A set x is hereditarily 
ountable if the transitive 
losure of x

is 
ountable. Let A be the model for the language of set theory whi
h has

the set of all hereditarily 
ountable sets as its universe and whi
h is su
h

that 2

A

=2�A. Prove that A realizes un
ountably many one-types of Th(A).

Hint. The set P(!) is un
ountable.

Theorem 3.13. Let T be a 
omplete theory in L. Any two 
ountably satu-

rated models of T are isomorphi
.

Proof. Let A and B be 
ountably saturated models of T . Let Y � A and

Z � B be su
h that Y and Z are �nite. Let Y = fa

1

; : : : ; a

n

g. Suppose that

f : Y ! Z is one-one onto and is su
h that, for all formulas '(x

1

; : : : ; x

n

)

of L,

A j= '[a

1

; : : : ; a

n

℄ $ B j= '[f(a

1

); : : : ; f(a

n

)℄ :

Let a 2 A. We show that there is a b 2 B su
h that, for all formulas

'(x

1

; : : : ; x

n+1

) of L,

A j= '[a

1

; : : : ; a

n

; a℄ $ B j= '[f(a

1

); : : : ; f(a

n

); b℄ :
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To show this, let �(x

n+1

) be the one-type of Th(A

Y

) given by a. Let

~

�(x

n+1

) = f'(


f(a

1

)

; : : : ; 


f(a

n

)

; x

n+1

) j '(


a

1

; : : : ; 


a

n

; x

n+1

) 2 �(x

n+1

)g :

Clearly

~

�(x

n+1

) is a one-type of Th(B

Z

). By saturation, B

Z

realizes this

one-type. Let b witness this fa
t.

We 
an prove by the same method that for every b 2 B there is an a 2 A

su
h that, for all formulas '(x

1

; : : : ; x

n+1

) of L,

A j= '[a

1

; : : : ; a

n

; a℄ $ B j= '[f(a

1

); : : : ; f(a

n

); b℄ :

Sin
e A and B are 
ountable, these fa
ts allow us, starting with the

empty f : ; ! ;, to 
onstru
t by re
ursion an isomorphism g : A

�

=

B. �

Theorem 3.14. Let T be a 
omplete theory. Any two saturated models of

T of the same 
ardinality are isomorphi
.

Proof. The proof is a dire
t generalization of the proof of Theorem 3.13,

so we omit it. �

Let T be a theory (in L). A type �(x

1

; : : : ; x

n

) of T is prin
ipal if there

is a �nite �(x

1

; : : : ; x

n

) � �(x

1

; : : : ; x

n

) su
h that, for all  (x

1

; : : : ; x

n

) 2

�(x

1

; : : : ; x

n

),

(8x

1

) � � � (8x

n

)(

VV

�(x

1

; : : : ; x

n

)!  (x

1

; : : : ; x

n

)) 2 T ;

where

VV

�(x

1

; : : : ; x

n

) is the 
onjun
tion of all the formulas belonging to

�(x

1

; : : : ; x

n

).

Theorem 3.15. Let T be a theory in L and let n 2 !. The following are

equivalent:

(a) There is a non-prin
ipal n-type of T .

(b) There are in�nitely many n-types of T (for �xed x

1

; : : : ; x

n

).

Proof. To show that (a) implies (b), let �(x

1

; : : : ; x

n

) be a non-prin
ipal

n-type of T . Let k 2 ! and assume that

�

0

(x

1

; : : : ; x

n

); : : : ;�

k�1

(x

1

; : : : ; x

n

)

are the only n-types of T that are distin
t from �(x

1

; : : : ; x

n

). For ea
h

i < k let

'

i

(x

1

; : : : ; x

n

) 2 �(x

1

; : : : ; x

n

) n �

i

(x

1

; : : : ; x

n

) :

53



Let �(x

1

; : : : ; x

n

) = f'

i

j i < kg. Sin
e �(x

1

; : : : ; x

n

) is non-prin
ipal, there

is a  (x

1

; : : : ; x

n

) 2 �(x

1

; : : : ; x

n

) su
h that

� = T [ f(9x

1

) � � � (9x

n

)(

VV

�(x

1

; : : : ; x

n

) ^ : (x

1

; : : : ; x

n

))g

is 
onsistent. Let A be a model of �. Let a

1

; : : : ; a

n

be members of A su
h

that

A j= (

VV

�(x

1

; : : : ; x

n

) ^ : (x

1

; : : : ; x

n

))[a

1

; : : : ; a

n

℄:

Then

f'(x

1

; : : : ; x

n

) j A j= '[a

1

; : : : ; a

n

℄g

is an n-type of T that is distin
t from �(x

1

; : : : ; x

n

) and from ea
h of the

�

i

(x

1

; : : : ; x

n

).

For the impli
ation from (b) to (a), let '

i

, i 2 !, be all formulas of

L with only x

1

; : : : ; x

n

free. Let k 2 ! and assume indu
tively that, for

ea
h i < k,  

i

is either '

i

or :'

i

. Also assume indu
tively that there are

in�nitely many n-types of T that in
lude f 

i

j i < kg. Obviously there is a


hoi
e of '

k

that satis�es our indu
tion hypotheses for k + 1. Thus we get

f 

i

j i 2 !g, an n-type of T . If �(x

1

; : : : ; x

n

) witnessed that this type were

prin
ipal, then there would be a k with �(x

1

; : : : ; x

n

) � f 

i

j i < kg. But

in�nitely many n-types of T in
lude this set. �

Theorem 3.16. Let T be a theory in L and let �(x

1

; : : : ; x

n

) be a non-

prin
ipal type of T . Then T has a 
ountable model that omits �(x

1

; : : : ; x

n

).

Proof. Let 


i

, i 2 !, be new 
onstants. Let L

�

= L [ f


i

j i 2 !g. We

shall 
onstru
t a theory T

�

� T in L

�

su
h that

(1) T

�

is 
onsistent;

(2) if (9x)'(x) 2 T

�

then '(


i

) 2 T

�

for some i 2 !;

(3) T

�

is 
omplete;

(4) for all i

1

; : : : ; i

n

2 !, there is a '(x

1

; : : : ; x

n

) 2 �(x

1

; : : : ; x

n

) su
h that

'(


i

1

; : : : ; 


i

n

) =2 T

�

.

The existen
e of su
h a T

�

suÆ
es to prove the theorem, as the following

argument shows. The proof of Theorem 2.1, with T

�

for the � of that

theorem, gives a 
ountable model A

�

of T

�

su
h that

A

�

= f


A

�

j 
 is a 
onstant of L

�

g :
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For any 
onstant 
 of L

�

, an appli
ation of (2) with 
 = x for '(x) shows

that every there is an i su
h that 
 = 


i

2 T

�

. Thus

A

�

= f


i
A

�

j i 2 !g :

This and (4) imply that the redu
t of A

�

to L omits �.

To 
onstru
t T

�

, we follow the proof of Theorem 2.8, with an extra step

to take 
are of (4).

Let �

i

, i 2 !, be all senten
es of L

�

Let h(i)

1

; : : : ; (i)

n

i, i 2 !, be all

elements of

n

!.

By re
ursion, we de�ne sets �

�

of senten
es of L

�

for � � !. We arrange

that

(a) �

0

= T ;

(b) �

!

=

S

f�

n

j n 2 !g ;

(
) for i < � � !, �

i

� �

�

;

(d) for � � !, �

�

is 
onsistent;

(e) 
ard (�

�+1

n �

i

) � 3 for i 2 ! ;

(f) for i 2 !, either �

i

2 �

i+1

or :�

i

2 �

i+1

;

(g) if i 2 !, if �

i

is (9x)'(x), and if �

i

2 �

i+1

, then '(


j

) 2 �

i+1

for some

j 2 !;

(h) for i 2 !, there is some  (x

1

; : : : ; x

n

) 2 �(x

1

; : : : ; x

n

) su
h that

: (


(i)

1

; : : : ; 


(i)

n

) 2 �

i+1

.

On
e we 
arry out this 
onstru
tion, we 
an �nish the proof by setting

T

�

= �

!

.

Assume that i 2 ! and that we are given �

j

, j � i, violating none of

(a){(h).

If �

i

[ f:�

i

g is 
onsistent, then let �

0

i

= �

i

[ f:�

i

g. Otherwise let

�

0

i

= �

i

[ f�

i

g unless �

i

is (9y)'

i

(y) for some ', in whi
h 
ase let �

0

i

=

�

i

[f�

i

; '

i

(


j

)g, where j is minimal su
h that 


j

does not o

ur in �

i

or �

i

.

Let z

1

; : : : ; z

n

be distin
t variables not o

urring in any member of �

0

i

nT .

Let � be the 
onjun
tion of all senten
es in �

0

i

n T . Let �� 
ome from � by

repla
ing, for 1 � m � n, all o

urren
es of x

m

by o

urren
es of z

m

. (The

point of this repla
ement is to make sure that no 


(i)

m

o

urs in the s
ope

of (9x

m

).) Let 


j

1

; : : : ; 


j

k

be all the new 
onstants o

urring in �� that

are not among 


(i)

1

; : : : ; 


(i)

n

. Let y

1

; : : : ; y

k

be variables not o

urring in ��

that are distin
t from one another and from x

1

; : : : ; x

n

. There is a formula

�(y

1

; : : : y

k

; x

1

; : : : ; x

n

) of L, su
h that �� is �(


j

1

; : : : ; 


j

k

; 


(i)

1

; : : : ; 


(i)

n

).
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We show that there is a  (x

1

; : : : ; x

n

) 2 �(x

1

; : : : ; x

n

) su
h that �

0

i

6j=

 (


(i)

1

; : : : ; 


(i)

n

). Assume otherwise. Then

T [ f�(


j

1

; : : : ; 


j

k

; 


(i)

1

; : : : ; 


(i)

n

)g j=  (


(i)

1

; : : : ; 


(i)

n

)

for ea
h  (x

1

; : : : ; x

n

) 2 �(x

1

; : : : ; x

n

). Properties (XII) and (X) of j= imply

that

T j= (9y

1

) � � � (9y

k

)�(y

1

; : : : ; y

k

; 


(i)

1

; : : : ; 


(i)

n

)!  (


(i)

1

; : : : ; 


(i)

n

)

for ea
h  (x

1

; : : : ; x

n

) 2 �(x

1

; : : : ; x

n

). Let �

0

(y

1

; : : : ; y

k

; x

1

; : : : ; x

n

) be the

result of adding 
onjun
ts x

m

= x

m

0

to �(y

1

; : : : ; y

k

; x

1

; : : : ; x

n

) for 1 � m <

m

0

� n su
h that (i)

m

= (i)

m

0

. Then

T j= (8x

1

) � � � (8x

n

)((9y

1

) � � � (9y

k

)�

0

(y

1

; : : : ; y

k

; x

1

; : : : ; x

n

)!  (x

1

; : : : ; x

n

))

for ea
h  (x

1

; : : : ; x

n

) 2 �(x

1

; : : : ; x

n

). The senten
e

(9y

1

) � � � (9y

k

)�

0

(y

1

; : : : ; y

k

; 


(i)

1

; : : : ; 


(i)

n

)

is logi
ally implied by �� , so by � , and so by �

0

i

. Hen
e this senten
e is


onsistent with T . If the formula

(9y

1

) � � � (9y

k

)�

0

(y

1

; : : : ; y

k

; x

1

; : : : ; x

n

)

does not belong to �(x

1

; : : : ; x

n

), then we get a 
ontradi
tion by taking its

negation for  (x

1

; : : : ; x

n

). Otherwise the formula witnesses that �(x

1

; : : : ; x

n

)

is prin
ipal, a 
ontradi
tion.

Let �

i+1

= �

0

i

[ f: (


(i)

1

; : : : ; 


(i)

n

)g for some  (x

1

; : : : ; x

n

) of the sort

we have just proved to exist. �

If T is a theory and � is a 
ardinal number, then T is �-
ategori
al if

any two models of T of 
ardinal � are isomorphi
.

Theorem 3.17. Let T be a 
omplete theory. Then T is �

0

-
ategori
al if

and only if, for every n 2 !, T has only �nitely many n-types.

Proof. Suppose �rst that T has, for ea
h n, only �nitely many n-types.

We show that every model of T is !-saturated, and so that every 
ount-

able model of T is saturated. By Theorem 3.13, this implies that T is

�

0

-
ategori
al.
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Let A be a model of T . Let Y = fb

1

; : : : ; b

m

g be a �nite subset of A.

Let �(x

1

; : : : ; x

n

) be an n-type of Th(A

Y

). Let

~

�(x

1

; : : : ; x

n+m

) be

f'(x

1

; : : : ; x

n+m

) j '(x

1

; : : : ; x

n

; 


b

1

; : : : ; 


b

m

) 2 �(x

1

; : : : ; x

n

)g :

Clearly

~

�(x

1

; : : : ; x

n+m

) is an (n + m)-type of T . By Theorem 3.15, let

~

�(x

1

; : : : ; x

n+m

) witness that

~

�(x

1

; : : : ; x

n+m

) is prin
ipal. If 


1

; : : : ; 


n

are

new 
onstants, then

f'(


1

; : : : ; 


n

; 


b

1

; : : : ; 


b

m

) j '(x

1

; : : : ; x

n+m

) 2

~

�(x

1

; : : : ; x

n+m

)g

is 
onsistent with Th(A

Y

). Let �(x

1

; : : : ; x

n

) be

f'(x

1

; : : : ; x

n

; 


b

1

; : : : ; 


b

m

) j '(x

1

; : : : ; x

n+m

) 2

~

�(x

1

; : : : ; x

n+m

)g :

Then

(9x

1

) � � � (9x

n

)

VV

�(x

1

; : : : ; x

n

) 2 Th(A

Y

) :

Let a

1

; : : : ; a

n

be su
h that A

Y

j= (

VV

�(x

1

; : : : ; x

n

))[a

1

; : : : ; a

n

℄. Be
ause

the set

~

�(x

1

; : : : ; x

n+m

) witnesses that

~

�(x

1

; : : : ; x

n+m

) is prin
ipal, we have

that A j= '[a

1

; : : : ; a

n

; b

1

; : : : ; b

m

℄ for all '(x

1

; : : : ; x

n+m

) 2

~

�(x

1

; : : : ; x

n+m

).

It follows that A

Y

j=  [a

1

; : : : ; a

n

℄ for all  (x

1

; : : : ; x

n

) 2 �(x

1

; : : : ; x

n

).

Now suppose that n 2 ! and that T has in�nitely many n-types. By

Theorem 3.15, let �(x

1

; : : : ; x

n

) be a non-prin
ipal n-type of T . Clearly

T has no �nite models. Thus it is enough to show that T has a 
ount-

able model that realizes �(x

1

; : : : ; x

n

) and a 
ountable model that omits

�(x

1

; : : : ; x

n

). The former 
an be proved by a simple 
ompa
tness argu-

ment and the L�owenheim{Skolem theorem. The latter is a 
onsequen
e of

Theorem 3.16. �

Example of an �

0

-
ategori
al theory: Let L be f<g. Let T be the theory

of dense linear orderings without endpoints.

To see that T is �

0

-
ategori
al, let A and B be 
ountable models of T .

Let a

1

; : : : ; a

n

be elements of A and let b

1

; : : : ; b

n

be elements of B. Suppose

suppose that a

i

7! b

i

is order preserving (i.e., that a

i

<

A

a

j

if and only if

b

i

<

B

b

j

). Let a 2 A. One of the following must hold:

(i) a = a

i

for some i;

(ii) a<

A

a

i

for all i;

(iii) a

i

<

A

a for all i;

(iv) a

i

<

A

a<

A

a

j

for some i and j su
h that there is no a

k

with a

i

<

A

a

k

<

A

a

j

.
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Sin
e B j= T , there must be a b 2 B su
h that whi
hever of (i){(iv) holds


ontinues to hold when ea
h o

urren
e of the letter \a" is repla
ed by \b"

and ea
h o

urren
e of \A" is repla
ed by \B". Choosing su
h a b, we 
an

send a to b and extend the given order preserving 
orresponden
e. This

argument and its dual allow us to show A

�

=

B by a 
onstru
tion like that

of the proof of Theorem 3.13,

The argument allows us, moreover, to 
onstru
t an isomorphism extend-

ing any given order preserving 
orresponden
e between �nite subsets of A

and B. Hen
e our given ha

i

j i < ni and hb

i

j i < ni satisfy exa
tly

the same formulas in their respe
tive models. This shows that ea
h n-type

�(x

1

; : : : ; x

n

) of T is determined by a 
onjun
tion of formulas of the forms

x

i

= x

j

and x

i

<x

j

.

We �nish our study of types by dis
ussing brie
y the 
on
ept of stability.

For 
ardinal numbers �, a theory T is �-stable if, for every model A of T

and every Y � A, if 
ard (Y ) � � then Th(A

Y

) has � � one-types. A theory

T is stable if T is �-stable for some in�nite �.

Theorem 3.18. Let T be a theory in L. If T is !-stable, then T is �-stable

for every in�nite �.

Proof. Let � be an in�nite 
ardinal, and suppose that T is not �-stable.

Let A

Y

witness this fa
t. By re
ursion on `h(s), we de�ne for ea
h s 2

<!

2,

a formula '

s

(x) of L

Y

. We shall arrange that

(a) for ea
h s 2

<!

2, '

s[fh`h(s);0ig

is the negation of '

s[fh`h(s);1ig

;

(b) for ea
h s 2

<!

2, there are more than � one-types of Th(A

Y

) that

in
lude f'

t

j t � sg.

It will follow that the f'

s

j s � xg, x 2

!

!, 
an be extended to distin
t one

types of Th(A

Z

), where Z is the set of all a 2 Y su
h that 


a

o

urs in some

'

s

.

Let '

;

be x = x. Let s 2

<!

! and assume that '

t

is de�ned for t � s

and has property (b). Let n = `h(s). If we 
annot de�ne '

s[fhn;0ig

and

'

s[fhn;1ig

so as to satisfy (a) and (b), then there is a type �(x) of Th(A

Y

)

su
h that f'

t

j t � sg � �(x) and su
h that, for any  (x) 2 �(x), no

more than � one-types of Th(A

Y

) in
lude f'

t

j t � sg [ f: g. This is a


ontradi
tion.

�
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Exer
ise 3.8. Show that the theory of dense linear orderings without end-

points is not !-stable.

Hint. Consider the model (Q;<), where Q is the set of all rational

numbers. Let Y = Q.

Exer
ise 3.9. Let T be a 
omplete theory with a 
ountably saturated

model. Prove that T has a model that is atomi
, i.e., realizes no non-

prin
ipal types.

Hint. Generalize Theorem 3.16.

Exer
ise 3.10. Let add 
onstants 


i

, i 2 ! to the language f<g. Let T

be gotten from the theory of dense linear orderings without endpoints by

adding the additional axioms 


i

<


j

for i < j 2 !. Prove that there are

exa
tly 3 non-isomorphi
 expansions of (Q;<) to a model of T . Whi
h of

these is saturated and whi
h is atomi
?

Exer
ise 3.11. Show that the theory of algebrai
ally 
losed �elds of 
har-

a
teristi
 0 is not �

0

-
ategori
al but is �-
ategori
al for every un
ountable


ardinal �.

We now drop our assumption that L is 
ountable.

Let L be a language, let I be a non-empty set, and let A

i

, i 2 I be

models for L. Let U be an ultra�lter on I.

We de�ne A =

Q

i2I

A

i

=U , the ultraprodu
t of hA

i

j i 2 Ii with respe
t

to U , as follows:

Let

Q

i2I

A

i

be the set of all fun
tions f su
h that domain (f) = I and

ea
h f(i) 2 A

i

. For elements f and g of

Q

i2I

A

i

, de�ne

f �

U

g $ fi 2 I j f(i) = g(i)g 2 U :

Let [[f ℄℄

U

be the equivalen
e 
lass of f with respe
t to the equivalen
e relation

�

U

. Let

A = f[[f ℄℄

U

j f 2

Y

i2I

A

i

g :

If P is a k-pla
e relation symbol of L, let

P

A

([[f

1

℄℄

U

; : : : ; [[f

n

℄℄

U

) $ fi 2 I j P

A

i

(f

1

(i); : : : ; f

n

(i))g 2 U :

If 
 is a 
onstant of L, let 


A

= [[f ℄℄

U

, where f(i) = 


A

i

. If F is a k-

pla
e fun
tion symbol of L, set F

A

([[f

1

℄℄

U

; : : : ; [[f

n

℄℄

U

) = [[f ℄℄

U

, where f(i) =

F

A

i

(f

1

(i); : : : f

n

(i)). It is easy to 
he
k that A is well-de�ned.
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Theorem 3.19 ( Lo�s). (Uses Choi
e) For ea
h formula '(x

1

; : : : ; x

n

) of L

and for any elements f

1

; : : : ; f

n

of

Q

i2I

A

i

,

Y

i2I

A

i

=U j= '[[[f

1

℄℄

U

; : : : ; [[f

n

℄℄

U

℄ $ fi 2 I j A

i

j= '[f

1

(i) : : : ; f

n

(i)℄g 2 U :

Proof. Let A =

Q

i2I

A

i

=U . We pro
eed by indu
tion on '. We omit the

subs
ipt \U ."

The 
ase that ' is atomi
 is essentially by de�nition. If ' is : , then

A j= '[[[f

1

℄℄; : : : ; [[f

n

℄℄℄ if and only if A 6j=  [[[f

1

℄℄; : : : ; [[f

n

℄℄℄. By indu
tion,

this holds if and only if fi j A

i

j=  [f

1

(i); : : : ; f

n

(i)℄g =2 U . Sin
e U is an

ultra�lter, this holds if and only if fi j A

i

j= '[f

1

(i); : : : ; f

n

(i)℄g 2 U . We

omit the routine 
ase that ' is a 
onjun
tion.

Suppose that '(x

1

; : : : ; x

n

) is (9y) (y; x

1

; : : : ; x

n

). Then

A j= '[[[f

1

℄℄; : : : ; [[f

n

℄℄℄ $ (9a 2A)A j=  [a; [[f

1

℄℄; : : : ; [[f

n

℄℄℄

$ (9g 2

Y

i2I

A

i

)A j=  [[[g℄℄; [[f

1

℄℄; : : : ; [[f

n

℄℄℄

$ (9g 2

Y

i2I

A

i

) fi j A

i

j=  [g(i); f

1

(i); : : : ; f

n

(i)℄g 2 U

$ fi j (9b 2A

i

)A

i

j=  [b; f

1

(i); : : : ; f

n

(i)℄g 2 U

$ fi j A

i

j= '[f

1

(i); : : : ; f

n

(i)℄g 2 U :

The Axiom of Choi
e is needed to show that the next-to-last line implies

the third-to-last line. �

Exer
ise 3.12. Use ultraprodu
ts to prove the Compa
tness Theorem.

Hint. Let � be a set of senten
es every �nite subset of whi
h is 
onsistent.

Let I be the set of all �nite subsets of �.

Exer
ise 3.13. Assume that L is 
ountable. Let U be a non-prin
ipal

ultra�lter on a 
ountable set I, i.e., an ultra�lter to whi
h no singleton fig

belongs. Prove that every ultraprodu
t

Q

i2I

A

i

=U is �

1

-saturated.

Hint. First show that there are elements U

k

, k 2 !, of U su
h that

T

k2!

U

k

=2 U (indeed, so that the interse
tion is empty). Then, given a

one-type, 
hoose f so that, for i 2

T

k

0

<k

U

k

0

n U

k

, f(i) satis�es in A

i

the

�rst k formulas of the type.
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Exer
ise 3.14. An ultraprodu
t of the form

Q

i2I

A=U is 
alled an ultra-

power, and we may 
all it A

I

=U . For any ultrapower A

I

=U , de�ne an ele-

mentary embedding j : A � A

I

=U .

Exer
ise 3.15. For � a 
ardinal number, an ultra�lter U is �-
omplete if

the interse
tion of any set of fewer than � elements of U belongs to U . A


ountably 
omplete ultra�lter is one that is �

1

-
omplete.

Suppose that U is a 
ountably 
omplete ultra�lter on a set I. Let A be

any set. Let B = (A;2�A)

I

=U .

(a) Prove that 2

B

is wellfounded.

(b) Suppose that U is non-prin
ipal. (The existen
e of a 
ountably 
om-

plete, non-prin
ipal ultra�lter 
annot be proved in ZFC.) Show that there

is a largest 
ardinal � su
h that U is �-
omplete. Assume that A is tran-

sitive and that � 2 A. Let j be the embedding de�ned in the (natural)

solution to Exer
ise 3.14. Let B

0

be the set of all \ordinals" of B. Prove

that � : (B

0

;2

B

�B

0

)

�

=

(�;2��) for some ordinal � and some �. Prove that

� is the smallest ordinal number � su
h that �(j(�)) 6= �.

Exer
ise 3.16. The solution to Exer
ise 3.12 suggested by the hint used

Choi
e (1) to get that every �lter 
an be extended to an ultra�lter and (2)

be
ause the proof of Theorem 3.19 used Choi
e. (One use was mentioned; an

impli
it use was to get

Q

i2I

A

i

non-empty.) Eliminate the uses (2) of Choi
e

by employing a di�erent I from that suggested in the hint to Exer
ise 3.12.

In the next se
tion we shall study theories and models of arithmeti
. We


lose the se
tion on model theory by proving a result about a fragment of

the main theory of the next se
tion.

If i

1

< � � � < i

n

and if '(v

i

1

; : : : ; v

i

n

) is a formula 
ontaining free o

ur-

ren
es of all of v

i

1

; : : : ; v

i

n

, then the universal 
losure of ' is the senten
e

(8v

i

1

) � � � (8v

i

n

)'. The universal 
losure of a senten
e is the senten
e itself.

If � is a set of senten
es and ' is a formula, then we say � j= ' if

� j= the universal 
losure of '. A formula is valid if its universal 
losure is

valid. Formulas ' and  are equivalent if ('$  ) is valid, and ' and  are

equivalent in T , for T a theory, if T j= ('$  ).

A theory T in a language L admits elimination of quanti�ers if every

formula of L is equivalent in T to a quanti�er-free formula.

Theorem 3.20. Let T be a theory. Assume that, for every formula ' of

the form

(9x)(�

1

^ : : : ^ �

n

);
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with ea
h �

j

atomi
 or the negation of an atomi
 formula, is equivalent in

T to a quanti�er-free formula. Then T admits elimination of quanti�ers.

Proof. Suppose �rst that ' is of the form (9x) , with  quanti�er-free.

It is easy to see that every quanti�er-free formula is equivalent to one of the

form

((�

1;1

^ : : : ^ �

1;n

1

) _ : : : _ (�

m;1

^ : : : ^ �

m;n

m

)) ;

with ea
h �

i;j

atomi
 or negation of atomi
. Thus we assume ' is

(9x)((�

1;1

^ : : : ^ �

1;n

1

) _ : : : _ (�

m;1

^ : : : ^ �

m;n

m

)) ;

with ea
h �

i;j

atomi
 or negation of atomi
. But this formula is equivalent

to

((9x)(�

1;1

^ : : : ^ �

1;n

1

) _ : : : _ (9x)(�

m;1

^ : : : ^ �

m;n

m

)) :

By hypothesis, ea
h of the disjun
ts is equivalent in T to a quanti�er-free

formula. Hen
e ' is equivalent in T to a quanti�er free-formula.

The theorem now follows easily by indu
tion on '. �

Let L = f0;Sg, where 0 is a 
onstant and S is a one-pla
e fun
tion

symbol. For n 2 !, let us abbreviate

S(� � �S(

| {z }

n

t ) � � �)

| {z }

n

by S

n

(t).

Theorem 3.21. Th(!; 0;S) admits elimination of quanti�ers.

Proof. Let T = Th(!; 0;S). By Theorem 3.20, it suÆ
es to prove that every

formula of the form (9x)(�

1

^ : : : ^ �

n

), with ea
h �

i

atomi
 or negation of

atomi
, is equivalent in T to an quanti�er-free formula. Fix a formula of

this form.

If  and  

0

are formulas and  does not 
ontain a free o

urren
e of

the variable y, then (9y)( ^  

0

) is equivalent to  ^ (9y) 

0

. Thus we may

assume that ea
h �

i

has an o

urren
e of the variable x.

By the symmetry of identity, ea
h atomi
 formula of L that 
ontains an

o

urren
e of x is equivalent to one of the form

S

j

(x) = S

k

(t)

where t is 0 or a variable. If t is x, then S

j

(x) = S

k

(t) is equivalent in T to

0 = 0 if j = k and equivalent to 0 6= 0 if j 6= k. Thus we may assume that
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for ea
h �

i

there are j

i

and t

i

, where t

i

is a term not 
ontaining x, su
h that

�

i

is the equation S

j

i

(x) = t

i

or else is the negation of this equation.

If ea
h �

i

is the negation of an equation, then it is evident that (!; 0;S)

satis�es the universal 
losure of (9x)(�

1

^ : : :^�

n

), so this formula is equiv-

alent in T to 0 = 0.

Suppose then that some �

i

is S

j

i

(x) = t

i

. In ea
h �

m

, m 6= i, we repla
e

S

j

m

(x) = t

m

by S

j

m

(t

i

) = S

j

i

(t

m

). If we also repla
e �

i

by

t

i

6= 0 ^ : : : ^ t

i

6= S

j

i

�1

(0)

(or by 0 = 0 if j

i

= 0), then we get a formula equivalent in T to our original

one. The new formula is (9x) , where  has no o

urren
es of x; so it is

equivalent to the quanti�er-free formula  . �

From the proof just given, one 
an extra
t a list of axioms for Th(!; 0;S)

(an in�nite list). This gives us a de
ision pro
edure for Th(!; 0;S), an

algorithm for de
iding whether any given senten
e belongs to the theory.

(Simply list all dedu
tions from the axioms until one is found of the senten
e

or its negation.) The proofs of Theorems 3.20 and 3.21 also dire
tly provide

a de
ision pro
edure.
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4 In
ompleteness

The theory of (!; 0;S; <), like that of (!;S), admits elimination of quanti-

�ers and is de
idable (has a de
ision pro
edure). The same is essentially true

of Th(!; 0;S; <;+), though this theory doesn't literally admit elimination

of quanti�ers.

Let N = (!; 0;S; <;+; �). The situation with Th(N) is quite di�erent

from that of its redu
ts just mentioned. We shall see in this se
tion just

how di�erent it is.

Let L

PA

be the language f0;S;<;+; �g, for whi
h we take N to be a

model.

Peano Arithmeti
 (PA) is the natural attempt to axiomatize N. Peano

Arithmeti
 is the set of senten
es implied by the following axioms:

Axioms for PA.

(a) Universal 
losures of the following formulas (where we employ some

obvious abbreviations and 
onventions):

(1) 0 6= S(v

0

) ;

(2) S(v

0

) = S(v

1

)! v

0

= v

1

;

(3) v

0

6<0 ;

(4) v

0

<S(v

1

)$ v

0

�v

1

;

(5) v

0

+0 = v

0

;

(6) v

0

+S(v

1

) = S(v

0

+v

1

) ;

(7) v

0

�0 = 0 ;

(8) v

0

�S(v

1

) = (v

0

�v

1

)+v

0

.

(b) The S
hema of Indu
tion, 
onsisting of the universal 
losures of all for-

mulas of the form:

(('(0; x

1

; : : : ; x

n

) ^ (8x

0

)('(x

0

; : : : x

n

)! '(S(x

0

); x

1

; : : : ; x

n

)))

! (8x

0

)'(x

0

; : : : ; x

n

)) :

We wish to study a suÆ
iently strong �nitely axiomatizable subtheory of

PA. For te
hni
al reasons, it is easier to work in a language with exponenti-

ation, so we �rst 
onsider a theory QE whi
h is not literally a subtheory of

PA. (In this, and in some other things, we are following Herbert Enderton's

A Mathemati
al Introdu
tion to Logi
.)
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Let L

PAE

= L

PA

[ fEg.

QE is the set of senten
es implied by Axioms (1){(8) above and two

additional axioms, the universal 
losures of:

(9) v

0

E 0 = S(0) ;

(10) v

0

E S(v

1

) = (v

0

E v

1

)�v

0

.

Let N

0

= (!; 0;S; <;+; �; E), where E(a; b) = a

b

. Clearly N

0

j= QE.

Lemma 4.1. For all k 2 !,

QE j= (x<S

k+1

(0) $ (x = 0 _ : : : _ x = S

k

(0))) :

Proof. We pro
eed by indu
tion on k. By Axiom (4),

QE j= (x<S

k+1

(0)$ (x<S

k

(0) _ x = S

k

(0))) :

If k = 0, our 
onlusion follows by Axiom (3). If k > 0, it follows by indu
tion.

�

Lemma 4.2. If t is a term without variables and k = t

N

0

, then

QE j= t = S

k

(0) :

Proof. We use indu
tion on the 
omplexity of t. The 
ase that t is 0 is

immediate.

Assume that t is S(u). By indu
tion, QE j= u = S

u

N

0

(0). Hen
e QE j=

S(u) = S

u

N

0

+1

(0).

Assume next that t is u

1

+ u

2

. Let j

1

= (u

1

)

N

0

and let j

2

= (u

2

)

N

0

. By

indu
tion, QE j= u

1

= S

j

1

(0) and QE j= u

2

= S

j

2

(0). Axiom (5) and j

2

appli
ations of Axiom (6) give that

QE j= S

j

1

(0)+S

j

2

(0) = S

j

1

+j

2

(0) :

Appli
ations of Axioms (7) and (8) give that QE j= S

j

1

(0)�S

j

2

(0) =

S

j

1

�j

2

(0), for any j

1

and j

2

2 !. This allows us to handle the 
ase that t

is u

1

�u

2

. The 
ase that t is u

1

Eu

2

is treated similarly, using Axioms (9)

and (10). �

Let T be a theory in a language L 
ontaining 0 and S. A formula

'(v

1

; : : : ; v

n

) of L represents R �

n

! in T if, for all elements a

1

; : : : ; a

n

of

!,

R(a

1

; : : : ; a

n

) ! T j= '(S

a

1

(0); : : : ;S

a

n

(0)) ;

:R(a

1

; : : : ; a

n

) ! T j= :'(S

a

1

(0); : : : ;S

a

n

(0)) :
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If some formula represtents R in T , then we say that R is representable in

T .

Representability is related to de�nability. If A is a model and R �

n

A,

then R is de�nable in A if there is a formula '(v

1

; : : : ; v

n

) of L su
h that,

for any members a

1

; : : : ; a

n

of A,

R(a

1

; : : : ; a

n

) $ A j= '[a

1

; : : : ; a

n

℄ :

For su
h a ', we say that ' de�nes R in A. The relation between repre-

sentability and de�nability is the following. Suppose that A is a model of a

theory T in a language 
ontaining 0 and S. Suppose also that A = !, that

0

A

= 0, and that S

A

= S. Then any formula that represents a relation in T

also de�nes that relation in A. The 
onverse is not in general true.

We shall de�ne representability of fun
tions as well as of relations. A

natural de�nition would be: \'(v

1

; : : : ; v

n+1

) represents f in T if and only

if ' represents the graph of f in T ," where the graph of f is the (n+1)-ary

relation that holds of (a

1

; : : : ; a

n+1

) if and only if f(a

1

; : : : ; a

n

) = a

n+1

. For

te
hni
al reasons, we shall de�ne a stronger notion, though it will turn out

that the two notions are equivalent for any T 
ontaining Axioms (1){(4).

If f :

n

! ! ! and T is a theory in a language 
ontaining 0 and S, then

a formula '(v

1

; : : : ; v

n+1

) represents f in T if, for all a

1

; : : : ; a

n

,

T j= (8v

n+1

)('(S

a

1

(0); : : : ;S

a

n

(0); v

n+1

) $ v

n+1

= S

f(a

1

;:::;a

n

)

(0)) :

Say that f is representable in T if some formula represents f in T .

Note that if T 
ontains Axioms (1) and (2) and ' represents f in T then

' represents the graph of f in T . We shall say that T proves '(v

1

; : : : ; v

n+1

)

fun
tional if

T j= (8v

1

) � � � (8v

n

)(9v

n+1

)(8v

n+2

)('(v

1

; : : : ; v

n

; v

n+2

) $ v

n+2

= v

n+1

) :

If T proves '(v

1

; : : : ; v

n+1

) fun
tional and ' represents the graph of f in T ,

then ' represents f in T . The 
onverse does not hold in general.

Exer
ise 4.1. Show that, for every senten
e � of L

PAE

that is atomi
 or

negation of atomi
,

QE j= � $ N

0

j= � :

Exer
ise 4.2. A formula ' of L

PAE

belongs to �

0

(or, as we shall say, is

�

0

) if ' belongs to the smallest set 
ontaining the atomi
 formulas and
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losed under negation, 
onjun
tion and bounded quanti�
ation. Closure of

�

0

under bounded quanti�
ation means that

 2 �

0

!

�

(9x)(x<t ^  ) 2 �

0

;

(9x)(x�t ^  ) 2 �

0

;

for any term t not 
ontaining x. The �

1

formulas of L

PAE

are those of the

form (9x

1

) � � � (9x

n

) , where  is �

0

.

(a) Prove that, for any �

0

senten
e �, QE j= � $ N

0

j= �.

(b) Prove that, for any �

1

senten
e �, QE j= � $ N

0

j= �.

A fun
tion is primitive re
ursive just in 
ase (I)-(III) below require it

to be. (I.e., the primitive re
ursive fun
tions form the smallest set of fun
-

tions 
ontaining the fun
tions of (I) and 
losed under the operations of (II)

and (III).)

(I) The following are primitive re
ursive.

(a) S : ! ! ! ;

(b) I

n

i

:

n

! ! !, for 1 � i � n 2 !, where I

n

i

(a

1

; : : : ; a

n

) = a

i

;

(
) All 
onstant fun
tions f :

n

! ! ! .

(II) (Composition) If f :

m

! ! ! and g

1

; : : : ; g

m

:

n

! ! ! are primitive

re
ursive, then so is h, where

h(a

1

; : : : ; a

n

) = f(g

1

(a

1

; : : : ; a

n

); : : : ; g

m

(a

1

; : : : ; a

n

)) :

(III) (Primitive Re
ursion) If f :

n

! ! ! and g :

n+2

! ! ! are primitive

re
ursive, then so is h, where

h(a

1

; : : : ; a

n

; 0) = f(a

1

; : : : ; a

n

) ;

h(a

1

; : : : ; a

n

;S(b)) = g(a

1

; : : : ; a

n

; b; h(a

1

; : : : ; a

n

; b)) :

We allow fun
tions of zero arguments (e.g., the f of (III)), all of whi
h

are primitive re
ursive by (I)(
).

A fun
tion is re
ursive just in 
ase it is required to be by (I)-(III), with

\primitive re
ursive" repla
ed by \re
ursive," plus (IV) below.

(IV) (�-Operator) If g :

n+1

! ! ! is re
ursive and

(8a

1

2 !) � � � (8a

n

2 !)(9b 2 !) g(a

1

; : : : ; a

n

; b) = 0 ;

then f is re
ursive, where

f(a

1

; : : : ; a

n

) = �b g(a

1

; : : : ; a

n

; b) = 0 ;

and where \�b" means \the least b."
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Lemma 4.3. The relations and fun
tions representable in QE are 
losed

under 
omplement, interse
tion, union, and bounded quanti�
ation. Inter-

se
tion and union we 
onstrue as operations a
ting on pairs of relations

that are subsets of the same

n

!. Bounded quanti�
ation is the operation

hf;Ri 7! R

0

, where

R

0

(a

1

; : : : ; a

n

)$ (9a

n+1

)(a

n+1

< f(a

1

; : : : ; a

n

) ^ R(a

1

; : : : ; a

n+1

)) :

Proof. If ' represents R, then :' represents the 
omplement of R; if '

and  represent R and R

0

respe
tively, then ' ^  represents R \ R

0

; if '

and  represent R and R

0

respe
tively, then ' _  represents R [R

0

.

To prove 
losure under bounded quanti�
ation, assume that '(v

1

; : : : ; v

n+1

)

and  (v

1

; : : : ; v

n+1

) represent f and R respe
tively.

Let �(v

1

; : : : ; v

n

) be, for some appropriate variable z,

(9v

n+1

)(9z)('(v

1

; : : : ; v

n

; z) ^ v

n+1

<z ^  (v

1

; : : : ; v

n

; v

n+1

)) :

To see that � represents R

0

in QE, �x numbers a

1

; : : : ; a

n

. Sin
e '

represents f , we have that

QE j= (8z)('(S

a

1

(0); : : : ;S

a

n

(0); z)$ z = S

f(a

1

;:::;a

n

)

(0)) :

Thus �(S

a

1

(0); : : : ;S

a

n

(0)) is equivalent in QE to

(9v

n+1

)(v

n+1

<S

f(a

1

;:::;a

n

)

(0) ^  (S

a

1

(0); : : : ;S

a

n

(0); v

n+1

)) :

By Lemma 4.1, �(S

a

1

(0); : : : ;S

a

n

(0)) is equivalent in QE to

 (S

a

1

(0); : : : ;S

a

n

(0);0) _ : : : _  (S

a

1

(0); : : : ;S

a

n

(0);S

f(a

1

;:::;a

n

)�1

(0)) ;

(or, say, 0 6= 0 if f(a

1

; : : : ; a

n

) = 0). Sin
e  represents R, this formula

is provable or refutable in QE a

ording to whether or not R

0

(a

1

; : : : ; a

n

)

holds. �

Lemma 4.4. All the fun
tions under 
lause (I) (in the de�nition of the

primitive re
ursive fun
tions) are representable in QE.

Proof. Their graphs are represented by atomi
 formulas whi
h QE (indeed,

every theory) proves fun
tional. �

Lemma 4.5. The fun
tions representable in QE are 
losed under 
omposi-

tion (II).
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Proof. Given representable f and g

1

; : : : ; g

m

, as in the statement of (II),

let  

1

(v

1

; : : : ; v

n+1

); : : : ;  

m

(v

1

; : : : ; v

n+1

) represent g

1

; : : : ; g

m

respe
tively

and let �(v

1

; : : : ; v

m+1

) represent f . Let '(v

1

; : : : ; v

n+1

) be, for appropriate

variables x

1

; : : : ; x

m

,

(9x

1

) � � � (9x

m

)( 

1

(v

1

; : : : ; v

n

; x

1

) ^ : : :

^ 

m

(v

1

; : : : ; v

n

; x

m

) ^ �(x

1

; : : : ; x

m

; v

n+1

)) :

Let a

1

; : : : ; a

n

2 !. For ea
h j,

QE j=  

j

(S

a

1

(0); : : : ;S

a

n

(0); x

j

)$ x

j

= S

g

j

(a

1

;:::;a

n

)

(0) :

Thus QE j=

'(S

a

1

(0); : : : ;S

a

n

(0); v

n+1

)$ �(S

g

1

(a

1

;:::;a

n

)

(0); : : : ;S

g

m

(a

1

;:::a

n

)

(0); v

n+1

) :

But QE j=

�(S

g

1

(a

1

;:::;a

n

)

(0); : : : ;S

g

m

(a

1

;:::;a

n

)

(0); v

n+1

)

$ v

n+1

= S

f(g

1

(a

1

;:::;a

n

);:::;g

m

(a

1

;:::a

n

))

(0)) :

Therefore QE j=

(8v

n+1

)('(S

a

1

(0); : : : ;S

a

n

(0); v

n+1

) $ v

n+1

= S

f(g

1

(a

1

;:::;a

n

);:::;g

m

(a

1

;:::a

n

))

(0)) :

�

Lemma 4.6. A relation R is representable in QE if and only if its 
hara
-

teristi
 fun
tion K

R

is representable in QE, where

K

R

(a

1

; : : : ; a

n

) =

�

1 if R(a

1

; : : : ; a

n

) ;

0 if :R(a

1

; : : : ; a

n

) .

Proof. The proof is routine, and we omit it. �

Our next goal is to show that the fun
tions representable in QE are 
losed

under the �-operator (IV). This would be easy if the senten
e (8v

1

)(8v

2

)(v

1

<

v

2

_ v

1

= v

2

_ v

2

< v

1

) were provable in QE. We 
ould have made this sen-

ten
e an axiom of a strengthening of QE, as does Enderton in the book 
ited

earlier. But we did not do this, so our argument will be a little 
ompli
ated.

Let WC(v

1

) be the following formula:

(0�v

1

^ (8v

2

)(v

2

<v

1

! S(v

2

)�v

1

)) :

Think of WC as \weakly 
omparable."
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Lemma 4.7. For every natural number k,

(a) QE j= WC(S

k

(0)) ;

(b) QE j= (8v

1

)(WC(v

1

)! (v

1

<S

k

(0) _ v

1

= S

k

(0) _ S

k

(0)<v

1

)) .

Proof. That QE j= WC(0) follows from Axiom (3). Fix k > 0. By Exer-


ise 4.1 (or by Lemma 4.1), we know that QE j= 0�S

k

(0). An appli
ation

of Lemma 4.1 gives that

QE j= v

2

<S

k

(0)! (v

2

= 0 _ : : : _ v

2

= S

k�1

(0)) :

But then

QE j= v

2

<S

k

(0)! (S(v

2

) = S

1

(0) _ : : : _ S(v

2

) = S

k

(0)) :

(a) follows by Lemma 4.1.

We prove (b) by indu
tion on k. The 
ase k = 0 
omes from the �rst


onjun
t of WC(v

1

). For the indu
tion step note that, by Axiom (4), QE j=

(v

1

�S

k

(0)! v

1

<S(S

k

(0))) and that, by the se
ond 
onjun
t of WC(v

1

),

QE j= (S

k

(0)<v

1

^WC(v

1

)) ! S(S

k

(0))�v

1

:

�

Lemma 4.8. The fun
tions representable in QE are 
losed under the �-

operator (IV).

Proof. Suppose that '(v

1

; : : : ; v

n+2

) represents g in QE and suppose that

(8a

1

2 !) � � � (8a

n

2 !)(9b 2 !) g(a

1

; : : : ; a

n

; b) = 0 :

Let f be given by

f(a

1

; : : : ; a

n

) = �b g(a

1

; : : : ; a

n

; b) = 0 :

Let  (v

1

; : : : ; v

n+1

) be, for an appropriate z,

WC(v

n+1

) ^ '(v

1

; : : : ; v

n+1

;0) ^ (8z)(z<v

n+1

! :'(v

1

; : : : ; v

n

; z;0)) :

To see that  represents f in QE, �x a

1

; : : : ; a

n

. Using part (a) of Lemma 4.7

and the fa
t that ' represents g in QE, we dedu
e that

QE j= WC(S

f(a

1

;:::;a

n

)

(0)) ^ '(S

a

1

(0); : : : ;S

a

n

(0);S

f(a

1

;:::;a

n

)

(0);0); :

Using the fa
t that ' represents g in QE and using Lemma 4.1, we get that

QE j= (8z)(z<S

f(a

1

:::;a

n

)

(0)! :'(S

a

1

(0); : : : ;S

a

n

(0); z;0)) :
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Combining these two fa
ts we get that

QE j=  (S

a

1

(0); : : : ;S

a

n

(0);S

f(a

1

;:::;a

n

)

(0)) :

Moreover, the se
ond of the two fa
ts and part (b) of Lemma 4.7 give that

QE j= (8z)((WC(z) ^ '(S

a

1

(0); : : : ;S

a

n

(0); z;0)) ! S

f(a

1

:::;a

n

)

(0)�z) :

Sin
e WC(z) and '(S

a

1

(0); : : : ;S

a

n

(0); z;0) are 
onjun
ts of the formula

 (S

a

1

(0); : : : ;S

a

n

(0); z),

QE j= (8z)( (S

a

1

(0); : : : ;S

a

n

(0); z) ! S

f(a

1

:::;a

n

)

(0)�z) :

Sin
e QE j= '(S

a

1

(0); : : : ;S

a

n

(0);S

f(a

1

;:::;a

n

)

(0);0), 
onsideration of the

last 
onjun
t of  (S

a

1

(0); : : : ;S

a

n

(0); z) shows us that

QE j= (8z)( (S

a

1

(0); : : : ;S

a

n

(0); z) ! S

f(a

1

;:::;a

n

)

(0)6<z) :

Thus

QE j= (8z)( (S

a

1

(0); : : : ;S

a

n

(0); z) ! z = S

f(a

1

;:::;a

n

)

(0)) :

�

Corollary 4.9. A fun
tion is representable in QE if its graph is repre-

sentable in QE.

Proof. Let R be the graph of f : n

!

! !.

f(a

1

; : : : ; a

n

) = �bK

:R

(a

1

; : : : ; a

n

; b) = 0 :

Lemma 4.10. The relation < and the fun
tions +, �, and E are repre-

sentable in QE.

Proof. By Exer
ise 4.1, < and the graphs of +, �, and E are represented

by v

1

<v

2

, v

1

+v

2

= v

3

, v

1

�v

2

= v

3

, and v

1

E v

2

= v

3

respe
tively. Use

Corollary 4.9 or the fa
t that very theory proves the last three formulas

fun
tional. �

Lemma 4.11. f(a; b) j a divides bg is representable in QE.

Proof. For any a and b belonging to !,

a divides b $ (9
� b) a � 
 = b . �
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Lemma 4.12. (a) The set of all prime numbers is representable in QE.

(b) The set of all pairs of adja
ent primes is representable in QE, where

(a; b) is a pair of adja
ent primes if and only if a < b, both a and b are

prime, and there is no prime 
 su
h that a < 
 < b.

Proof. The proof is an easy appli
ation of the 
losure of the representable

fun
tions under bounded quanti�
ation. �

Lemma 4.13. The fun
tion a 7! p

a

is representable in QE, where p

a

is the

a+ 1st prime.

Proof. We shall show that, for any a and b belonging to !, p

a

= b if and

only if b is prime and there is a 
 � b

a

2

su
h that

(i) 2 does not divide 
;

(ii) For all q < b and all r � b, if (q; r) is a pair of adja
ent primes, then

(8j < 
)(q

j

divides 
 $ r

j+1

divides 
) :

(iii) b

a

divides 
 and b

a+1

does not.

To see this, �x a and b and �rst note that if p

a

= b and


 = p

0

0

� p

1

1

� : : : � p

a

a

;

then 
 � b

a

2

and 
 satis�es (i){(iii).

Suppose that b is prime and that 
 satis�es (i){(iii).

By indu
tion we show that

(8i 2 !)(p

i

� b ! (p

i

i

divides 
 ^ p

i

i+1

does not divide 
)) :

For i = 0 this is given by (i). Suppose that i = j + 1 and that p

j

j

divides


 but p

j

j+1

does not. The desired 
on
lusion follows from (ii) with q = p

j

and r = p

i

, sin
e j < p

j

j

� 
.

Now b is prime, and so b = p

j

for some j. Thus b

j

divides 
 and b

j+1

does not. By (iii), it follows that j = a. �

For natural numbers a

0

; : : : ; a

m

, let

-ha

0

; : : : ; a

m

i- = p

0

a

0

+1

� : : : � p

m

a

m

+1

:

For m = �1, let -h i- = 1. Let Seq be the set of all a su
h that a =

-ha

0

; : : : ; a

m

i- for some m � �1 and some a

0

; : : : ; a

m

. For elements a and b

of !, let

(a)

b

= �n (p

b

n+2

does not divide a) :
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Lemma 4.14. (a) For ea
h m 2 !, the fun
tion

(a

0

; : : : ; a

m�1

) 7! -ha

0

; : : : ; a

m�1

i-

is representable in QE. (b) The fun
tion (a; b) 7! (a)

b

is representable in

QE. (
) Seq is representable in QE.

Proof. (a) holds by 
losure under 
omposition. For (b), apply the �-

operator to the 
hara
teristi
 fun
tion of the relation

p

b

n+2

divides a :

For (
), note that

a 2 Seq $ a > 0 ^ (8i � a)(p

i+1

divides a ! p

i

divides a) . �

For a 2 !, let

lh(a) = �n (p

n

does not divide a) :

For a and b elements of !, let

adb = �n (a = 0_ (n 6= 0^ (8j<b)(8k<a)(p

j

k

divides a! p

j

k

divides n))) :

The following lemma follows easily from the de�nitions and earlier results.

Lemma 4.15. The fun
tions lh and (a; b) 7! (adb) are representable in QE.

For all m � �1 and all a

0

; : : : ; a

m

,

(i) lh(-ha

0

; : : : ; a

m

i-) = m+ 1 ;

(ii) -ha

0

; : : : ; a

m

i-db = -ha

0

; : : : ; a

b�1

i- if b � m+ 1 .

For n 2 ! and h :

n+1

! ! !, let

�

h :

n+1

! ! ! be given by

�

h(a

1

; : : : ; a

n

; b) = -hh(a

1

; : : : ; a

n

; 0); : : : ; h(a

1

; : : : ; a

n

; b� 1)i- :

Lemma 4.16. The set of fun
tions representable in QE is 
losed under

primitive re
ursion (III).
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Proof. Let h :

n+1

! ! ! be de�ned from f :

n

! ! ! and g :

n+2

! ! !

as in the statement of (III). Assume that f and g are representable in QE.

We �rst show that

�

h is representable:

�

h(a

1

; : : : ; a

n

; b) = �m (m 2 Seq ^ lh(m) = b ^

(8i < b)((i = 0 ^ (m)

i

= f(a

1

; : : : ; a

n

)) _

(9j < i)(i = j + 1 ^ (m)

i

= g(a

1

; : : : ; a

n

; j; (m)

j

)))) :

Now we note that

h(a

1

; : : : ; a

n

; b) = (

�

h(a

1

; : : : ; a

n

; b+ 1))

b

:

�

Theorem 4.17. Every re
ursive fun
tion is representable in QE.

Proof. This follows from Lemmas 4.4, 4.5, 4.16, and 4.8. �

Our next goal is to show that various fun
tions 
oding synta
ti
al rela-

tions in languages su
h as L

PAE

are primitive re
ursive.

Lemma 4.18. If t(v

1

; : : : ; v

n

) is a term of L

PAE

, then the fun
tion

(a

1

; : : : ; a

n

) 7! (t(S

a

1

(0); : : : ;S

a

n

(0)))

N

0

is primitive re
ursive.

Proof. Su

essor and the 
onstant fun
tion with value 0 are primitive re-


ursive by (I). Addition, multipli
ation, and exponentiation are su

essively

given by primitive re
ursion. For general terms, use 
omposition and the

I

n

i

.

�

Lemma 4.19. The fun
tions sg, pred, and

.

� are primitive re
ursive, where

sg(a) =

�

1 if a > 0 ;

0 if a = 0 ;

pred(a) =

�

a� 1 if a > 0 ;

0 if a = 0 ;

a

.

� b =

�

a� b if a � b ;

0 if a < b ;
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Exer
ise 4.3. Prove Lemma 4.19.

Hint. Use primitive re
ursion.

Call a relation primitive re
ursive or re
ursive if its 
hara
teristi
 fun
-

tion is.

Lemma 4.20. The set of all primitive re
ursive relations is 
losed under


omplement, interse
tion, and union. The relation < is primitive re
ursive.

Proof. Note thatK

:R

(a

1

; : : : ; a

n

) = 1

.

� K

R

(a

1

; : : : a

n

), thatK

R\S

(a

1

; : : : ; a

n

)

= K

R

(a

1

; : : : ; a

n

)�K

S

(a

1

; : : : ; a

n

), thatK

R[S

(a

1

; : : : ; a

n

) = sg(K

R

(a

1

; : : : ; a

n

)

+ K

S

(a

1

; : : : ; a

n

)), and that K

<

(a; b) = sg(b

.

� a). �

Lemma 4.21. The set of primitive re
ursive fun
tions is 
losed under the

two operations f 7! g given by

g(a

1

; : : : ; a

n

; b) =

X

b

0

<b

f(a

1

; : : : ; a

n

; b

0

) ;

g(a

1

; : : : ; a

n

; b) =

Y

b

0

<b

f(a

1

; : : : ; a

n

; b

0

) :

(We 
onsider the empty produ
t to have value 1.)

Proof. We 
onsider only the 
ase of

P

. That of produ
t is similar. We

have

g(a

1

; : : : ; a

n

; 0) = 0 ;

g(a

1

; : : : ; a

n

;S(b)) = g(a

1

; : : : ; a

n

; b) + f(a

1

; : : : ; a

n

; b) :

Thus g 
omes by primitive re
ursion from fun
tions that are primitive re-


ursive if f is. �

Lemma 4.22. The set of primitive re
ursive relations and fun
tions is 
losed

under bounded quanti�
ation.

Proof. Let R

0

(a

1

; : : : ; a

n

)$ (9b < f(a

1

; : : : ; a

n

))R(a

1

; : : : ; a

n

; b). Then

K

R

0

(a

1

; : : : ; a

n

) = sg

0

�

X

b<f(a

1

;:::;a

n

)

K

R

(a

1

; : : : ; a

n

; b)

1

A

. �
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Lemma 4.23. The set of primitive re
ursive fun
tions is 
losed under the

bounded �-operator, i.e., under hf; gi 7! h, where

h(a

1

; : : : ; a

n

) = �b (b = f(a

1

; : : : ; a

n

) _ g(a

1

; : : : ; a

n

; b) = 0) :

Exer
ise 4.4. Prove Lemma 4.23.

Lemma 4.24. The relations and fun
tions representable in QE by Lem-

mas 4.11, 4.12, 4.13, 4.14, and 4.15 are primitive re
ursive.

Proof. The proofs of representability, with minor modi�
ations, yield

proofs of primitive re
ursiveness. The main thing to note is that the uses

of the �-operator in de�ning (a)

b

, adb, and lh(a), are equivalent to the 
or-

responding uses of the bounded �-operator, with the bound fun
tion f in

ea
h 
ase a 
onstant fun
tion with value a. �

De�ne � :

2

! ! ! by

a � b = a �

Y

i<lh(b)

p

lh(a)+i

(b)

i

+1

:

The following lemma is evident.

Lemma 4.25. The fun
tion � is primitive re
ursive. For m and n � �1

and for any elments a

0

; : : : ; a

m

, b

0

; : : : ; b

n

of !,

-ha

0

; : : : ; a

m

i- � -hb

0

; : : : ; b

n

i- = -ha

0

; : : : ; a

m

; b

0

; : : : ; b

n

i- :

For any n 2 ! and any f :

n+1

! ! !, de�ne a fun
tion (a

1

; : : : ; a

n

; b) 7!

�

i<b

f(a

1

; : : : ; a

n

; i) by

�

i<0

f(a

1

; : : : ; a

n

; i) = 1 ;

�

i<b+1

f(a

1

; : : : ; a

n

; i) = (�

i<b

f(a

1

; : : : ; a

n

; i)) � f(a

1

; : : : ; a

n

; b) :

The following lemma is also evident.

Lemma 4.26. The fun
tion (a

1

; : : : ; a

n

; b) 7! �

i<b

f(a

1

; : : : ; a

n

; i) is primi-

tive re
ursive if f is primitive re
ursive.

Re
all our oÆ
ial de�nition on page 21 of the logi
al symbols of our

formal languages.
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Fix a language L all of whose symbols are natural numbers: i.e., L =

hf; pi with all f(m) and all p(m) subsets of !. Let us assume the following

relations are primitive re
ursive:

f(k;m) j k 2 p(m)g ;

f(k;m) j k 2 f(m)g :

Sin
e we have not given the oÆ
ial de�nition of L

PAE

, let us now de
lare:

0 13

S 15

+ 17

� 19

E 21

< 23

Note that our assumptions about L hold for L

PAE

.

We assign numbers to �nite sequen
es of symbols of L (to expressions of

L) by setting

#(s

0

; : : : ; s

n

) = -hs

0

; : : : ; s

n

i- :

When we talk of the # of a symbol s, we mean #(s), i.e., -hsi-. We assign

numbers to sequen
es of expressions (for example, to dedu
tions) by

#( 

0

; : : : ;  

n

) = -h# 

0

; : : : ;# 

n

i- :

Lemma 4.27. The following are primitive re
ursive:

(1) the set of all #'s of variables;

(2) the set of all #'s of terms;

(3) the set of all #'s of atomi
 formulas;

(4) the set of all #'s of formulas.

Proof. (1) For a 2 !, a is the # of a variable i� and only if

a 2 Seq ^ lh(a) = 1 ^ 2 divides (a)

0

:

(2) Let f be the 
hara
teristi
 fun
tion of the set of all #'s of terms.

We shall show that

�

f is primitive re
ursive, from whi
h it follows that f is
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primitive re
ursive. Note �rst that

�

f(0) = 1. For any number a, a is the #

of a term if and only if either a is the # of a variable or 
onstant or

(9b)(9
)(b < a ^ 
 < p

a

a�lh(a)

^ 
 2 Seq ^

b is the # of a lh(
)-pla
e fun
tion symbol ^

(8i < lh(
))((
)

i

< a ^ (
)

i

is a term) ^

a = b �#(() � (�

i<lh(
)

(
)

i

) �#())) :

Be
ause of the 
ondition (
)

i

< a, we 
an repla
e \(
)

i

is a term" by

\(

�

f(a))

(
)

i

= 1." Hen
e we 
an write f(a) and so

�

f(a + 1) as a primitive

re
ursive fun
tion of a and

�

f(a). By (III),

�

f is primitive re
ursive.

(3) is easy using (2).

The proof of (4) is similar in stru
ture to that of (2). �

Lemma 4.28. The set of all #'s of tautologies is primitive re
ursive.

Proof. If  is a proper subformula of a formula ', then # < #'. Using

this fa
t, we 
an see that, for any a 2 !, a is the # of a tautology if and

only if a is the # of a formula and, for all e < p

a

2(a+1)

, if

e 2 Seq ^ lh(e) = a+ 1 ^

(8i� a) (e)

i

� 1 ^

(8i� a)(8j < i)(i = #(:) � j ! (e)

i

= 1

.

� (e)

j

) ^

(8i� a)(8j < i)(8k < i)(i = #(() � j �#(^) � k �#())

! (e)

i

= (e)

j

� (e)

k

) ;

then (e)

a

= 1. �

Lemma 4.29. (1) There is a primitive re
ursive fun
tion Sb su
h that, if

' is a formula or a term, x is a variable, and t is a term, then

Sb(#';#(x);#t) = #'(t)

where '(t) is the result of substituting t for the free o

urren
es of x in '.

(2) There is a primitive re
ursive relation Fr su
h that, if ' is a formula

and x is a variable, then

Fr(#';#(x))$ x o

urs free in ' :

(3) The set of all #'s of senten
es is primitive re
ursive.

(4) There is a primitive re
ursive relation Sbl su
h that, if ' is a formula

and x, t, and '(t) are as in (1), then

Sbl(#';#(x);#t)$

no o

urren
e of a variable in t be
omes bound in '(t).
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The proof of the lemma will be a �nal examination problem.

Lemma 4.30. (a) The set of all #'s of logi
al axioms is primitive re
ursive.

(b) The set of all (#';# ;#�) su
h that � follows from ' and  by

Modus Ponens is primitive re
ursive.

(
) The set of all (#';# ) su
h that  follows from ' by the Quanti�er

Rule is primitive re
ursive.

Proof. (a) We have already dealt with tautologies in Lemma 4.28. The

identity axioms are easily handled using parts (2) and (3) of Lemma 4.27

and the fun
tion Sb. Quanti�er Axioms are handled using Sbl and Sb.

(b) and (
) are proved in a straightforward manner, with Fr used for the

latter. �

Lemma 4.31. Suppose that L extends L

PA

. The set of #'s of axioms of

PA is primitive re
ursive.

Proof. There are �nitely many axioms plus the indu
tion s
hema. Instan
es

of the latter are easily 
hara
terized using Sb. �

A theory T in L is re
ursively axiomatizable if there is a set � of senten
es

su
h that

(i) f#� j � 2 �g is re
ursive;

(ii) T = f� j � j= �g .

The notion of a primitively re
ursively axiomatizable theory is similarly de-

�ned, with \primitive re
ursive" repla
ing \re
ursive" in 
lause (i).

Remark. In fa
t, the 
lass of re
ursively axiomatizable theories turns out

to be the same as the 
lass of primitively re
ursively axiomatizable theories.

Lemma 4.32. Suppose that T is a primitively re
ursively axiomatizable the-

ory in L. Let � witness this fa
t. Then there is a primitive re
ursive relation

Pr su
h that, for all a and b 2 !, Pr(a; b) holds if and only if a is the # of

a senten
e � and b is the # of a dedu
tion of � from �.

Proof. The lemma follows easily from Lemma 4.30. �

Theorem 4.33. The fun
tions reprensentable in QE are exa
tly the re
ur-

sive fun
tions.
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Proof. By Theorem 4.17, we need only show that every fun
tion repre-

sentable in QE is re
ursive. Suppose '(v

1

; : : : ; v

n+1

) represents f :

n

! ! !

in QE. Let Pr be given by Lemma 4.32 for T = QE. Note that the fun
tion

(a

1

; : : : ; a

n+1

) 7! #'(S

a

1

(0); : : : ;S

a

n+1

(0))

is primitive re
ursive, sin
e the # of '(S

a

1

(0); : : : ;S

a

n+1

(0)) is

Sb(: : : (Sb(#';#(v

1

);#S

a

1

(0)); : : :);#(v

n+1

);#S

a

n+1

(0)) ;

and sin
e the fun
tion a 7! #S

a

(0) is easily seen to be primitive re
ursive.

De�ne a re
ursive fun
tion g :

n

! ! ! by

g(a

1

; : : : ; a

n

) = �bPr(#'(S

a

1

(0); : : : ;S

a

n

(0);S

(b)

0

(0)); (b)

1

) :

For all (a

1

; : : : ; a

n

),

f(a

1

; : : : ; a

n

) = (g(a

1

; : : : ; a

n

))

0

. �

We now know that the re
ursive fun
tions have all the 
losure propeties

of those representable in QE. (We 
ould have dire
tly proved these 
losure

properties, as we did for the primitive re
ursive fun
tions.) Thus we get the

following lemma.

Lemma 4.34. Lemma 4.32 
ontinues to hold when the words \primitively"

and \primitive" are deleted from its statement.

Remark. By Lemma 4.34 and the proof of Lemma 4.33, any fun
tion

representable in any re
ursively axiomatizable theory is re
ursive.

Lemma 4.35 (Fixed Point Lemma). Let '(v

1

) be a formula of L

PAE

.

There is a senten
e � su
h that

QE j= (� $ '(S

#�

(0)) :

Proof. Let  (v

1

; v

2

; v

3

) represent in QE the primitive re
ursive fun
tion

(a; n) 7! Sb(a;#v

1

;#S

n

(0)) :

Note that, for any formula �(v

1

) and any n 2 !, this fun
tion sends (#�; n)

to #�(S

n

(0)).

Let �(v

1

) be the following formula:

(8v

3

)( (v

1

; v

1

; v

3

)! '(v

3

)) :
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Let q = #�(v

1

).

Now let � be the senten
e

(8v

3

)( (S

q

(0);S

q

(0); v

3

)! '(v

3

)) :

Note that � is the result of repla
ing v

1

by S

q

(0) in the formula �(v

1

).

In other words, #� is the value of the fun
tion represented by  on the

argument (q; q). Hen
e

QE j= (8v

3

)( (S

q

(0);S

q

(0); v

3

) $ v

3

= S

#�

(0)) :

In parti
ular,

QE j=  (S

q

(0);S

q

(0);S

#�

(0)) :

Thus

QE j= (� ! '(S

#�

(0)) :

But also

QE j= (8v

3

)( (S

q

(0);S

q

(0); v

3

) ! v

3

= S

#�

(0)) :

Therefore

QE j= ('(S

#�

(0))! �) . �

It is worth re
ording the following fa
t: Suppose  (v

1

; : : : ; v

n

) represents

in QE a relation R. Sin
e N

0

j= QE, we have that

(8a

1

2 !) � � � (8a

n

2 !)(R(a

1

; : : : ; a

n

)$ N

0

j=  [a

1

; : : : ; a

n

℄) :

Theorem 4.36. Let T be a re
ursively axiomatizable theory in L

PAE

su
h

that N

0

j= T . Then T is not 
omplete.

Proof. Let Pr be given by Lemma 4.34. Let  witness that Pr is repre-

sentable in QE. Let '(v

1

) be the formula

(8v

2

): (v

1

; v

2

) :

Let � be given be the Fixed Point Lemma.

One 
an think of � as expressing its own unprovability in T . Indeed, by

the observation pre
eding the theorem,

T 6j= � $ N

0

j= � :

If the 
onsistent theory T j= � or j= :�, then this 
ontradi
ts the hypothesis

that N

0

j= T . �

81



Theorem 4.37. Let T be any theory in L

PAE

su
h that T[QE is 
onsistent.

Then f#� j � 2 Tg is not re
ursive.

Proof. Suppose for a 
ontradi
tion that f#� j � 2 Tg is re
ursive. Let

T

0

= f� j T [QE j= �g :

Let � be the 
onjun
tion of the �nitely many axioms of QE. Then

� 2 T

0

$ (�! �) 2 T ;

so f#� j � 2 T

0

g is re
ursive.

By Theorem 4.17, let  (v

1

) represent f#� j � 2 T

0

g in QE. Let � be

given by the Fixed Point Lemma with : as '.

Suppose �rst that � =2 T

0

. Then

QE j= : (S

#�

(0)) :

But this implies that

QE j= � ;

whi
h in turn implies that � 2 T

0

.

Suppose then that � 2 T

0

. We su

essively get that QE j=  (S

#�

(0)),

that QE j= :�, and that :� 2 T

0

. �

Corollary 4.38 (Chur
h's Theorem). The set of all #'s of valid sen-

ten
es in L

PAE

is not re
ursive.

Corollary 4.39. If T be a re
ursively axiomatizable theory in L

PAE

su
h

that T [QE is 
onsistent, then T is not 
omplete.

Proof. It suÆ
es to prove that if � is a set of senten
es su
h that f#� j

� 2 �g is re
ursive and the theory T = f� j � j= �g is 
omplete, then

f#� j � 2 Tg is re
ursive. For this, �x � and let Pr be given by Lemma 4.34.

Assume that T is is 
omplete. De�ne g : ! ! ! by setting g(a) = 0 if a is

not the # of a senten
e and otherwise setting

g(a) = �b (Pr(a; b) _ Pr(#(: ) � a; b)) :

Sin
e T is 
omplete, g is a re
ursive fun
tion. Moreover, for any a 2 !,

a 2 f#� j � 2 Tg $ (g(a) 6= 0 ^ Pr(a; g(a))) . �
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A theory T in L is re
ursively de
idable if f#� j � 2 Tg is re
ursive. Oth-

erwise T is re
ursively unde
idable. Thus Chur
h's Theorem shows that the

set of valid senten
es of L

PAE

is not re
ursively de
idable. (Chur
h's Theo-

rem is a
tully more general, holding for, say, any language with a two-pla
e

relation symbol.) A

ording to Chur
h's Thesis, the re
ursive fun
tions

are exa
tly the e�e
tively 
omputable fun
tions. Granted Chur
h's Thesis,

de
idability and re
ursive de
idability are the same.

To eliminate exponentiation and get in
ompleteness theorems for PA,

we shall use the following number-theoreti
 result.

Lemma 4.40 (Chinese Remainder Theorem). Let the positive integers

d

0

; : : : ; d

n

be relatively prime. Let a

i

< d

i

for ea
h i � n. Then there is a 


su
h that, for ea
h i � n, a

i

is the remainder when 
 is divided by d

i

.

Proof. For any 
 2 !, let F(
) = (r

0

; : : : ; r

n

), where ea
h r

i

is the remainder

when 
 is divided by d

i

.

Suppose 


1

and 


2

are distin
t numbers smaller than

Q

i�n

d

i

. If F(


1

) =

F(


2

), then ea
h d

i

divides j


1

� 


2

j and so, sin
e the d

i

are relatively prime,

Q

i�n

d

i

divides j


1

� 


2

j. This 
ontradi
tion shows that F(


1

) 6= F(


2

).

Thus F(
) takes on

Q

i�n

d

i

distin
t values for 
 <

Q

i�n

d

i

. But ea
h

of these values is of the form (r

0

; : : : ; r

n

) with ea
h r

i

< d

i

. There are only

Q

i�n

d

i

su
h (r

0

; : : : ; r

n

), so one of the F(
) must be (a

0

; : : : ; a

n

). �

Lemma 4.41. For any positive integer m, the numbers 1 + (i + 1) � m!,

i � m, are relatively prime.

Proof. Let i and j be distin
t numbers � m. Suppose that some prime p

divides both 1 + (i+ 1) �m! and 1 + (j + 1) �m!, with i and j � m. Then p

divides ji � jj �m!. Sin
e p 
annot divide m!, it follows that p must divide

ji � jj. But ji � jj � m, and thus we have the 
ontradi
tion that p divides

m!.

�

For elements 
, d, and i of !, let r(
; d; i) be the remainder when 
 is

divided by 1 + (i+ 1) � d.

Order the set of all pairs (a; b) of natural numbers �rst by maxfa; bg and

then lexi
ographi
ally. For pairs (a; b), let n(a; b) be the number of pairs

pre
eding (a; b) in this ordering. De�ne q

1

: ! ! ! and q

2

: ! ! ! by

setting q

1

(n(a; b)) = a and q

2

(n(a; b)) = b.

Let Q be the set of 
onsequen
es in L

PA

of Axioms 1{8.
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Lemma 4.42. The fun
tions r, n, q

1

, and q

2

are representable in Q.

Proof. Note that all our lemmas before Lemma 4.13 
ontinue to hold if we

repla
e L

PAE

by L

PA

and QE by Q. We have

r(
; d; i) = �b (9e� 
) 
 = (1 + (i+ 1) � d) � e+ b ;

maxfa; bg = �
 (a � 
 ^ b � 
) ;

n(a; b) = (maxfa; bg)

2

+ a+ b �K

�

(b; a) ;

q

1

(
) = �a (9b� 
)n(a; b) = 
 ;

q

2

(
) = �b (9a� 
)n(a; b) = 
 :

�

Lemma 4.43. For any natural numbers n and a

0

; : : : ; a

n

, there are 
 and

d su
h that

(8i� n) r(
; d; i) = a

i

:

Proof. Given n and a

0

; : : : a

n

, let m = maxfn; a

0

; : : : ; a

n

g. Let d = m! .

Sin
e the 1 + (i + 1) � d are relatively prime, let 
 be given by the Chinese

Remainder Theorem. (Note that ea
h a

i

< 1 + (i+ 1) � d.) �

Lemma 4.44. Exponentiation is representable in Q.

Proof. De�ne fun
tions f :

2

! ! ! and E

�

:

2

! ! ! by

f(m; i) = r(q

1

(m); q

2

(m); i) ;

E

�

(a; b) = �m (f(m; 0) = 1 ^ (8i� b) f(m; i+ 1) = f(m; i) � a) :

Both f and E

�

are representable in Q. Moreover, we have that

(8a 2 !)(8b 2 !)(8i� b) f(E

�

(a; b); i) = a

i

:

Thus a

b

= f(E

�

(a; b); b) for all a and b. �

Theorem 4.45. All previous lemmas, theorems, and 
orollaries of Se
-

tion 4 hold with L

PA

repla
ing L

PAE

and Q repla
ing QE.

Theorem 4.46. PA is in
omplete and re
ursively unde
idable. Moreover

all re
ursively axiomatizable extensions of PA are in
omplete, and all 
on-

sistent extensions of PA are re
ursively unde
idable.
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Proof. This follows from Theorems 4.45, Theorem 4.36 or Corollary 4.39,

and Theorem 4.37. �

Theorem 4.36, Theorem 4.37, Corollary 4.39, and Theorem 4.46 are all

versions of G�odel's First In
ompleteness Theorem. We end this se
tion with

a brief sket
h of G�odel's Se
ond In
ompleteness Theorem.

Let Pr be given by Lemma 4.34 for some re
ursively axiomatizable T in

L

PA

su
h that Q � T . Let  witness that Pr is representable in Q. Let

� be given by the Fixed Point Lemma, with QE

0

repla
ing QE and with

(8v

2

): (v

1

; v

2

) as '(v

1

). Thus T 6j= � if and only if � is true in N.

Suppose that � is false in N, i.e., suppose that T j= �. Then there is a

b 2 ! su
h that Pr(#�; b). For any su
h b,

Q j=  (S

#�

(0);S

b

(0)) :

Hen
e

Q j= (9v

2

) (S

#�

(0); v

2

) :

In other words,

Q j= :'(S

#�

(0)) :

But then Q j= :�, and so T j= :�. Therefore T is in
onsistent.

The argument of the last paragraph shows that if T is 
onsistent then �

is true in N. The 
onverse of this fa
t also holds: If � is true, then T 6j= �,

and so T is 
onsistent. Thus � is true in N if and only if T is 
onsistent.

Using the formula  and formulas representing the set of all #'s of

senten
es and the fun
tion a 7! #(:) � a, we 
an 
onstru
t a senten
e

pCon Tq of L

PA

that we may think of as expressing the 
onsisten
y of T .

Our argument then establishes the truth of

� $ pCon Tq :

Now 
omes the sket
hy part of our dis
ussion. If we have 
hosen natural

representing formulas, then we 
an show that

PA j= � $ pCon Tq :

This is essentially be
ause our basi
 tool in our (presumably set theoreti
)

proof of (the set theoreti
 version of) this senten
e was indu
tion.

Now suppose that T is PA. Sin
e PA is 
onsistent, PA 6j= �. But then

PA 6j= pCon PAq :
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In other words, the 
onsisten
y of PA implies that the number theoreti


version of the 
onsisten
y of PA is not provable in PA.

The argument establishes that any 
onsisent, re
ursively axiomatizable

extension of PA 
annot prove the number-theoreti
 senten
e expressing its

own 
onsisten
y. This result 
an easily be extended to theories in whi
h PA

is interpretable. For example, one 
annot prove in ZFC, if ZFC is 
onsistent,

the set-theoreti
 formulation of the 
onsisten
y of ZFC.
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5 Re
ursion Theory

Fix n 2 ! n f0g. To get a useful enumeration of the re
ursive fun
tions, we

do a uniform version of the 
onstru
tion of the proof of Theorem 4.33. Let

Pr(a; d) hold if and only if d is the # of a dedu
tion from the axioms of

Q of a senten
e � of L

PA

su
h that a = #�. De�ne T

n

�

n+2

! by letting

T

n

(e; a

1

; : : : ; a

n

; d) hold if and only if

(i) For some formula '(v

1

; : : : ; v

n+1

) of L

PA

, #' = e ;

(ii) Pr(#'(S

a

1

(0); : : : ;S

a

n

(0);S

(d)

0

(0)); (d)

1

) ;

(iii) d is the smallest number satisfying (i) and (ii).

De�ne U : ! ! ! by setting U(d) = (d)

0

.

Theorem 5.1. (a) For ea
h n � 1, T

n

is primitive re
ursive.

(b) The fun
tion U is primitive re
ursive.

(
) If n � 1 and f :

n

! ! ! is re
ursive, then there is an e 2 ! su
h

that, for all numbers a

1

; : : : ; a

n

,

f(a

1

; : : : ; a

n

) = U(�dT

n

(e; a

1

; : : : ; a

n

; d)) :

(d) Every total (i.e., totally de�ned) fun
tion in this form is re
ursive.

Proof. For (a), note that 
lause (ii) is equivalent with

Pr(Sb(: : : (Sb(e;#v

1

;#S

a

1

(0)); : : :);#v

n+1

;#S

(d)

0

(0)); (d)

1

) :

For (
), let ' represent f in Q and let e = #'. (d) follows from (a) and (b).

�

A partial (number-theoreti
) fun
tion of n variables is an f : A ! !

where A �

n

!.

A partial fun
tion of n variables is partial re
ursive if there are re
ursive

g and h su
h that

f(a

1

; : : : ; a

n

) ' h(�b g(a

1

; : : : ; a

n

; b) = 0) ;

where \x ' y" means \x and y are de�ned and equal or both are unde�ned."

Lemma 5.2. For ea
h n and e, the partial fun
tion f given by

f(a

1

; : : : ; a

n

) ' U(�dT

n

(e; a

1

; : : : ; a

n

; d))

is partial re
ursive.
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Lemma 5.3. If f is a partial re
ursive fun
tion of n variables, then there

is an e su
h that, for all a

1

; : : : ; a

n

,

f(a

1

; : : : ; a

n

) ' U(�dT

n

(e; a

1

; : : : ; a

n

; d)) :

Proof. Let g and h witness that f is partial re
ursive. Let '(v

1

; : : : ; v

n+2

)

and  (v

1

; v

2

) represent g and h respe
tively in Q. Let �(v

1

; : : : ; v

n+1

) be

(9z)('(v

1

; : : : ; v

n

; z;0) ^ (8z

0

)(z

0

<z ! :'(v

1

; : : : ; v

n

; z

0

;0)) ^  (z; v

n+1

)) ;

for appropriate variables z and z

0

. It is easy to see that the senten
e

�(S

a

1

(0); : : : ;S

a

n

(0);S




(0)) is provable in Q if and only if 
 ' f(a

1

; : : : ; a

n

).

(The main point is that only senten
es true in N are provable in Q.) Thus

we 
an let e = #�. �

Theorem 5.4. The partial re
ursive fun
tions of n variables are exa
tly the

fun
tions feg

n

, where

feg

n

(a

1

; : : : ; a

n

) ' U(�dT

n

(e; a

1

; : : : ; a

n

; d)) :

Exer
ise 5.1. De�ne an operation of 
omposition for partial fun
tions and

prove that the partial re
ursive fun
tions are 
losed under 
omposition.

A subset A of ! is re
ursively enumerable (r.e.) if A is the domain of a

partial re
ursive fun
tion.

Theorem 5.5. If A � !, then A is r.e. if and only if A is either empty or

the range of a re
ursive fun
tion, where the fun
tion 
an be taken to be of

one argument.

Proof. Suppose the A is r.e. Then there is an e su
h that A = fa j

(9d)T

1

(e; a; d)g. Suppose that A 6= ;. Let a 2 A. De�ne a re
ursive g by

setting

g(b) =

�

(b)

0

if T

1

(e; (b)

0

; (b)

1

) ;

a otherwise.

Now suppose that A = range (~g) with ~g re
ursive. For b 2 !, let

f(b) ' �
 ~g((
)

1

; : : : ; (
)

n

)) = b :

Clearly A = domain (f). To see that f is partial re
ursive, de�ne g and h

by:

g(b; 
) = (~g((
)

1

; : : : ; (
)

n

))

.

� b) + (b

.

� ~g((
)

1

; : : : ; (
)

n

) ;

h(a) = a :

It is easy to see that there is a partial re
ursive fun
tion with domain ;:

Note that, e.g., f0g

1

= ;. �
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Theorem 5.6. A subset A of ! is re
ursive if and only if both A and :A

are r.e.

Proof. Suppose �rst that A is re
ursive. De�ne g and g

0

by setting

g(a) ' �bK

A

(a) = 1 ;

g

0

(a) ' �bK

A

(a) = 0 :

g and g

0

witness that A and :A respe
tively are r.e.

For the 
onverse, suppose that A = fa j (9d)T

1

(e; a; d)g and that :A =

fa j (9d)T

1

(e

0

; a; d)g. Then

K

A

(a) = K

T

1

(e; a; �d (T

1

; (e; a; d) _ T

1

(e

0

; a; d))) . �

Let K = fe j (9d)T

1

(e; e; d)g.

Theorem 5.7. The set K is r.e. but not re
ursive.

Proof. K is the domain of the partial re
ursive fun
tion f given by f(e) '

U(�dT

1

(e; e; d)).

Suppose that K is re
ursive. Then :K is r.e., and so there is an e su
h

that :K = domain (feg

1

). But then

e 2 K $ (9d)T

1

(e; e; d) $ e =2 K . �

Remark. An obvious and important fa
t that we have failed to mention

expli
itly is that, for all n 2 !, the partial fun
tion f of n+1 variables given

by f(e; a

1

; : : : ; a

n

) ' U(�dT

n

(e; a

1

; : : : ; a

n

; d)) is partial re
ursive.

Theorem 5.8 (s-m-n Theorem). For any positive integersm and n, there

is a re
ursive fun
tion S

m

n

su
h that, for all e; a

1

; : : : ; a

m

; b

1

; : : : ; b

n

,

feg

m+n

(a

1

; : : : ; a

m

; b

1

; : : : ; b

n

) ' fS

m

n

(e; a

1

; : : : ; a

m

)g

n

(b

1

; : : : ; b

n

) :

Proof. The idea of the proof is simple. In the 
ase that matters, when

e is the number of a formula '(v

1

; : : : ; v

m+n+1

), then we would like to set

S

m

n

(e; a

1

; : : : ; a

m

) = #'(S

a

1

(0); : : : ;S

a

m

(0); v

1

; : : : ; v

n+1

). But, for 1 � i �

n+ 1, some o

urren
es of v

i

that repla
e free o

urren
es of v

m+i

may be

bound. For this reason, we need to 
hange the bound o

urren
es of these

v

i

to o

urren
es of other variables before we insert the v

i

, and even this

step requires preparation.
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First let Let f

m

n

(e; a

1

; : : : ; a

m

) =

Sb(� � � Sb(

| {z }

n+1

Sb(� � � Sb(

| {z }

m

e ;#v

1

;#S

a

1

(0)) � � � ;#v

m

;#S

a

m

(0));

| {z }

m

#v

m+1

;#v

e+1

) � � � ;#v

m+n+1

;#v

e+n+1

)

| {z }

n+1

.

Next let

g

n

(e; 
; i) =

�

(
)

i

+ 2(e+ n+ 1) if (
)

i

is even and 2 � (
)

i

� 2(n+ 1);

(
)

i

otherwise.

Then let

h

n

(e; 
) =

Y

i<lh(a)

p

g

n

(e;
;i)+1

i

and let

k

m

n

(e; a

1

; : : : ; a

m

) = h

n

(e; f

m

n

(e; a

1

; : : : ; a

m

)) :

Finally let

S

m

n

(e; a

1

; : : : ; a

m

) = Sb(k

m

n

(e; a

1

; : : : ; a

m

);#v

e+1

;#v

1

) � � � ;#v

e+n+1

;#v

n+1

)

if e is the # of a formula '(v

1

; : : : ; v

m+n+1

), and let S

m

n

(e; a

1

; : : : ; a

m

) = 0

otherwise.

To see how the de�nition works, note that if e = #'(v

1

; : : : ; v

m+n+1

),

then

f

m

n

(e; a

1

; : : : ; a

m

) = #'(S

a

1

(0); : : : ;S

a

m

(0); v

e+1

; : : : ; v

e+n+1

) :

In this 
ase, k

m

n

(e; a

1

; : : : ; a

m

) is the number of a formula we shall 
all

 (S

a

1

(0); : : : ;S

a

m

(0); v

e+1

; : : : ; v

e+n+1

), the formula that is gotten from

'(S

a

1

(0); : : : ;S

a

m

(0); v

e+1

; : : : ; v

e+n+1

) by repla
ing all o

urren
es of v

i

by

o

urren
es of v

e+n+1+i

for 1 � i � n + 1. The repla
ed o

urren
es of v

i

are bound o

urren
es, sin
e these are the only o

urren
es of v

i

. Finally,

S

m

n

(e; a

1

; : : : ; a

m

) = # (S

a

1

(0); : : : ;S

a

m

(0); v

1

; : : : ; v

n+1

) :

�

For subsets A and B of !, we say that A is many-one redu
ible to B

(A �

m

B) if there is a re
ursive f su
h that

(8a 2 !)(a 2 A$ f(a) 2 B) :

From now on, we shall usually write feg for feg

1

.
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Theorem 5.9. Let H = fb 2 ! j f(b)

0

g((b)

1

) is de�nedg. Then H is r.e.,

K �

m

H, and H �

m

K.

Proof. H is obviously r.e.

Let f(e) = -he; ei-. Then, for any e 2 !,

e 2 K $ feg(e) is de�ned$ -he; ei- 2 H ;

so K �

m

H.

To show that H �

m

K, we use the s-m-n Theorem. De�ne g by

g(b; a) ' f(b)

0

g((b)

1

) :

The partial fun
tion g is partial re
ursive, sin
e

g(b; a) ' U(�d (T

1

((b)

0

; (b)

1

; d)) :

Hen
e there is an e 2 ! su
h that

(8b)(8a) g(b; a) ' feg

2

(b; a) :

Set f(b) = S

1

1

(e; b) for b 2 !. We have that

ff(b)g(a) ' fS

1

1

(e; b)g(a) ' feg

2

(b; a) ' g(b; a) :

Suppose that b 2 H. Then f(b)

0

g((b)

1

) is de�ned. Hen
e g(b; a) is

de�ned for every a, and so ff(b)g(a) is de�ned for every a. In parti
ular,

ff(b)g(f(b)) is de�ned, and this means that f(b) 2 K.

Now suppose that b =2 H. Then f(b)

0

g((b)

1

) is unde�ned. Thus ff(b)g

is the 
ompletely unde�ned fun
tion, so f(b) =2 K. �

Theorem 5.10. Let A � ! be r.e. Then A �

m

H and so A �

m

K.

Proof. Let A = domain(feg). De�ne f by setting f(n) = -he; ni-. Then, for

all n,

n 2 A $ feg(n) is de�ned $ -he; ni- 2 H . �

The s-m-n Theorem implies that if g is a partial re
ursive fun
tion of

m+ n variables, then there is a re
ursive f su
h that

ff((a

1

; : : : ; a

m

)g

n

(b

1

; : : : ; b

n

) ' g(a

1

; : : : ; a

m

; b

1

; : : : ; b

n

) ;

for all a

1

; : : : ; a

m

; b

1

; : : : ; b

n

. From now on we shall use this 
onsequen
e of

the s-m-n Theorem dire
tly.
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Theorem 5.11 (Re
ursion Theorem). For all m 2 ! and all re
ursive

f : ! ! !, there is an n 2 ! su
h that fng

m

= ff(n)g

m

.

Proof. De�ne g by

g(u; a

1

; : : : ; a

m

) ' ffug(u)g

m

(a

1

; : : : ; a

m

) :

It is easy to see that g is partial re
ursive, so the s-m-n Theorem gives a

re
ursive h su
h that, for all u; a

1

; : : : ; a

m

,

g(u; a

1

; : : : ; a

m

) ' fh(u)g

m

(a

1

; : : : ; a

m

) :

Let fvg = f Æ h, the 
omposition of f and h. Let n = h(v). We have that

fng

m

(a

1

; : : : ; a

m

) ' fh(v)g

m

(a

1

; : : : ; a

m

)

' g(v; a

1

; : : : ; a

m

)

' ffvg(v)g

m

(a

1

; : : : ; a

m

)

' ff(h(v))g

m

(a

1

; : : : ; a

m

)

' ff(n)g

m

(a

1

; : : : ; a

m

) :

�

Theorem 5.12 (Uniform Re
ursion Theorem). For ea
h m 2 !, there

is a re
ursive fun
tion r

m

su
h that, for all e 2 !,

feg is total ! fr

m

(e)g

m

= ffeg(r

m

(e))g

m

:

Proof. De�ne h as in the proof of Theorem 5.11. By the s-m-n Theorem,

let v be a re
ursive fun
tion su
h that

(8e)(8n)fv(e)g(n) ' (feg Æ h)(n) :

For ea
h e, set r

m

(e) = h(v(e)). �

For e 2 !, let W

e

= domain (feg). Note that K = fe j e 2W

e

g.

An r.e. set C is 
reative if there is a re
ursive fun
tion f su
h that

(8e 2 !)(W

e

\ C = ; ! f(e) =2W

e

[ C) :

If C is 
reative, then C is not re
ursive, for f(e) witnesses that :C 6= W

e

whenever W

e

� :C. (We write :C for ! n C.)

The set K is witnessed 
reative by the identity fun
tion, for

W

e

\ K = ; ) e =2W

e

) e =2 K :
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Theorem 5.13. If C is 
reative and A is r.e., then A �

m

C.

Proof. Let f witness that C is 
reative, and let A be r.e. De�ne h by

h(a; b; 
) '

�

0 if a 2 A and 
 = f(b) ;

unde�ned otherwise.

It is easy to show that h is partial re
ursive. By appli
ations of the s-m-n

Theorem, let p and q be re
ursive and su
h that

h(a; b; 
) ' fp(a; b)g(
) ;

p(a; b) = fq(a)g(b) :

Note that, for all a and b,

W

p(a;b)

=

�

ff(b)g (the singleton) if a 2 A ;

; otherwise :

Let r = r

1

. By the Uniform Re
ursion Theorem, we have for all a that

fr(q(a))g = ffq(a)g(r(q(a)))g

= fp(a; r(q(a)))g :

Hen
e, for all a, W

r(q(a))

=W

p(a;r(q(a)))

.

We show that f Æ r Æ q witnesses that A �

m

C. Note �rst that

a 2 A ! W

p(a;r(q(a)))

= ff(r(q(a)))g

! W

r(q(a))

= ff(r(q(a)))g

! f(r(q(a))) 2 C :

(Sin
e f witnesses that C is 
reative, the next-to-last line implies that

W

r(q(a))

\ C 6= ;. This and the next-to-last line imply the last line.) Note

�nally that

a =2 A ! W

p(a;r(q(a)))

= ;

! W

r(q(a))

= ;

! f(r(q(a))) =2 C :

(The last impli
ation holds be
ause f witnesses that C is 
reative.) �

Exer
ise 5.2. The join of subsets A and B of ! is

f2n j n 2 Ag [ f2n+ 1 j n 2 Bg :

Prove that the join of A and B is a �

m

-least upper bound for A and B.
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Exer
ise 5.3. (a) Show that if A is r.e. and A �

m

:A then A is re
ursive.

(b) Prove that the hypothesis that A is r.e. 
annot be dropped from (a).

Hint. Consider the join of a set and its 
omplement.

Exer
ise 5.4. A subset A of ! is a many-one 
omplete r.e. set if A is r.e.

and, for all r.e. B, B �

m

A. Thus all 
reative sets are many-one 
omplete

r.e. sets. Prove that fe 2 ! jW

e

6= ;g is a many-one 
omplete r.e. set.

Exer
ise 5.5. Let C be 
reative. Show that there is a re
ursive f su
h that

(8e 2 !)(f(e) 2W

e

\ C _ f(e) =2W

e

[ C) :

Hint. Let

�

f witness that C is 
reative. Use the s-m-n Theorem to de�ne

a re
ursive p su
h that, for all a and b,

W

p(a;b)

=W

a

\ f

�

f(b)g :

Now use the s-m-n Theorem and the Uniform Re
ursion Theorem to get a

re
ursive s su
h that, for all a,

W

s(a)

=W

p(a;s(a))

:

Let f =

�

f Æ s.

Theorem 5.14. If C is a many-one 
omplete r.e. set, then C is 
reative.

Proof. Let g witness that K �

m

C. By the s-m-n theorem, let h be

re
ursive and su
h that

(8e)(8a) fh(e)g(a) ' feg(g(a)) :

Note that, for all e, W

h(e)

is the preimage under g of W

e

.

Let f = g Æ h. To show that f witnesses that C is 
reative, let e be su
h

that W

e

\C = ;. Taking preimages under g, we get that W

h(e)

\K = ;. By

the de�nition of K, this implies that h(e) =2 W

h(e)

[ K. But then g(h(e)) =2

W

e

[ C.

�

Theorem 5.15. For all m and n, there is a one-one fun
tion S

m

n

that wit-

nesses the truth of the s-m-n Theorem.
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Proof. Fix m and n. Let

�

S

m

n

have the property required of S

m

n

in the

statement of the s-m-n Theorem. De�ne h :

m+1

! ! ! by setting

h(a

0

; : : : ; a

m

) = #(S

a

0

(0) = S

a

0

(0) ^ (� � � ^ S

a

m

(0) = S

a

m

(0)) � � �) :

It is easy to see that h is a one-one re
ursive fun
tion and that all the values

of h are #'s of valid senten
es of L

PA

. De�ne S

m

n

by setting

S

m

n

(e; a

1

; : : : ; a

m

) = #h(i�h(e; a

1

; : : : ; a

m

)�#h^i�

�

S

m

n

(e; a

1

; : : : ; a

m

)�#h)i :

�

Theorem 5.16. For ea
h m 2 !, there is a one-one fun
tion r

m

that wit-

nesses the truth of the Uniform Re
ursion Theorem.

Proof. Given m, de�ne fun
tions h and v, as in the proof of Theorem 5.12,

using one-one fun
tions S

1

m

and S

1

1

. The h and v so de�ned are one-one.

Hen
e r

m

= h Æ v is also one-one. �

Theorem 5.17. If C is 
reative, then there is a one-one fun
tion witnessing

that C is 
reative.

Proof. De�ne a partial re
ursive fun
tion g by

g(e; n; y) '

�

y if (9i < lh(n)) y = (n)

i

;

feg(y) otherwise :

Let p be re
ursive and su
h that

(8e)(8n)(8y) fp(e; n)g(y) ' g(e; n; y) :

Thus

(8e)(8n)W

p(e;n)

=W

e

[ f(n)

0

; : : : ; (n)

lh(n)

.

�1

g :

Let f witness that C is 
reative. De�ne a re
ursive

~

f by

~

f(e; 0) = -hf(e)i- ;

~

f(e; k + 1) =

~

f(e; k) � -hf(p(e;

~

f(e; k))i- :

By indu
tion, we show that, for all k,

(i)

~

f(e; k) 2 Seq ;

(ii) lh(

~

f(e; k)) = k + 1 ;
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(iii) (8k

0

� k)

~

f(e; k

0

) =

~

f(e; k) d k

0

+ 1 ;

(iv) W

e

\C = ; ! (8i� k)(8j < i) (

~

f(e; k))

i

6= (

~

f(e; k))

j

;

(v) W

e

\C = ; ! (8i� k) (

~

f (e; k))

i

=2W

e

[ C .

Clauses (i){(iii) are 
lear. To verify (iv) and (v), note that

W

p(e;

~

f(e;k))

=W

e

[ f(

~

f(e; k))

i

j i � kg :

De�ne h by re
ursion as follows. If the numbers (

~

f(e; e))

k

, k � e, are

distin
t, let h(e) be the least of these numbers that is di�erent from all the

h(e

0

), e

0

< e. Otherwise let h(e) be the least number that is di�erent from

all the h(e

0

), e

0

< e. The re
ursive fun
tion h witnesses that C is 
reative.

�

For subsets A and B of !, say that A is one-one redu
ible to B (A �

1

B)

if some one-one f witnesses that A �

m

B. De�ne the notion of a one-one


omplete r.e. set in the obvious way. All our earlier results go through with

\one-one" repla
ing \many-one." Hen
e we have the following theorem.

Theorem 5.18. An r.e. set C is 
reative if and only if C is many-one


omplete if and only if C is one-one 
omplete.

A re
ursive permutation is a re
ursive one-one onto f : ! ! !. Two

subsets of ! are re
ursively isomorphi
 if one is the image of the other

under a re
ursive permutation.

Theorem 5.19. Let A and B be arbitrary subsets of !. If A �

1

B and

B �

1

A, then A and B are re
ursively isomorphi
.

Proof. Suppose that g and h witness that A �

1

B and B �

1

A respe
tively.

We de�ne indu
tively re
ursive fun
tions p : ! ! !, r :

2

! ! !, and

s :

2

! ! !. There will be numbers m

i

i 2 !, and n

i

, i 2 !, su
h that, for

ea
h k,

p(k) = -h-hm

0

; n

0

i-; : : : ; -hm

2k�1

; n

2k�1

i-i- :

The m

i

will be distin
t, as will the n

i

. Moreover we shall have that

m

i

2 A $ n

i

2 B :

Given p(k), letm

2k

be the least number di�erent from all them

i

, i < 2k.

Set r(k; 0) = g(m

2k

) and

r(k; i+ 1) =

�

r(k; i) if r(k; i) =2 fn

0

; : : : ; n

2k�1

g ;

g(m

j

); where n

j

= r(k; i), otherwise:
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Sin
e g is one-one, it follows that, whenever r(k; i+ 1) is de�ned by the

se
ond 
lause, the numbers r(k; 0) : : : ; r(k; i + 1) are distin
t. For any i,

r(k; i) 2 B if and only if m

2k

2 A.

Let n

2k

= r(k; i) for the least i � 2k su
h that r(k; i) =2 fn

0

; : : : ; n

2k�1

g.

Now let n

2k+1

be the least number di�erent from all the n

i

, i � 2k.

De�ne s(k; i) and m

2k+1

by analogy with the de�nition of r(k; i) and n

2k

.

Now de�ne f : ! ! ! by setting f(m

i

) = n

i

for ea
h i 2 !. Clearly f

witnesses that A and B are re
ursively isomorphi
. �

Corollary 5.20. Any two 
reative sets are re
ursively isomorphi
.

We now turn to the topi
 of relative re
ursion. If f : ! ! !, then the

fun
tions re
ursive in f form the smallest set C su
h that

(I) The fun
tion S, all 
onstant fun
tions, all the I

m

i

, and f belong to C;

(II) C is 
losed under 
omposition;

(III) C is 
losed under primitive re
ursion;

(IV) C is 
losed under the � operator.

For R �

n

!, R is re
ursive in f if K

R

is re
ursive in f . The partial

fun
tions partial re
ursive in f and the subsets of ! re
ursively enumerable

in f are de�ned in the obvious way.

Let L

PAF

be the result of adding to L

PA

a new one-pla
e fun
tion symbol

F. For any f : ! ! !, let Q(f) be the set of all 
onsequen
es (in L

PAF

) of

Axioms (1){(8) plus

fF(S

a

(0)) = S

f(a)

(0) j a 2 !g :

Theorem 5.21. For all f , the fun
tions re
ursive in f are the same as the

fun
tions representable in Q(f).

Proof. Our proofs of Theorems 4.17 and 4.33 are easily adapted to give

a proof the present theorem, sin
e f is representable in Q(f) and sin
e the

relation Pr for Q(f) is re
urive in f . �

For n � 1, let T

f

n

be de�ned just as was T

n

, but using Q(f) instead of

Q.

Theorem 5.22. For any f , T

f

n

is re
ursive in f . The fun
tions partial

re
ursive in f are exa
tly the feg

f

n

, where

feg

f

n

(a

1

; : : : ; a

n

) ' U(�dT

f

n

(e; a

1

; : : : ; a

n

; d)) :
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Whenever T

f

n

(e; a

1

; : : : ; a

n

; d) holds, then (d)

1

is the # of some dedu
-

tion. Any axiom of Q(f) that o

urs as a line in this dedu
tion must have

# smaller than d. Hen
e, for any su
h axiom of the form F(S

a

(0)) =

S

f(a)

(0), we must have that a < d. In parti
ular, this means that whether

T

f

n

(e; a

1

; : : : ; a

n

; d) holds depends only upon f � d.

De�ne T

1

n

�

n+3

! by letting T

1

n

(
; e; a

1

; : : : ; a

n

; d) hold if and only if


 2 Seq ^ lh(
) = d ^ (8f)((8i < d) f(i) = (
)

i

! T

f

n

(e; a

1

; : : : ; a

n

; d)) :

Note that we 
ould have written the de�nition of T

1

n

dire
tly, without men-

tioning the f 's or the T

f

n

's.

Theorem 5.23. For ea
h n, the relation T

1

n

is primitive re
ursive. For any

f , n, e, and a

1

; : : : ; a

n

,

feg

f

n

(a

1

; : : : ; a

n

) ' U(�dT

1

n

(

�

f(d); e; a

1

; : : : ; a

n

; d)) :

Let us extend the de�nition of re
ursive enumerability to subsets of

n

!

by de
laring A �

n

! to be re
ursively enumerable if A is the domain of a

partial re
ursive fun
tion. Similarly de�ne the notion of A's being re
ursively

enumerable in f , for f : ! ! ! and A �

n

!.

If n � 1, A �

n

!, and k � 1, then A 2 �

k

(or A is �

k

) if there is a

re
ursive B �

n+k

! su
h that, for all a

1

; : : : ; a

n

,

(a

1

; : : : ; a

n

) 2 A $ (9b

1

) � � � (Qb

k

) (a

1

; : : : ; a

n

; b

1

; : : : ; b

k

) 2 B ;

where the quanti�ers alternate between 9 and 8 (so that Q is 9 just in 
ase

k is odd). Let A 2 �

k

if and only if :A 2 �

k

. Let �

k

= �

k

\�

k

. Similarly

de�ne �

k

(f), �

k

(f), and �

k

(f), repla
ing the 
ondition that B is re
ursive

with the 
ondition that it is re
ursive in f . We shall sometimes say, e.g.,

that A is �

k

in f to mean that A 2 �

k

(f).

We omit the easy proof of the following theorem.

Theorem 5.24. Let n � 1 and A �

n

!. Then A is �

1

if and only if A is

r.e., and A is �

1

if and only if A is re
ursive. For f : ! ! !, A is �

1

in f

if and only if A is r.e. in f , and A is �

1

in f if and only if A is re
ursive

in f .

For f : ! ! !, let

K

f

= fe j feg

f

1

(e) is de�nedg

= fe j (9d)T

1

1

(

�

f(d); e; e; d)g

= fe j e 2W

f

e

g ;

where W

f

e

= domain (feg

f

1

).
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Theorem 5.25. For all f : ! ! !, we have:

(1) K

f

is r.e. in f ;

(2) K

f

is not re
ursive in f ;

(3) if A � ! is r.e. in f , then A �

1

K

f

;

(4) f is re
ursive in K

K

f

.

Proof. The proofs of (1) and (2) are like the proofs of the 
orresponding

fa
ts for K.

Note that, for ea
h m and n, a de�nition like that of the S

m

n

fun
tion

gives a one-one re
ursive fun
tion

~

S

m

n

su
h that, for all f , e, a

1

; : : : ; a

m

,

and b

1

; : : : ; b

n

,

f

~

S

m

n

(e; a

1

; : : : ; a

m

)g

f

n

(b

1

; : : : ; b

n

) ' feg

f

m+n

(a

1

; : : : ; a

m

; b

1

; : : : ; b

n

) :

We leave as an exer
ise the task of using

~

S

m

n

to prove (3) and (4). �

Exer
ise 5.6. Prove parts (3) and (4) of Theorem 5.25.

For k 2 !, de�ne 0

(k)

: ! ! ! as follows:

0

(0)

= K

;

;

0

(k+1)

= K

K

0

(k)

:

Theorem 5.26. For any A �

n

!, A is �

k+1

if and only if A is r.e. in 0

(k)

.

Proof. The 
ase k = 0 follows from Theorems 5.24 and 5.25, so assume

that k � 0 and that the theorem holds for k.

First suppose that A is r.e. in 0

(k+1)

. Let e be a number su
h that

A = domain (feg

0

(k+1)

n

). Then, for all a

1

; : : : ; a

n

,

(a

1

; : : : ; a

n

) 2 A $ (9d)T

1

n

(0

(k+1)

(d); e; a

1

; : : : ; a

n

; d)

$ (9d)(9
)(
 = 0

(k+1)

(d) ^ T

1

n

(
; e; a

1

; : : : ; a

n

; d)) :

Now


 = 0

(k+1)

(d) $ (
 2 Seq ^ lh(
) = d ^ (8i < d) (
)

i

= 0

(k+1)

(i)) :

Moreover

(
)

i

= 0

(k+1)

(i) $ (((
)

i

= 1 ^ i 2 K

0

(k)

) _ ((
)

i

= 0 ^ i =2 K

0

(k)

)) :
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Sin
e K

0

(k)

is r.e. in 0

(k)

, we have by indu
tion that K

0

(k)

is �

k+1

. Thus

there is a re
ursive B su
h that, for ea
h i 2 !,

i 2 K

0

(k)

$ (9b

1

) � � � (Qb

k+1

) (i; b

1

; : : : ; b

k+1

) 2 B ;

i =2 K

0

(k)

$ (8b

0

1

) � � � (Q

0

b

0

k+1

) (i; b

0

1

; : : : ; b

0

k+1

) =2 B :

Substituting and bringing all quanti�ers to the front, we get that, for all

a

1

; : : : ; a

n

, (a

1

; : : : ; a

n

) 2 A if and only if

(9d)(9
)(8i < d)(9b

1

)(8b

0

1

) � � � (Qb

k+1

)(Q

0

b

0

k+1

)

R(a

1

; : : : ; a

n

; d; 
; i; b

1

; b

0

1

; : : : ; b

k+1

; b

0

k+1

) ;

with R re
ursive. Now, for any relation P ,

(8i < d)(9b)P (i; b) $ (9

^

b)(8i < d)P (i; (

^

b)

i

) ;

(8i < d)(8b)P (i; b) $ (8b)(8i < d)P (i; b) :

Hen
e we 
an move (8i<d) to the right past all the other quanti�ers. Sin
e

(9b)(9b

0

)P (b; b

0

) $ (9

^

b)P ((

^

b)

0

; (

^

b)

1

) ;

(8b)(8b

0

)P (b; b

0

) $ (8

^

b)P ((

^

b)

0

; (

^

b)

1

) ;

we 
an 
ontra
t adja
ent pairs of like quanti�ers. The end result is that we

show A to be �

k+2

.

Now suppose that A is �

k+2

. There is then a C 2 �

k+1

su
h that, for

all a

1

; : : : ; a

n

,

(a

1

; : : : ; a

n

) 2 A $ (9b)(a

1

; : : : ; a

n

; b) 2 C :

By indu
tion, :C is r.e. in 0

(k)

. Let

D = f-ha

1

; : : : ; a

n

; bi- j (a

1

; : : : ; a

n

; b) =2 Cg :

Then D is r.e. in 0

(k)

, and so Theorem 5.25 implies that D �

1

K

0

(k)

. By the

de�nition of 0

(k+1)

, this gives that D is re
ursive in 0

(k+1)

. But A is �

1

in

K

D

, hen
e r.e. in K

D

, hen
e r.e. in 0

(k+1)

. �

Theorem 5.27. For ea
h k � 1,

�

k

( �

k

^ �

k

( �

k

^ (�

k

[�

k

) ( �

k+1

:
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Proof. That �

k

� �

k

and �

k

� �

k

is by de�nition. Using va
uous

quanti�ers, we 
an see that �

k

� �

k+1

and �

k

� �

k+1

.

Sin
e K

0

(k�1)

is r.e. in 0

(k�1)

but not re
ursive in 0

(k�1)

, we have an

example of a set that belongs to �

k

n �

k

. But then :K

0

(k�1)

belongs to

�

k

n�

k

.

The join of K

0

(k�1)

and :K

0

(k�1)

is re
ursive in 0

(k)

and so belongs to

�

k+1

, but it does not belong to �

k

[�

k

. �

For n � 1, a subset A of ! is one-one 
omplete for �

n

if A 2 �

n

and

every �

n

subset of ! is one-one redu
ible to A. Similarly de�ne one-one


omplete for �

n

, many-one 
omplete for �

n

, and many-one 
omplete for

�

n

.

Theorem 5.28. Let A be the set of all e 2 ! su
h that W

e

is �nite. Then

A is one-one 
omplete for �

2

.

Proof. For ea
h e 2 !,

e 2 A $ (9m)(8n)(n 2W

e

! n � m)

$ (9m)(8n)(8d)(T

1

(e; n; d)! n � m) :

Thus A 2 �

2

.

Let B � ! with B 2 �

2

. There is a re
ursive C su
h that

(8e)(e 2 B $ (9m)(8n) (e;m; n) 2 C) :

De�ne f :

2

! ! ! by

f(e;m) ' �n (8m

0

�m)(9n

0

� n) (e;m

0

; n

0

) =2 C :

Sin
e f is partial re
ursive, the s-m-n Theorem gives us a one-one re
ursive

g su
h that

(8e)(8m) fg(e)g(m) ' f(e;m) :

To see that g witnesses that B �

1

A, assume �rst that e 2 B. Then

there is an m su
h that (e;m; n) 2 C for all n. For m

0

� m, f(e;m

0

) is

unde�ned. Hen
e W

g(e)

� m.

Now assume that e =2 B. Then for every m there is an n su
h that

(e;m; n) =2 C. Thus f(e;m) is de�ned for every m, and so W

g(e)

= !. �

Exer
ise 5.4 gives an example of a set many-one 
omplete (indeed, one-

one 
omplete) for �

1

.
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Exer
ise 5.7. Show that fe j range(feg) = !g is one-one 
omplete for �

2

.

Exer
ise 5.8. Show that fe j :W

e

is �niteg is one-one 
omplete for �

3

.

Degrees of unsolvability.

For f : ! ! !, de�ne the degree d(f) of f by

d(f) = fg 2

!

! j f �

T

g ^ g �

T

fg ;

where �

T

means \is re
ursive in." Let

D = fd(f) j f 2

!

!g :

D is the set of degrees of unsolvability. Partially order D by

d(f) � d(g)$ f �

T

g :

Theorem 5.29. The stru
ture (D;�) is an upper semilatti
e with a least

element.

Proof. The least upper bound of degrees d(f

1

) and d(f

2

) is f , where for

ea
h n,

f(2n) = f

1

(n) ;

f(2n+ 1) = f

2

(n) :

The re
ursive fun
tions all have the same degree 0, and this is the least

degree. �

Theorem 5.30. There exist in
omparable degrees, i.e., � is not a linear

ordering of D.

Proof. We de�ne indu
tively s

0

; s

1

; : : : and t

0

; t

1

; : : : su
h that

(a) (8i 2 !) s

i

2 Seq ;

(b) (8i 2 !) t

i

2 Seq ;

(
) (8i 2 !)(8j 2 !)(i < j ! (lh(s

i

) < lh(s

j

) ^ s

i

= s

j

d lh(s

i

))) ;

(d) (8i 2 !)(8j 2 !)(i < j ! (lh(t

i

) < lh(t

j

) ^ t

i

= t

j

d lh(t

i

))) .
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Let s

0

= t

0

= -h i-.

Assume that s

e

and t

e

are de�ned.

If there is an s 2 Seq su
h that

(i) lh(s) � lh(s

e

) ;

(ii) s d lh(s

e

) = s

e

;

(iii) (9d� lh(s))T

1

1

(sdd; e; lh(t

e

); d) ;

then let s

0

e

be the least su
h s and let

t

0

e

= t

e

� -hU(�dT

1

1

(s

0

e

dd; e; lh(t

e

); d)) + 1i- :

Otherwise let s

0

e

= s

e

and t

0

e

= t

e

.

If there is a t 2 Seq su
h that

(i) lh(t) > lh(t

0

e

) ;

(ii) t d lh(t

0

e

) = t

0

e

;

(iii) (9d� lh(t))T

1

1

(tdd; e; lh(s

0

e

); d) ;

then let t

e+1

be the least su
h t and let

s

e+1

= s

0

e

� -hU(�dT

1

1

(t

e+1

dd; e; lh(s

0

e

); d)) + 1i- :

Otherwise let t

e+1

= t

0

e

� -h0i- and let s

e+1

= s

0

e

� -h0i-.

Let f : ! ! ! be su
h that

�

f(lh(s

i

)) = s

i

for all i 2 ! and let g : ! ! !

be su
h that �g(lh(t

i

)) = t

i

for all i 2 !.

To show that g 6�

T

f , let e 2 !. We show that feg

f

6= g. To see this,

note that feg

f

(lh(t

e

)) 6= g(lh(t

e

)); for, if feg

f

(lh(t

e

)) is de�ned, then

g(lh(t

e

)) = t

0

e

(lh(t

e

)) = feg

f

(lh(t

e

)) + 1 :

Similarly, for ea
h e 2 !,

f(lh(s

0

e

)) = s

e+1

(lh(s

0

e

)) = feg

g

(lh(s

0

e

)) + 1 :

Hen
e f 6�

T

g. �

For subsets A of !, let d(A) = d(K

A

). A degree is re
ursively enumerable

if it is d(A) for some r.e. A. There is a least r.e. degree, 0, and there is a

greatest r.e. degree, 0

0

= d(0

(1)

) = d(K).

Theorem 5.31. There is an r.e. degree d su
h that

0 < d < 0

0

:
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Proof. We shall 
onstru
t a re
ursive fun
tion f :

2

! ! ! satisfying

(8s)(8e)(f(s; e) > 0! (e < s ^ f(s+ 1; e) = f(s; e))) :

For s 2 !, we let

A

s

= ff(s; e)� 1 j f(s; e) > 0g :

The stated properties of f imply the re
ursiveness of f(s;m) j m 2 A

s

g. For

e 2 !, we let

m

e

' f(�s f(s; e) > 0; e) � 1 :

Finally we let

A = fm

e

j m

e

is de�nedg =

[

s

A

s

:

Thus A will be r.e.

We shall make d(A) > 0 by arranging that :A is in�nite and, for all e,

W

e

is in�nite ! W

e

\A 6= 0 :(I)

The numbers m

e

will be used to witness that (1) holds.

We shall make d(A) < 0

0

by arranging that

K

K

A

2 �

2

:(II)

By Theorem 5.26, (2) implies that K

K

A

�

T

0

(1)

, and so that

d(A) < d(K

K

A

) � 0

0

:

As we de�ne f , we shall simultaneously de�ne another re
ursive fun
tion

g :

2

! ! !.

Set f(0; e) = 0 for all e.

Let s 2 !. Suppose f(s; e) is de�ned for all e. Suppose indu
tively that

(8e)(f(s; e) > 0! W

s

e

\A

s

6= ;) ;

where

W

s

e

= fn j (9d� s)T

1

(e; n; d)g :

For ea
h e, let

g(s; e) =

�

�d (d � s ^ T

1

1

(K

A

s

(d); e; e; d)) if (9d� s)T

1

1

(K

A

s

(d); e; e; d) ;

0 otherwise.
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For ea
h e < s, if both

(a) W

e

\A

s

= ; ;

(b) (9m� s)(m 2W

s

e

^m > 2e ^ (8e

0

< e)m � g(s; e

0

)) ;

then, for the least su
h m, let f(s+ 1; e) = m+ 1. If either (a) or (b) does

not hold, let f(s+ 1; e) = f(s; e).

Lemma 5.32. :A is in�nite.

Proof. Ea
h m

e

> 2e, and therefore

fn j n 2 A ^ n � 2eg � fm

e

0

j e

0

< eg ;

a set of size � e. �

Lemma 5.33. For ea
h e, lim

s

g(s; e) exists.

Proof. Fix e. Let s

0

be su
h that

(8e

0

� e) (m

e

de�ned! f(s

0

; e

0

) > 0) :

Suppose that s � s

0

and g(s; e) > 0. Any e

0

su
h that f(s; e

0

) = 0 and

f(s+1; e

0

) > 0 must be greater than e, and so, by 
ondition (b) above, must

satisfy m

e

0

� g(s; e). Thus A

s+1

\ g(s; e) = A

s

\ g(s; e). This implies that

g(s+1; e) = g(s; e). We have then shown that if g(s; e) > 0 for some s � s

0

then g(s

0

; e) = g(s; e) for every s

0

� s. �

Lemma 5.34. For ea
h e, lim

s

g(s; e) > 0 if and only if e 2 K

K

A

.

Proof. Let ĝ(e) = lim

s

g(s; e) and assume that ĝ(e) > 0. for all suÆ
iently

large s, A

s

\ ĝ(e) = A \ ĝ(e) . By the de�nition of g(s; e), e 2 K

K

A

.

Now assume that e 2 K

K

A

. Then (9d)T

1

1

(K

A

(d); e; e; d). Hen
e, for

every large enough s, (9d � s)T

1

1

(K

A

s

(d); e; e; d), and so g(s; e) > 0. �

Lemma 5.35. (1) holds.

Proof. Let e 2 ! and suppose that W

e

is in�nite. Let m 2W

e

withm > 2e

and m � ĝ(e

0

) for all e

0

< e. Let s be su
h that e < s, m � s, m 2 W

s

e

,

and g(s; e

0

) = ĝ(e

0

) for all e

0

< e. If W

s

\A

s

= ;, then (a) and (b) hold for

m at s, and so some m

0

� m belongs to W

s

e

\A

s+1

. �

Lemma 5.36. (2) holds.
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Proof. For ea
h e,

e 2 K

K

A

$ lim

s

g(s; e) > 0

$ (9s)(8s

0

)(s

0

� s! g(s

0

; e) > 0)

$ (8s)(9s

0

)(s

0

� s ^ g(s

0

; e) > 0) :

�

Exer
ise 5.9. Prove that there is set of size 2

�

0

of pairwise in
omparable

degrees of unsolvability.

Hint. Modify the proof of Theorem 5.30 by de�ning hs

u

j u 2

<!

2i.

Exer
ise 5.10. Show that there is no partial re
ursive fun
tion f su
h that,

for all e 2 !, if :W

e

is �nite then f(e) is de�ned and every number � f(e)

belongs to W

e

.

Exer
ise 5.11. Show that there are re
ursive fun
tions f :

2

! ! ! and

g :

2

! ! ! su
h that

(a) for all e

1

and e

2

, W

f(e

1

;e

2

)

and W

g(e

1

;e

2

)

are disjoint and re
ursive;

(b) for all e

1

and e

2

, ifW

e

1

= :W

e

2

thenW

f(e

1

;e

2

)

=W

e

1

andW

g(e

1

;e

2

)

=

W

e

2

.

Hint. All �nite sets are re
ursive.

Exer
ise 5.12. Let A be a re
ursively enumerable set su
h that :A is in-

�nite. Let f : ! ! :A be one-one onto and order preserving. Assume that

f eventually dominates every partial re
ursive fun
tion, i.e., that, for every

partial re
ursive g,

(9m)(8n�m)(g(n) is de�ned! g(n) � f(n)) :

Prove that d(A) = 0

0

.
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6 Constru
tible Sets

In this se
tion, as in x1, we we our notation and terminology is pretty

mu
h the same as that of Kenneth Kunen's Set Theory: an Introdu
tion

to Independen
e Proofs. In addition, our treatment of 
onstru
tible sets is

derived from Kunen's.

In ZFC without the axiom of Foundation, we proved (Theorem 1.9) the

existen
e of the 
lass fun
tion � 7! V

�

. Still working in ZFC � Foundation,

we 
an de�ne the proper 
lass WF by

WF =

[

fV

�

j � 2 ONg :

Moreover it is easy to 
onvin
e oneself that all the axioms of ZFC, in
lud-

ing Foundation, hold in (WF;2 �WF). Can one not show in this way the


onsisten
y of the Axiom of Foundation? The answer is yes, but we have to

be 
areful about several things.

We 
an't hope to show that the 
onsisten
y of ZFC is a theorem of

ZFC � Foundation, for the se
ond in
ompleteness theorem implies that the


onsisten
y of ZFC 
annot be proved even in ZFC (unless ZFC is in
onsis-

tent). Of 
ourse, the argument outlined above doesn't a
tually establish the


onsisten
y of ZFC, sin
e (WF;2 �WF) isn't a
tually a (set) model. And

we 
an't really be \working in ZFC � Foundation" if we show that all the

axioms of ZFC hold in WF, for this assertion isn't even expressible in the

formal language of set theory.

Let M be a 
lass. For formulas ' (of the language of set theory), we

de�ne '

M

, the relativization of ' to M , indu
tively as follows:

(a) (x = y)

M

is x = y;

(b) (x 2 y)

M

is x 2 y;

(
) (:')

M

is :'

M

;

(d) (' ^  )

M

is ('

M

^  

M

);

(e) ((9x)')

M

is (9x)(x 2M ^ '

M

).

This de�nition requires some explanation.

Classes are the (sometimes nonexistent, from the point of view of ZFC)

extensions of formulas. So we should think of M as being fx j �(x)g for

some formula �. Thus 
lause (e) should really read

(e) ((9x)')

M

is (9x)(�(x) ^ '

M

).
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Hen
e the operation ' 7! '

M

depends not just on M but also on a formula

� de�ning M .

Even this amended a

ount of the de�nition is not really a

urate. A


lass need not be de�nable. It may be given by a formula �(x; y

1

; : : : ; y

n

). (If

we are using the language, then the formula is, in e�e
t, spe
ifying for us a


lass; if we are talking about the language, then the formula isn't spe
ifying

a 
lass unless we assign sets to the variables y

i

.) For 
lasses M given by

su
h formulas, the de�nition of '

M

must be modi�ed so that the quanti�ers

of '

M

do not bind any of the variables y

1

; : : : ; y

n

o

urring free in the the

de�ning formula.

For any 
lass M and formula ', ' is true in M , ' holds in M , and M

is a model of ' all mean the same as the formula '

M

.

Lemma 6.1. Let S and T be sets of senten
es in the language of set theory

and let M be a de�nable 
lass. Suppose that (for some formula de�ning M)

(1) T j= M 6= ; ;

(2) (8� 2 S)T j= �

M

.

Then S is 
onsistent if T is 
onsistent.

Proof. Let �(x) be the given formula de�ning M for whi
h (1) and (2)

hold. (Note that the Lemma is really about � and has nothing to do with

M qua 
lass.)

Assume that T is 
onsistent. Let A be a model of T . Let B be given by

B = fa 2A j A j= �[a℄g ;

2

B

= 2

A

�B :

(1) implies that B 6= ; and so that B is a model. It is routine to show that,

for any senten
e �,

B j= � $ A j= �

M

:

Thus (2) implies that B j= S. �

Remarks:

(a) It is easy to give a dire
t proof-theoreti
 argument for the (equivalent)

version of Lemma 6.1 formulated in terms of dedu
tive 
onsisten
y.

(b) Suppose that S and T are, say, re
ursively axiomatizable theories.

Then the dedu
tive 
onsisten
y version of Lemma 6.1 for S and T 
an be

formulated in, for example, Peano Arithmeti
. Moreover it 
an be proved
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in PA. The appli
ations we make of Lemma 6.1 will all involve re
ursively

axiomatizable theories, and the arithemeti
 versions of (1) and (2) will be

provable in PA. Thus our relative 
onsisten
y results are all essentially the-

orems of PA.

Lemma 6.2. If M is a transitive 
lass, then the Axiom of Extensionality

holds in M .

Proof. Let M be transitive. The relativization of Extensionality to M is

equivalent to

(8x 2M)(8y 2M)((8z 2M)(z 2 x$ z 2 y)! x = y) :

Fix elements x and y ofM and assume that (8z2M)(z 2 x$ z 2 y). Sin
e

M is transitive, this implies that (8z)(z 2 x $ z 2 y). By Extensionality,

x = y. �

Lemma 6.3. The Axiom of Foundation holds in every sub
lass of WF.

Proof. Let M �WF. The relativization of Foundation to M is

(8x 2M)((9y 2M) y 2 x ! (9y 2 x \M)(8z 2 x \M) z =2 y) :

Let x 2M . Assume that x\M 6= ;. Sin
eM �WF, there is a least ordinal

� su
h that x \M \ V

�

6= ;. For this least �, let y 2 x \M \ V

�

. Sin
e all

members of y belong to V

�

for some � < �, y is disjoint from x \M . �

Lemma 6.4. LetM be a 
lass with the following property: For ea
h formula

'(x; z; w

1

; : : : ; w

n

) and for any elements z, w

1

, . . . , w

n

of M ,

fx 2 z j '

M

(x; z; w

1

; : : : ; w

n

)g 2M :

Then every instan
e of the Axiom S
hema of Comprehension holds in M .

Proof. Any relativization to M of an instan
e of Comprehension is of the

form

(8w

1

2M) � � � (8w

n

2M)(8z2M)(9y2M)(8x2M)(x 2 y $ (x 2 z ^ '

M

)) ;

for ' as in the statement of the lemma. Fix su
h a ' and �x elements z,

w

1

; : : : w

n

of M . Let y = fx 2 z j '

M

(x; z; w

1

; : : : ; w

n

)g . By hypothesis,

y 2 M . Sin
e (8x)(x 2 y $ (x 2 z ^ '

M

)), we have in parti
ular that

(8x 2M)(x 2 y $ (x 2 z ^ '

M

)). �
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In our appli
ations, M will be transitive, so that the set y will not have

elements x =2 M satisfying '

M

(x). Note that a 
lass M (transitive or not)

satis�es the hypothesis of Lemma 6.4 if M if all subsets of elements of M

belong to M .

The following two lemmas are easy to prove.

Lemma 6.5. If M is a 
lass su
h that, for all x and y belonging to M ,

there is a z 2M with fx; yg � z, then the Axiom of Pairing holds in M .

Lemma 6.6. If M is a 
lass su
h that for all x 2M there is a y 2M su
h

that U(x) � y, then the Axiom of Union holds in M .

Lemma 6.7. LetM be a 
lass with the following property: For ea
h formula

'(x; z; w

1

; : : : ; w

n

) and for any elements z, w

1

, . . . , w

n

of M , if

(8x 2 z \M)(9!y 2M)'

M

(x; y; z; w

1

; : : : ; w

n

) ;

then there is a u 2M su
h that

fy 2M j (9x 2 z \M)'

M

(x; y; z; w

1

; : : : ; w

n

)g � u :

Then every instan
e of the Axiom S
hema of Repla
ement holds in M .

Proof. The proof is similar to that of Lemma 6.4. �

We postpone dis
ussing the Axioms of In�nity, Power Set, and Choi
e

until we have proved some results about absoluteness.

Let '(x

1

; : : : ; x

n

) be a formula. IfM andN are 
lasses su
h thatM � N ,

then ' is absolute for (M;N) if, for any elements x

1

; : : : x

n

of M ,

'

M

(x

1

; : : : ; x

n

)$ '

N

(x

1

; : : : ; x

n

) :

We say that ' is absolute for a 
lass M if ' is absolute for (M;V ), i.e., if,

for any elements x

1

; : : : ; x

n

of M ,

'

M

(x

1

; : : : ; x

n

)$ '(x

1

; : : : ; x

n

) :

Lemma 6.8. If M � N , then the set of formulas absolute for (M;N) is


losed under negation and 
onjun
tion.

Proof. The lemma follows dire
tly from the fa
ts that the relativization of

:' is the negation of the relativization of ' and that the relativization of

' ^  is the 
onjun
tion of the relativizations of ' and  . �
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Lemma 6.9. Let M and N be transitive 
lasses su
h that M � N . Then

the set of formulas absolute for (M;N) is 
losed under bounded quanti�
a-

tion; that is to say, if ' is absolute for (M;N) then

(9x)(x 2 y ^ ')

is absolute for (M;N).

Proof. Given '(x; y; z

1

; : : : ; z

n

) absolute for (M;N) and given elements y,

z

1

; : : : ; z

n

of M , we have

((9x)(x 2 y ^ '(x; y; z

1

; : : : ; z

n

)))

M

$ (9x)(x 2 y ^ '

M

(x; y; z

1

; : : : ; z

n

))

$ (9x)(x 2 y ^ '

N

(x; y; z

1

; : : : ; z

n

))

$ ((9x)(x 2 y ^ '(x; y; z

1

; : : : ; z

n

)))

N

:

The �rst bi
onditional follows from the transitivity of M , the se
ond from

the absoluteness of ' for (M;N), and the third from the transitivity of N .

�

The �

0

formulas form the smallest set of formulas satisfying the following


onditions:

(1) All atomi
 formulas are �

0

.

(2) If ' is �

0

then so is :'.

(3) If ' and  are �

0

then so is (' ^  ).

(4) If ' is �

0

then so is (9x)(x 2 y ^ ').

Lemma 6.10. If M and N are transitive 
lasses and M � N , then all �

0

formulas are absolute for (M;N).

The following useful lemma is easy to prove.

Lemma 6.11. Let T be a theory and let '(x

1

; : : : ; x

n

) and  (x

1

; : : : x

n

) be

formulas su
h that

T j= (8x

1

) � � � (8x

n

)('(x

1

; : : : ; x

n

)$  (x

1

; : : : ; x

n

)) :

Let M and N be models of T su
h that M � N . Then ' is absolute for

(M;N) if  is.
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If T is a theory in the language of set theory and '(v

1

; : : : ; v

n+1

) is a

formula of that language, then ' de�nes an operation (of n arguments) in

T if

T j= (8v

1

) � � � (8v

n

)(9!v

n+1

)'(v

1

; : : : ; v

n+1

) :

To have a uniform terminology, let us speak of any formula '(v

1

; : : : ; v

n

) as

de�ning an n-ary relation in T . When we speak of a de�ned operation or

relation as being absolute, we mean that the de�ning formula is absolute.

Let ZF be ZFC � Choi
e.

Lemma 6.12. The following relations and operations are de�ned in ZF �

Foundation � Power Set � In�nity by formulas provably equivalent in ZF �

Foundation � Power Set � In�nity to �

0

formulas. Hen
e they are absolute

for any transitive 
lass M that is a model of ZF � Foundation � Power Set

� In�nity.

(a) x 2 y ; (h) x [ y ;

(b) x = y ; (i) x \ y ;

(
) x � y ; (j) x n y ;

(d) fx; yg ; (k) S(x) ;

(e) fxg ; (l) x is transitive ;

(f) hx; yi ; (m) U(x) ;

(g) ; ; (n)

T

x :

In (n), we 
onstrue

T

; to be ; in order to make

T

into an operation.

Proof. That we de�ned these relations and fun
tions in ZF � Foundation �

Power Set � In�nity, we leave to the reader to 
he
k. We 
ontent ourselves

with making it 
lear that the de�ning formulas are equivalent in that theory

to �

0

formulas.

(a) and (b) are obvious.

For (
), note that x � y if and only if (8z 2 x) z 2 y.

For (d), observe that

z = fx; yg $ (x 2 z ^ y 2 z ^ (8w 2 z)(w = x _ w = y)) :

(e) is similar.

For (f), note that z = hx; yi if and only if

(9w2 z)w = fxg ^ (9w2 z)w = fx; yg ^ (8w2 z)(w = fxg _ w = fx; yg) :

Sin
e w = fxg and w = fx; yg are equivalent to �

0

formulas, so is z = hx; yi.
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For (g){(k), note that

z = ; $ (8w 2 z)w 6= w ;

z = x [ y $ x � z ^ y � z ^ (8w 2 z)(w 2 x _ w 2 y) ;

z = x \ y $ z � x ^ z � y ^ (8w 2 x)(w 2 y ! w 2 z) ;

z = x n y $ z � x ^ z \ y = ; ^ (8w 2 x)(w =2 y ! w 2 z) ;

z = S(x) $ x 2 z ^ x � z ^ (8w 2 z)(w = x _ w 2 x) :

For (l), observe that x is transitive if and only if (8z2x)(8w2 z)w 2 x .

For (m) and (n), note that

y = U(x) $ (8z 2 x) z � y ^ (8z 2 y)(9w 2 x) z 2 w

and that

y =

T

x $ (8z 2 x) y � z ^ (8z 2 x)(8w 2 z)((8u 2 x)w 2 u! w 2 y)

^ (x = ; ! y = ;) :

�

Lemma 6.13. Suppose that M is a transitive model of ZF � Foundation

� Power Set � In�nity su
h that (8x 2M)(9y 2M)P(x) \M � y. Then

the Axiom of Power Set holds in M .

Proof. The relativization to M of Power Set is

(8x 2M)(9y 2M)(8z 2M)((z � x)

M

! z 2 y) :

By Lemma 6.12, � is absolute for M , so the relativization of Power Set to

M is equivalent to

(8x 2M)(9y 2M)(8z 2M)(z � x! z 2 y) :

But this is just what the se
ond part of the hypothesis of the lemma says.

�

Remark. Sin
e � is literally de�ned by a �

0

formula, the lemma holds

without the assumption that M is a model of ZF � Foundation � Power

Set � In�nity.

Lemma 6.14. Let M be a transitive model of ZF � Foundation � Power

Set � In�nity. If ! 2M , then the Axiom of In�nity holds in M .
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Proof. The relativization to M of In�nity is

(9x 2M)(;

M

2 x ^ (8y 2 x \M)S

M

(y) 2 x) :

By the transitivity of M and the absoluteness of ; and S, this is equivalent

to

(9x 2M)(; 2 x ^ (8y 2 x)S(y) 2 x) :

But ! witnesses that this is true. �

Lemma 6.15. (Uses Choi
e) Let M be a transitive model of ZF � Foun-

dation � Power Set � In�nity su
h that every subset of an element of M

belongs to M . Then the Axiom of Choi
e holds in M .

Proof. Using the transitivity of M and the absoluteness of ; and \, we get

that the relativization to M of Choi
e is

(8x 2M)

((8y

1

)(8y

2

) ((y

1

2 x ^ y

2

2 x)! (y

1

6= ; ^ (y

1

= y

2

_ y

1

\ y

2

= ;)))

! (9z 2M)(8y)(y 2 x! (9!w 2M)w 2 y \ z)))

Let x 2 M satisfy the ante
edent of the 
onditional. Let z be given by

Choi
e. Then

(8y)(y 2 x! (9!w)w 2 y \ z) :

The transitivity of M implies that

(8y)(y 2 x! (9!w 2M)w 2 y \ z) :

This in turn implies that

(8y)(y 2 x! (9!w 2M)w 2 y \ (z \ U(x)) :

Sin
e the U operation is de�ned in M and is absolute for M , the set U(x)

belongs to M . Sin
e z \ U(x) � U(x), the hypotheses of the lemma give

that z \ U(x) 2M . �

Theorem 6.16. (a) The 
lass WF is a model of ZF.

(b) (Uses Choi
e) The 
lass WF is a model of ZFC.

Proof. Sin
e WF is transitive, Lemma 6.2 implies that Extensionality holds

in WF. Sin
e WF � WF, Lemma 6.3 gives that Foundation holds in WF.

All subsets of WF belong to WF, so, by the remark after the proof of

Lemma 6.4, Comprehension holds in WF. It is easy to see that WF is 
losed
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under the operations of pairing and U ; hen
e Pairing and Union hold in WF

by Lemmas 6.5 and 6.6. We leave as an exer
ise to prove that the hypothesis

of Lemma 6.7 holds for WF. By that lemma we then get that Repla
ement

holds in WF. We now have that WF is a model of ZF � Foundation � Power

Set � In�nity. For x 2WF,

P(x) \WF = P(x) 2WF :

Hen
e, by Lemma 6.13, Power Set holds in WF. By Lemma 6.14 and the

fa
t that ! 2WF, we have that In�nity holds in WF. Sin
e the hypotheses

of Lemma 6.15 hold in WF, Choi
e holds in WF if it holds in V . �

Theorem 6.17. (a) If ZF � Foundation is 
onsistent, then so is ZF.

(b) If ZFC � Foundation is 
onsistent, then so is ZFC.

Proof. (a) follows from Lemma 6.1 and and part (a) Theorem 6.16, and

(b) follows from Lemma 6.1 and and part (b) Theorem 6.16. �

Exer
ise 6.1. Prove the the S
hema of Repla
ement holds in WF.

Announ
ement. We shall no longer note uses of Foundation.

Lemma 6.18. The 
omposition of absolute operations and relations is ab-

solute: Suppose that T is a theory, that M � N , that M and N are models

of T , and that that G

1

; : : : ; G

m

are n-argument operations de�ned in T that

are absolute for (M;N).

(a) Let R be an m-ary relation de�ned in T that is absolute for (M;N).

Then the n-ary relation R

0

given by

R

0

(x

1

; : : : ; x

n

) $ R(G

1

(x

1

; : : : ; x

n

); : : : ; G

m

(x

1

; : : : ; x

n

))

is de�ned in T and is absolute for (M;N).

(b) Let F be an m-argument operation de�ned in T that is absolute for

(M;N). Then the n-argument operation H given by

H(x

1

; : : : ; x

n

) = F (G

1

(x

1

; : : : ; x

n

); : : : ; G

m

(x

1

; : : : ; x

n

))

is de�ned in T and is absolute for (M;N).
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We prove (b). The argument for (a) is similar. It is easy to see that H

is de�ned in T . To prove its absoluteness, let x

1

; : : : ; x

n

be elements of M .

Then

H

M

(x

1

; : : : ; x

n

) = F

M

(G

M

1

(x

1

; : : : ; x

n

); : : : ; G

M

m

(x

1

; : : : ; x

n

))

= F

N

(G

M

1

(x

1

; : : : ; x

n

); : : : ; G

M

m

(x

1

; : : : ; x

n

))

= F

N

(G

N

1

(x

1

; : : : ; x

n

); : : : ; G

N

m

(x

1

; : : : ; x

n

))

= H

N

(x

1

; : : : ; x

n

) :

�

Lemma 6.19. The following relations and operations are de�ned in ZF �

Power Set and are absolute for transitive models of ZF � Power Set.

(a) z is an ordered pair;

(b) u� v ;

(
) z is a relation;

(d) domain (z) (= fx j (9y)hx; yi 2 zg) ;

(e) range (z) (= fy j (9x)hx; yi 2 zg) ;

(f) z is a fun
tion ;

(g) z(x)

�

=

�

z(x) if (9!y) hx; yi 2 z;

; otherwise;

�

(h) z is a one-one fun
tion.

Proof. (a) z is an ordered pair if and only if (9x2U(z))(9y2U(z)) z = hx; yi .

(b) The �rst of our two proofs of the existen
e of u � v was in ZF �

Power Set, so � is de�ned in ZF � Power Set. For absoluteness, note that

z = u� v if and only if

(8x 2 u)(8y 2 v) hx; yi 2 z ^ (8w 2 z)(9x 2 u)(9y 2 v)w = hx; yi :

(
) z is a relation if and only if every element of z is an ordered pair.

(d) u = domain (z) if and only if

(8x 2 u)(9y 2 U(U(z)))hx; yi 2 z

^ (8x 2 U(U(z)))(8y 2 U(U(z)))(hx; yi 2 z ! x 2 u) :

(e) v = range (z) if and only if

(8y 2 v)(9x 2 U(U(z)))hx; yi 2 z

^ (8x 2 U(U(z)))(8y 2 U(U(z)))(hx; yi 2 z ! y 2 v) :
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(f) z is a fun
tion if and only if z is a relation and

(8x 2 U(U(z)))(8y 2 U(U(z)))(8y

0

2 U(U(z)))

((hx; yi 2 z ^ hx; y

0

i 2 z)! y = y

0

) :

(g) y = z(x) if and only if

(hx; yi 2 z ^ (9!v 2 U(U(z))) hx; vi 2 z)

_ (y = ; ^ :(9!v 2 U(U(z)))(hx; vi 2 z)) :

(h) z is a one-one fun
tion if and only if z is a fun
tion and

(8x 2 U(U(z)))(8x

0

2 U(U(z)))(z(x) = z(x

0

)! x = x

0

) :

�

From now on, when we state that an operation or relation is absolute

for transitive models of a theory T , we mean that the operation or relation

is de�ned in T and is absolute for transitive models of T .

Lemma 6.20. The following operations and relations are absolute for tran-

sitive models of ZF � Power Set.

(a) x is an ordinal;

(b) x is a limit ordinal;

(
) x is a su

essor ordinal;

(d) x is a �nite ordinal;

(e) !;

(f) 0; 1; 2 : : : :

Proof. (a) x is an ordinal if and only if x is transitive and 2�x is a linear

ordering of x. The �rst 
lause is absolute by Lemma 6.12 and the se
ond is

given by a �

0

formula (all the quanti�ers are bounded to x).

(b) x is a limit ordinal if and only if x is an ordinal and x 6= ; and

(8y 2 x)S(y) 2 x.

(
) x is a su

essor ordinal if and only if x is an ordinal and x is neither

; nor a limit ordinal.

(d) x is a natural number if and only if x is an ordinal number and

neither x nor any member of x is a limit ordinal.

(e) x = ! if and only if x is a limit ordinal and no member of x is a limit

ordinal.

(f) z = 0$ z = ;; z = a+ 1$ (9x 2 z)(x = a ^ z = S(x)) . �
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Exer
ise 6.2. Explain brie
y whi
h axioms of ZFC are true in the following

transitive 
lasses. (The 
lasses are all sets, so \true in M" 
an be taken in

either of our two senses.)

(1) V

!

;

(2) V

!+1

;

(3) V

!+!

;

(4) V

!

1

;

(5) V

�

for � ina

essible.

A 
ardinal � is ina

essible if � is un
ountable and regular and if, for all

�

0

< �, 2

�

0

< �.

Exer
ise 6.3. A formula of the language of set theory is �

1

if it is of the

form (9x

1

) : : : (9x

n

)' with ' a �

0

formula. A formula is �

1

if it is of the

form (8x

1

) : : : (8x

n

)' with ' a �

0

formula. If T is a theory, a formula ' is

provably �

1

in T if there are formulas  and � su
h that  is �

1

, � is �

1

,

and T j= both ('$  ) and ('$ �).

Let ' be provably �

1

in T and let M and N be transitive models of T

su
h that M � N . Prove that ' is absolute for (M;N).

Lemma 6.21. Let M be a transitive model of ZF � Power Set. Then every

�nite subset of M belongs to M .

Proof. There is only one subset x of M with 
ard (x) = 0, namely ;, and

this set belongs to M . Assume indu
tively that every size n subset of M

belongs to M . Let x � M with 
ard (x) = n + 1. Then there is a y � M

and there is a z 2M su
h that 
ard (y) = n and x = y [ fzg. By indu
tion

y 2M , and so Lemma 6.12 gives that x 2M . �

Lemma 6.22. The following are absolute for transitive models of ZF �

Power Set.

(a) x is �nite;

(b)

<!

x .

Proof. (a) x is �nite if and only if there is a one-one fun
tion f with

domain (f) 2 ! and range (f) = x. If x 2 M , then Lemmas 6.12 and 6.20

imply that any su
h f is a subset of M and so, by Lemma 6.21, an element

of M .
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(b) We must show that

<!

x is de�ned in ZF � Power Set. To do this we

�rst use indu
tion to prove in ZF � Power Set that

n

x exists for every set

x and every n 2 !. This is true for n = 0, be
ause

0

x = f;g. It is easy to

de�ne a one-one 
orresponden
e between

n

x�x and

n+1

x, so our assertion for

n+ 1 follows from the assertion for n using Lemma 6.19 and Repla
ement.

Next we use Repla
ement to get the existen
e of f

n

x j n 2 !g. Sin
e

<!

x = Uf

n

x j n 2 !g, we �nally get the existen
e of

<!

x. Absoluteness

holds be
ause z 2

<!

x if and only if z is a fun
tion and domain (z) 2 ! and

range (z) � x. �

Lemma 6.23. The following are absolute for transitive models of ZF �

Power Set.

(a) r wellorders x;

(b) ot(x; r), that is, the unique ordinal � su
h that hx; ri is isomorphi


to h�;2��i if r wellorders x and 0 otherwise.

Proof. That r linearly orders x is expressible by a �

0

formula.

Suppose that r wellorders x. Then every non-empty subset of x has an

r-least element. Let y 2 M be su
h that (y � x)

M

and (y 6= ;)

M

. Then

y � x and y 6= ;. Let z be an r-least element of y. Then z 2 M and it is

true in M that z is the r-least element of y.

Now suppose that \r wellorders x" is true in M . Sin
e the proof of

Theorem 1.14 goes through in ZF � Power Set, it is true in M that there

is an ordinal number � su
h that hx; ri is isomorphi
 to h�;2��i. Let f be

su
h that in M it is true that f is an isomorphism between h�;2 ��i and

hx; ri. By the absoluteness of the relevant notions, this is also true in V .

Hen
e r wellorders x.

The argument just given proves (a), but it also shows that if r wellorders

x then ot

M

(x; r) = ot(x; r). By (a) and the absoluteness of 0, we have (b).

�

We 
an extend our notion of absolute de�nable relations to relations

de�ned from set parameters. For simpli
ity, we make this extension only

for unary relations, i.e., for 
lasses. Fix a 
lass M . If A is the 
lass fx j

'(x; a

1

; : : : ; a

n

)g, let us say that A is de�ned in M if a

1

; : : : ; a

n

are elements

of M . If A is de�ned in M , then

A

M

= fx 2M j '

M

(x; a

1

; : : : ; a

n

)g :

We say that A is absolute for M if A is de�ned in M and A

M

= A \M .
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In an analogous fashion we now introdu
e the notion of absolute 
lass

fun
tions. For a 
lass fun
tion F = fhx; yi j '(hx; yi; a

1

; : : : ; a

n

)g, let us say

that F is de�ned in M (as a fun
tion) if a

1

; : : : ; a

n

are elements of M and

\F is a fun
tion" is true in M . If F is de�ned in M , then

F

M

= fhx; yi 2M j '

M

(hx; yi; a

1

; : : : ; a

n

)g :

We say that F is absolute for M (as a fun
tion) if F is de�ned in M and

F

M

= F �M (so that, in parti
ular, domain (F

M

) = domain (F ) \M).

Remarks:

(a) Being de�ned in M and being absolute for M depend upon the

de�ning formula and parameters and not just on the 
lass or fun
tion.

(b) De�nability in M 
ould be de�ned in a natural way for de�ned op-

erations, although we have not done so.

(
) We have required that de�ned operations of n arguments be de�ned

on any x

1

; : : : ; x

n

, but we allow absolute 
lass fun
tions to have domains

that are not all of V .

Lemma 6.24. Let F : V ! V . Let G : ON! V be de�ned as in the proof

of Theorem 1.8. Thus

(8� 2ON)G(�) = F (G � �):

Let M be a transitive model of ZF � Power Set. Assume that F is absolute

for M . Then G is absolute for M .

Proof. Sin
e the proof of Theorem 1.8 goes through in ZF � Power Set

and sin
e (F : V ! V )

M

, we have by earlier absoluteness results that G is

de�ned in M , that G

M

: ON \M !M , and that

(8� 2ON \M)G

M

(�) = F

M

(G

M

� �) :

Using the absoluteness of F , we 
an prove by trans�nite indu
tion on � 2

ON \M that G

M

(�) = G(�). �

Lemma 6.25. The operation tr
l is absolute for transitive models of ZF �

Power Set.

Proof. The proof of the existen
e of tr
l(x) goes through in ZF � Power

Set. That proof shows that tr
l(x) = U(range (g

x

)) for some g

x

de�ned by
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re
ursion from an absolute F

x

(de�ned from x by a formula that is indepen-

dent of x). Thus tr
l(x) = U(range (G

x

�!)) for the G

x

de�ned by trans�nite

re
ursion from this same F

x

. �

For any set x, let rank (x) be the least ordinal � su
h that x 2 V

�+1

.

Sin
e the V

�

, � > !, may not exist in models of ZF � Power Set, let us

adopt the following de�nition of rank (x) as our oÆ
ial de�nition. Given x,

de�ne by trans�nite re
ursion a fun
tion G

x

: ON! V by

G

x

(0) = ;

G

x

(�+ 1) = fy 2 tr
l(x) j y � G

x

(�)g ;

G

x

(�) = U(range (G

x

� �)) for limit ordinals �.

Then let rank (x) be the least �, su
h that x � G

x

(�). In ZF, one 
an easily

show that G

x

(�) = V

�

\ tr
l(x), and so that the two de�nitions of rank (x)

are equivalent in ZF.

Lemma 6.26. The operation rank is absolute for transitive models of ZF

� Power Set.

Lemma 6.27. Let M be a transitive model of ZF. Then

(a) P

M

(x) = P(x) \M for x 2M ;

(b) V

M

�

= V

�

\M for � 2 ON \M .

Proof. (a) follows from the absoluteness of �. (b) follows from the abso-

luteness of rank. �

The following lemma gives the relation between the relativization of a

formula to a set and the satisfa
tion of that formula by the model determined

by that set.

Lemma 6.28. Let '(x

1

; : : : ; x

n

) be a formula and let b be a set. Then, for

any a

1

; : : : ; a

n

belonging to b,

'

b

(a

1

; : : : ; a

n

) $ (b;2) j= '[a

1

; : : : ; a

n

℄ :

Proof. We 
an show by indu
tion on 
omplexity that all instan
es of this

s
hema are provable. �

For any set x let FODO(x) be the set of all u � x su
h that, for some

formula '(v

0

; : : : ; v

n

) and some sequen
e hy

1

; : : : ; y

n

i of elements of x (i.e.,

some f : n! x),

u = fy

0

2 x j (x;2) j= '[y

0

; : : : y

n

℄g :
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Lemma 6.29. For any set x,

(a) FODO(x) � P(x) ;

(b) if x is transitive, then x � FODO(x) ;

(
) every �nite subset of x belongs to FODO(x) ;

(d) (Uses Choi
e) if 
ard (x) � ! then 
ard (FODO(x)) = 
ard (x).

Proof. (a) is obvious.

(b) Assume that x is transitive and let b 2 x. Let '(v

0

; v

1

) be the formula

v

0

2 v

1

. Then fa 2 x j (x;2) j= '[a; b℄g 2 FODO(x). But

fa 2 x j (x;2) j= '[a; b℄g = fa 2 x j a 2 bg

= b ;

where the last equality holds be
ause x is transitive.

(
) Let n 2 ! and let u � x with 
ard (u) = n. Let f : n! u be one-one

and onto. Then the formula

WW

1�i�n

v

0

= v

i

and f(0) : : : ; f(n� 1) witness

that u 2 FODO(x).

(d) Assume that 
ard (x) � !. By (
), fyg 2 FODO(x) for every y 2 x.

Thus 
ard (x) � 
ard (FODO(x)). But 
ard (FODO(x)) is no greater than

the 
ardinal of u� v, where u is the set of all formulas and v =

<!

x. Thus


ard (FODO(x)) � �

0

� 
ard (x) = 
ard (x). �

Remark. Choi
e is needed for (d) only to get the existen
e of 
ard (x).

By trans�nite re
ursion, we de�ne a fun
tion L : ON! V . We write L

�

for L(�).

(a) L

0

= ; ;

(b) L

�+1

= FODO(L

�

) ;

(
) L

�

= U(fL

�

j � < �g) if � is a limit ordinal.

Let L = U(fL

�

j � 2 ONg). Members of L are said to be 
onstru
tible.

Lemma 6.30. For ea
h ordinal �,

(a) L

�

is transitive;

(b) (8� � �)L

�

� L

�

.

Moreover L is transitive.
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Proof. We prove (a) by trans�nite indu
tion. The 
ase � = 0 is trivial.

The 
ase that � is a limit ordinal follows from the fa
t that the union of

a set of transitive sets is transitive. The 
ase � is a su

essor follows from

part (b) of Lemma 6.29.

The proof of (b) is just like the proof of the 
orresponding fa
t for V

�

.

L is transitive be
ause it is a union of transitive sets. �

For ea
h x 2 L, let �(x) (the L-rank of x) be the least ordinal � su
h

that x 2 L

�+1

.

Lemma 6.31. (a) (8� 2ON)(� 2 L ^ �(�) = �) .

(b) (8� 2ON)ON \ L

�

= � .

Proof. It is easy to see that (a) and (b) are equivalent. We prove (b) by

trans�nite indu
tion.

The 
ases that � is 0 or a limit ordinal are trivial.

Assume that � is � + 1. Note that the proof of part (a) of Lemma 6.20

establishes that \x is an ordinal" is equivalent in ZF � Power Set to a �

0

formula. Calling this formula Ord(x), we have, for y 2 L

�

:

L

�

j= Ord[y℄ $ Ord

L

�

(y)

$ Ord(y)

$ y is an ordinal

Thus Ord(v

0

) witnesses that L

�

\ON 2 L

�

so, by indu
tion, that � 2 L

�

.

We have then that ON \ L

�

� �. But if 
 � � then 
 6� � and so 
 6� L

�

.

Thus no 
 � � belongs to L

�

. �

Lemma 6.32. For � � !, L

�

= V

�

. For n 2 !, V

�

is �nite, and so L

�

is

�nite.

Proof. The se
ond assertion is easily proved by indu
tion. The �rst asser-

tion then follows by part (
) of Lemma 6.29. �

Lemma 6.33. (Uses Choi
e) For � � !, 
ard (L

�

) = 
ard (�).

Proof. By Lemma 6.31, 
ard (L

�

) � 
ard (�) for every �.

By trans�nite indu
tion, we show that 
ard (L

�

) � 
ard (�) for every

� � !.

The 
ase � = ! follows from Lemma 6.32.
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For limit � > !,


ard (L

�

) = 
ard (

[

�<�

L

�

)

� 
ard (�� sup

�<�


ard (L

�

))

� 
ard (�� 
ard (�))

= 
ard (�) :

The 
ase that � is a su

essor follows from part (d) of Lemma 6.29. �

Remark. Choi
e is not really needed for Lemma 6.33, as the proof of

Theorem 6.43 will show.

Lemma 6.34. All axioms of ZF ex
ept perhaps Comprehension hold in L.

Proof. Extensionality holds, sin
e L is transitive.

Foundation is trivial.

To show that Pairing holds, we use Lemma 6.5. Suppose that x and

y belong to L. Let � be su
h that both x and y belong to L

�

. Then

L

�

2 L

�+1

� L, and fx; yg � L

�

.

For Union, we use Lemma 6.6. Let x 2 L

�

. Sin
e L

�

is transitive,

x � L

�

. This fa
t and the transitivity of L

�

imply that U(x) � L

�

.

For Repla
ement, we use Lemma 6.7. Let z and w

1

; : : : ; w

n

belong to L

and assume that

(8x 2 z \ L)(9!y 2 L)'

L

(x; y; z; w

1

; : : : ; w

n

) :

By the transitivity of L and by Repla
ement in V , there is an � su
h that

(8x 2 z)(9y 2 L

�

)'

L

(x; y; z; w

1

; : : : ; w

n

) :

For Power Set, we use Lemma 6.13. Let x 2 L. By Repla
ement in V ,

let � be su
h that P(x) \ L � L

�

.

For In�nity, we use Lemma 6.14 and the fa
t that ! 2 L. �

A 
lass C of ordinals is 
losed if the union of any subset of C belongs to

C. If � is an ordinal, a 
losed subset of � is a subset C of � su
h that the

union of any subset of C bounded in � belongs to C.

Theorem 6.35 (Re
e
tion S
hema). Let M : ON! V . (We write M

�

for M(�).) Let M =

S

�2ON

M

�

. Assume that M

�

� M

�

whenever � �

� 2 ON and that M

�

=

S

�<�

M

�

for all limit �. Let ' be a formula. Then

there is a 
losed, unbounded 
lass C of ordinals su
h that ' is absolute for

(M

�

;M).
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Proof. We pro
eed by indu
tion on the 
omplexity of ' (i.e., we show

indu
tively how the instan
es of the s
hema 
an be proved).

If ' is atomi
, then we 
an let C = ON.

If ' is : and C witnesses that the theorem holds for  (and M), then

C witnesses that the theorem holds for '.

If ' is  ^� and C

0

and C

00

respe
tively witness that the theorem holds

for  and �, then C = C

0

\ C

00

witnesses that the theorem holds for '.

Assume that ' is (9y) (x

1

; : : : ; x

n

; y). De�ne F :

n

V ! ON by

F (hx

1

; : : : ; x

n

i) =

8

<

:

�� (9y 2M

�

) 

M

(x

1

; : : : ; x

n

; y)

if (9y 2M) 

M

(x

1

; : : : ; x

n

; y) ;

0 otherwise:

For ordinals � let

G(�) = U(fF (hx

1

; : : : ; x

n

i) j hx

1

; : : : x

n

i 2

n

M

�

g) :

Let

C

0

= f� 2ON j � is a limit ordinal ^ (8� < �)G(�) < �g :

The 
lass C

0

is obviously 
losed. To see that C

0

is unbounded, let � 2 ON.

Let �

0

= � and, for i 2 !, let �

i+1

= maxf�

i

; G(�

i

)g + 1 . If � =

S

i2!

�

i

then � < � and � 2 C

0

. Let C

00

witness that the theorem holds for  . Let

C = C

0

\ C

00

. The 
lass C is 
losed and unbounded. Let � 2 C and let

x

1

; : : : ; x

n

belong to M

�

. Sin
e � is a limit ordinal, there is a � < � su
h

that x

1

; : : : ; x

n

belong to M

�

. We have

'

M

(x

1

; : : : ; x

n

) $ (9y 2M) 

M

(x

1

; : : : ; x

n

; y)

$ (9y 2M

F (hx

1

;:::;x

n

i)

) 

M

(x

1

; : : : ; x

n

; y)

$ (9y 2M

G(�)

) 

M

(x

1

; : : : ; x

n

; y)

$ (9y 2M

�

) 

M

(x

1

; : : : ; x

n

; y)

$ (9y 2M

�

) 

M

�

(x

1

; : : : ; x

n

; y)

$ '

M

�

(x

1

; : : : ; x

n

) :

�

Theorem 6.36. All axioms of ZF hold in L.

Proof. By Lemma 6.34, we need only show that 
omprehension holds in L.

Let '(v

1

; : : : ; v

n+2

) be a formula and let z and w

1

; : : : ; w

n

belong to L. By

Theorem 6.35, let � be an ordinal su
h that ' is absolute for (L

�

; L) and
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su
h that z and w

1

; : : : ; w

n

belong to L

�

. We have, suppressing the w

i

for

brevity,

fx 2 z j '

L

(x; z)g = fx 2 L

�

j x 2 z ^ '

L

(x; z)g

= fx 2 L

�

j x 2 z ^ '

L

�

(x; z)g

= fx 2 L

�

j (L

�

;2) j= (v

1

2 v

2

^ '(v

1

; v

2

))[x; z℄g

2 L

�+1

� L :

By Lemma 6.4, we have shown that Comprehension holds in L. �

Our next task is to prove that V = L holds in L.

Lemma 6.37. Every relation or fun
tion provable in ZF � Power Set to

be representable in Q is absolute for transitive models of ZF � Power Set.

Proof. We need to 
larify the 
ontent of the lemma. When we say that,

e.g., a fun
tion f :

n

! ! ! is provable in ZF � Power Set to be representable

in Q, we mean that f is de�ned (from no parameters) in ZF � Power Set

and ZF � Power Set proves that some formula '(v

1

; : : : ; v

n+1

) represents f

in Q.

If ' is the representing formula, then ZF � Power Set proves that '

de�nes the relation or fun
tion in question in the modal N. Sin
e S, +,

and � are the restri
tions of fun
tions su

essively de�nable by trans�nite

re
ursion from absolute fun
tions, this guarantees absoluteness. �

For de�niteness, let us take the symbol 2 to be oÆ
ially the number 25.

Lemma 6.38. The following are absolute for transitive models of ZF �

Power Set:

(a) x is a variable;

(b) n 7! v

n

;

(
) x 2 Formula, i.e., x is a formula of the language of set theory;

(d) hx; yi 2 Free, i.e., x is a formula and y is a variable o

urring free

in x.

Proof. (a) and (b) follow from Lemma 6.37.

For (
), note that the fun
tion n 7! Formula

n

is de�ned by re
ursion from

an absolute fun
tion. Formula is the union of the range of this fun
tion.

For (d), note that the fun
tion sending ea
h n to fhx; yi 2 Free j x 2

Formula

n

g is de�nable by re
ursion from an absolute fun
tion. �
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Lemma 6.39. The 3-ary relation hy; zi 2 Sat

(x;2)

is absolute for transitive

models of ZF � Power Set.

Proof. n 7! Sat

(x;2)

n

is de�ned by re
ursion from an absolute fun
tion. �

Lemma 6.40. The operation FODO is absolute for transitive models of ZF

� Power Set.

Proof. FODO is de�ned in ZF � Power Set, sin
e Repla
ement guarantees

the existen
e of FODO(x). Thus it is enough to show that the relation

u 2 FODO(x) is absolute. But u 2 FODO(x) if and only if u � x and

(9')(9s)(' 2 Formula ^ s 2

<!

x

^ (8i 2 !)(h'; v

i

i 2 Free! i < `h(s) + 1)

^ (8y 2 x)(y 2 u$ h'; hyi

_

si 2 Sat

(x;2)

)) :

�

Lemma 6.41. The fun
tion � 7! L

�

is absolute for transitive models of ZF

� Power Set.

Proof. This fun
tion is de�ned by trans�nite re
ursion from an absolute

fun
tion. �

Theorem 6.42. The Axiom of Constru
tibility V = L holds in L.

Proof. We have that

(V = L)

L

$ (8x 2 L)(9� 2 L \ON

L

)(x 2 L

�

)

L

$ (8x 2 L)(9� 2ON)x 2 L

�

$ (8x 2 L)x 2 L :

�

Theorem 6.43. The Axiom of Choi
e holds in L.

Proof. Fix a wellordering of Formula. By trans�nite re
ursion, we de�ne

a fun
tion � 7!<

�

. By indu
tion we shall verify the following:

(i) <

�

is a wellordering of L

�

;

(ii) (8x 2 L

�

)(8y 2 L

�

)(�(x) < �(y)! x <

�

y) ;

(iii) (8� < �) <

�

�<

�

.
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Set <

0

= ;.

For � a limit ordinal, set <

�

=

S

�<�

<

�

. It is immediate that (iii) holds

for �. The indu
tion hypotheses that (ii) and (iii) hold for all ordinals < �

guarantee that (ii) holds for �. Sin
e (ii) holds for �, any failure of (i) for �

would give a failure of (i) for some � < �.

Assume � = � + 1. For n 2 !, wellorder

n

(L

�

) lexi
ographi
ally, using

the ordering <

�

of L

�

. (If s and t are distin
t members of

n

(L

�

), then s is

less than t if, for the least m su
h that s(m) 6= t(m), s(m) <

�

t(m).) Now

order

<!

(L

�

) by setting s less than t if `h(s) < `h(t) or else `h(s) = `h(t) and

s is less than t in our ordering of

`h(s)

(L

�

). Finally order Formula�

<!

(L

�

)

lexi
ographi
ally. It is easy to 
he
k that this ordering is a wellordering. For

x and y belonging to L

�

, set x <

�

y just in 
ase one of the following holds:

(a) x 2 L

�

^ y 2 L

�

^ x <

�

y ;

(b) x 2 L

�

^ y =2 L

�

;

(
) x =2 L

�

^ y =2 L

�

and the least element of Formula �

<!

(L

�

) that

witnesses x 2 L

�

is less than the least element that witnesses y 2 L

�

.

Clearly (i), (ii), and (iii) hold for �.

De�ne <

L

=

S

�2ON

<

�

. By (i){(iii), <

L

is a wellordering of L. Thus

V = L implies that <

L

wellorders V , and so V = L implies Choi
e. Sin
e

V = L holds in L, Choi
e holds in L. �

Lemma 6.44 (Mostowski Collapse). Let u be a set su
h that Exten-

sionality holds in u. Then there is a unique transitive set v su
h that

(u;2)

�

=

(v;2). Moreover there is a unique isomorphism

� : (u;2)

�

=

(v;2) :

Proof. For x 2 u we de�ne �(x) by re
ursion on rank (x). Set

�(x) = f�(y) j y 2 x \ ug :

Note that this is the only possible 
hoi
e of �(x) if � is to be an isomorphism

with range (�) transitive.

It is 
lear that

y 2 x! �(y) 2 �(x) :

To prove the 
onverse, it is enough to show that � is one-one, and this will

show that � : (u;2)

�

=

(range (�);2). By indu
tion on the maximum of
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rank(x

1

) and rank(x

2

)g, we show that �(x

1

) = �(x

2

)! x

1

= x

2

. We have

�(x

1

) = �(x

2

) ! f�(y) j y 2 x

1

\ ug = f�(y) j y 2 x

2

\ ug

! (by indu
tion) fy j y 2 x

1

\ ug = fy j y 2 x

2

\ ug

! (by Extensionality

u

) x

1

= x

2

:

�

Lemma 6.45. Let � be an un
ountable regular 
ardinal. Then L

�

is a model

of ZF � Power Set + V = L.

Proof. Showing that L

�

is a model of ZF � Power Set will be part of a

�nal examination problem. That V = L holds in L

�

follows by Lemma 6.41.

�

Lemma 6.46. Let z be a transitive model of ZF � Power Set + V = L.

There is an � su
h that z = L

�

.

Proof. Let � = ON\ z. Clearly � is a limit ordinal. The fun
tion 
 7! L




is absolute for z. For x 2 z there is a 
 < � su
h that x 2 L




holds in z. By

absoluteness, every element of z belongs to L

�

. For ea
h 
 < �, (L




)

z

= L




,

and so every element of L

�

belongs to z. �

Theorem 6.47. The Generalized Continuum Hypothesis holds in L.

Proof. Let � be an in�nite ordinal number. We show that

P(�) \ L � L

�

+ :

By Lemma 6.33, this implies that 
ard (P(�) \ L) � �

+

. Hen
e V = L

implies that 2


ard(�)

= �

+

. Sin
e V = L holds in L, the theorem will be

proved.

Let x � � with x 2 L. Let � > � be su
h that x 2 L

�

. By Lemma 6.45,

L

�

+ is a model of ZF � Power Set + V = L.

By the L�owenheim{Skolem Theorem, let y be su
h that

(i) (y;2) � (L

�

+ ;2) ;

(ii) � [ fxg � y ;

(iii) 
ard (y) = 
ard (�) .

By Lemma 6.44, Let z and � be su
h that z is transitive and

� : (y;2)

�

=

(z;2) :
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Sin
e (z;2)

�

=

(y;2) � (L

�

+ ;2), z is a model of ZF � Power Set +

V = L. By Lemma 6.46, there is an ordinal 
 su
h that z = L




.

Sin
e 
ard (
) � 
ard (L




) = 
ard (z) = 
ard (y) � 
ard (�), we have

that 
 < �

+

.

It suÆ
es then to prove that x 2 L




. Sin
e x 2 y, we need only show

that �(x) = x. First we show by indu
tion on � < � that �(�) = �. We

have

�(�) = f�(�) j � 2 � \ yg

= (sin
e � � y) f�(�) j � 2 �g

= (by indu
tion) f� j � 2 �g

= � :

Finally we note that

�(x) = f�(�) j � 2 x \ yg = f�(�) j � 2 xg = f� j � 2 xg = x :

�

Remark. One 
an 
onstru
t a senten
e � su
h that, for any transitive


lass M , � holds in M if and only if M = L or there is an ordinal � su
h

that M = L

�

. Thus L

�

rather than L

�

+ 
ould in prin
iple have been used

in the proof.

Theorem 6.48. If ZF is 
onsistent then so are

(a) ZFC + V = L;

(b) ZFC + GCH.

Proof. Assume that ZF is 
onsistent. Then (a) follows from Lemma 6.1

together with Lemmas 6.42 and 6.43. (b) then follows from (a) and Theo-

rem 6.47. �

The Axiom of Constru
tibility settles most interesting set-theoreti
 ques-

tions. A number of them 
an be answered using Jensen's 
ombinatorial

prin
iple �. � is the assertion that there is a sequen
e hA

�

j � < !

1

i (i.e.,

a fun
tion � 7! A

�

with domain !

1

) su
h that ea
h A

�

� � and su
h that,

for any A � !

1

and any 
losed, unbounded subset C of !

1

,

(9� 2 C)A \ � = A

�

:

Theorem 6.49. V = L! �.

130



Proof. Assume V = L. We de�ne A

�

by re
ursion. For � not a limit

ordinal, set A

�

= ;. Assume that � is limit ordinal and that A

�

is de�ned

for � < �. Let �

�

be the least ordinal � su
h that there are A and C

belonging to L

�

su
h that A � �, C is a 
losed, unbounded subset of �, and

(8� 2 C)A \ � 6= A

�

if su
h a � exists. In this 
ase let A

�

and C

�

be the lexi
ographi
ally least

A and C (using <

L

). If �

�

does not exist, let A

�

= ;.

Suppose that hA

�

j � < !

1

i does not witness that � holds. Let � be

the least ordinal su
h that some 
ounterexample sets A and C belong to L

�

.

Let A and C be the lexi
ographi
ally least su
h pair (again using <

L

). Note

that � < !

2

.

Let (y;2) � (L

!

2

;2) with y 
ountable and with

f!

1

; �; A;C; hA

�

j � < !

1

ig � y :

Let z and � be su
h that z is transitive and � : (y;2)

�

=

(z;2). Let Æ < !

1

be su
h that z = L

Æ

.

Let � = �(!

1

). By �nal examination problem 4(a), we have that � � y.

It follows that

(i) A \ � = �(A);

(ii) C \ � = �(C);

(iii) hA

�

j � < �i = �(hA

�

j � < !

1

i).

Using (i){(iii), the de�nitions of �, A, and C, and the fa
t that �

�1

is an

elementary embedding of (L

Æ

;2) into (L

!

2

;2), we get that �(�), A\�, and

C \ � satisfy in L

Æ

the de�nitions of �

�

, A

�

, and C

�

respe
tively. Thus

(a) �(�) = �

�

;

(b) A \ � = A

�

;

(
) C \ � = C

�

.

Sin
e C\� = �(C), C\� is an unbounded subset of �. Sin
e C is 
losed, it

follows that � 2 C. This fa
t and (b) 
ontradi
t the de�nitions of A and C.

�

One of the earliest appli
ations of � was to show that Souslin's Hypoth-

esis fails in L.

To state Souslin's Hypothesis, we need some de�nitions. Let R be a

linear ordering of a set X. If every R-bounded subset of X has a least upper
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bound, then (X;R) is said to be 
omplete. If every set of disjoint open (in

the obvious sense) R-intervals is 
ountable, then (X;R) is 


: satis�es the


ountable 
hain 
ondition. Give X the order topology: the basi
 open sets

are the open intervals. If X has a 
ountable dense subset then (X;R) is

separable.

The set R of reals, with its usual ordering, is|up to isomorphism|

the unique separable, 
omplete, dense linear ordering without endpoints.

Souslin's hypothesis says this 
hara
terization 
ontinues to hold when \sep-

arable" is repla
ed by \


." Clearly the failure of Souslin's Hypothesis is

equivalent to the existen
e of a Souslin line, a 


, 
omplete, dense linear

ordering that is not separable.

The existen
e of a Souslin line is 
an be shown equivalent to the existen
e

of a Souslin tree: a (T ;C) su
h that

(1) C is a partial ordering of T ;

(2) For all x 2 T , fy 2 T j xC yg is wellordered by C;

(3) 
ard(T ) = �

1

;

(4) (T ;C) has no un
ountable bran
hes and no un
ountable anti
hains.

Here a bran
h is a maximal subset of T linearly ordered by C, and an

anti
hain is a set of pairwise C-in
omparable elements of T .

Conditions (1) and (2) de�ne the (set-theoreti
) 
on
ept of a tree. Let

us 
all a tree (T ;C) ultranormal if

(i) T � !

1

;

(ii) for � and 
 2 T , � C 
 ! � < 
;

(iii) T has a C-least element;

(iv) For ea
h � < !

1

, the set of all � 2 T su
h that level(�) = � is


ountable, where level(�) is the C order type of f
 2 T j 
 C �g;

(v) if � 2 T then � has in�nitely many immediate su

essors with respe
t

to C;

(vi) for ea
h � 2 T and ea
h � su
h that level(�) < � < !

1

, there is a


 2 T su
h that level(
) = � and � C 
;

(vii) if � and 
 are elements of T with the same limit level and the same

C-prede
essors, then � = 
.

Lemma 6.50. If there is an ultranormal Souslin tree, then there is a Souslin

line.
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Proof. We �rst observe that it is enough to 
onstru
t a 


, dense, linear

ordering (X;R) that is not separable. If we have su
h an (X;R), then we


an let X

0

be the set of all Dedekind 
uts in (X;R), i.e., the set of all

bounded initial segments of (X;R) without R-greatest elements, and we


an let x

0

R

0

y

0

$ x

0

� y

0

. Clearly (X

0

;R

0

) a linear ordering. The fun
tion

x 7! fy 2 X j y Rxg embeds (X;R) into (X

0

;R

0

) and has dense range.

Therefore (X

0

;R

0

) is dense, 


, and not separable. If A is an R

0

-bounded

subset of X

0

, then

S

R

0

is the least upper bound of A; hen
e (X

0

;R

0

) is


omplete.

Let (T ;C) be an ultranormal Souslin tree. Let

X = fb j b is a bran
h of Tg :

To de�ne an ordering R on X, let us �rst �x, for ea
h � 2 T , an ordering <

�

of the the immediate su

essors of � with respe
t to C. By (iv) and (v), we


an|and do|make <

�

isomorphi
 to the standard ordering of the rationals.

Let b and b

0

be distin
t bran
hes of (T ;C). By (vii), there is a C-greatest �

that belongs to both b and b

0

. Let 
 and 


0

be the immediate C-su

essors

of � that belong to b and b

0

respe
tively. De�ne

bR b

0

$ 
 <

�




0

:

It is easy to see that R is a linear ordering of X. Suppose that I is

an open interval of (X;R). let I = (b; b

0

). De�ne �, 
, and 


0

as in the

pre
eding paragraph. Let Æ

I

be su
h that 
 <

�

Æ

I

<

�




0

. Observe that every

bran
h 
ontaining Æ

I

belongs to the interval I. Observe also that if I

1

and

I

2

are disjoint intervals, then Æ

I

1

and Æ

I

2

are C-in
omparable. The �rst fa
t

implies that the (X;R) is a dense ordering, and the se
ond fa
t implies that

(X;R) has the 


. For non-separability, let B be any 
ountable subset of

X. Sin
e every member of B is 
ountable,

S

b2B

b is 
ountable. Let � 2 T be

> every member of this 
ountable set. Then the set of bran
hes 
ontaining

� is a neighborhood witnessing that B is not dense. �

Theorem 6.51. If � holds, then there is an ultranormal Souslin tree.

Proof. Let hA

�

j � < !

1

i witness that � holds.

We shall de�ne an ultranormal tree (T ;C) by trans�nite re
ursion. More

pre
isely, we shall de�ne for ea
h � < !

1

a tree (T

�

;C

�

), and we shall

arrange that

(a) for �

0

< � < !

1

, T

�

0

is the set of all elements of T

�

of C

�

-level � �

0

,

and C

�

0

is the restri
tion of C

�

to T

0

�

;
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(b) for � < !

1

, (i)-(vii) hold with (T

�

;C

�

) repla
ing (T ;C) and with the

�+ 1 repla
ing !

1

..

We shall then let T =

S

�<!

1

T

�

and C =

S

�<!

1

C

�

. The only task that

will remain to us is the veri�
ation that (T ;C) satis�es 
ondition (4) in the

de�nition of a Souslin tree.

Let � < !

1

and assume that (T

�

0

;C

�

0

) is de�ned for �

0

< � in su
h a

way that (a) and (b) are not violated.

If � = 0 let T

0

= f0g and stipulate that 0 does not bear C

0

to itself.

If � = �

0

+ 1 for some �

0

, then assign to the ordinals � 2 T

�

0

of level

�

0

disjoint 
ountable in�nite sets B

�

� !

1

. Do this so that � < 
 =2 T

�

0

for

ea
h 
 2 B

�

. Let

T

�

= T

�

0

[

[

fB

�

j � 2 T

�

0

^ level(�) = �

0

g :

Let

C

�

= C

0

�

[ fh�; 
i j � 2 T

�

0

^ level(�) = �

0

^ 
 2 B

�

g :

Assume that � is a limit ordinal. Let h�

i

j i 2 !i be a stri
tly in
reasing

sequen
e of ordinals with supremum �. Let

T

�

�

=

S

�

0

<�

T

�

0

( =

S

i2!

T

�

i

);

C

�

�

=

S

�

0

<�

C

�

0

( =

S

i2!

C

�

i

):

For � 2 T

�

�

, de�ne h�

i

j i 2 !i by re
ursion as follows. If A

�

is not a

maximal anti
hain in the tree (T

�

�

;C

�

�

) or if there is a � 2 A

�

su
h that

� C

�

�

�, then set �

0

= �. Otherwise there is a � 2 A

�

su
h that � C

�

�

�. Let

�

0

be some su
h �. If level(�

i

) � �

i

, then let �

i+1

= �

i

. If level(�

i

) < �

i

, let

�

i+1

2 T

�

i

be su
h that �

i

C

�

i

�

i+1

and level(�

i+1

) = �

i

. (Su
h a �

i+1

exists

by 
ondition (vi) on (T

�

i

;C

�

i

).) Let b

�

be the unique bran
h 
ontaining all

the �

i

. Let B

�

be the set of all the b

�

for � 2 T

�

�

. For ea
h b 2 B

�

, let 


b

be

a 
ountable ordinal 
 su
h that 
 =2 T

�

�

and 
 > every member of b. Make

sure that the fun
tion b 7! 


b

is one-one. Let

T

�

= T

�

�

[ f


b

j b 2 B

�

g :

Let

C

�

= C

�

�

[ fhÆ; 


b

i j (b 2 B

�

^ Æ 2 b)g :

To verify that (T ;C) satis�es 
ondition (4), we �rst show that if (T ;C)

has an un
ountable bran
h then it has an un
ountable anti
hain. Let b be
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an un
ountable bran
h. By 
ondition (v), ea
h � 2 b has an immediate

C-su

essor that does not belong to b. Let

A = f
 j 
 =2 b ^ (9� 2 b) 
 is an immediate C-su

essor of �g :

The un
ountable set A is 
learly an anti
hain of (T ;C).

Sin
e every anti
hain 
an be extended to a maximal anti
hain, it suÆ
es

to prove that (T ;C) has no un
ountable maximal anti
hains.

Let A be a maximal anti
hain of (T ;C). For limit � < !

1

, let (T

�

�

;C

�

�

)

be de�ned as above. Note that T

�

�

is the set of � 2 T su
h that, with respe
t

to C, level(�) < �. Note also that C

�

�

is just the restri
tion of C to T

�

�

.

Let C be the set of all limit � < !

1

su
h that

(a) T

�

�

= T \ �;

(b) A \ � is a maximal anti
hain of (T

�

�

;C

�

�

).

We shall prove that C is 
losed and unbounded in !

1

.

By the de�nition of T

�

�

, it is 
lear that f� j T

�

�

= T \ �g is 
losed in

!

1

. To show that C is 
losed, it is therefore enough to show that the set of

all � that satisfy (b) is 
losed in !

1

. Suppose that h�

i

j i 2 !i is a stri
tly

in
reasing sequen
e of 
ountable ordinals su
h that for ea
h i, A \ �

i

a

maximal anti
hain of (T

�

�

i

;C

�

�

i

). Let � =

S

i2!

�

i

. Let � 2 T

�

�

. For any

suÆ
iently large i 2 !, � 2 T

�

�

i

. Thus � is 
omparable with some 
 2 A\�

i

� A \ �. This shows that A \ � is a maximal anti
hain in (T

�

�

;C

�

�

).

For � < !

1

, let

f(�) = �Æ (8� 2 T

�

�

)� < Æ;

g(�) = �Æ (8� 2 T

�

�

)(9
 2 A \ Æ) 
 is C-
omparable with �:

That f(�) and g(�) are de�ned for every � follows from the fa
t that T

�

�

is


ountable (by (iv)) and the fa
t that A is an maximal anti
hain of (T ;C).

By an argument like one in the proof of Theorem 6.35, the set C

0

of all


ountable ordinals 
losed under f and g is an unbounded subset of !

1

.

By (ii), T \ � � T

�

�

for every � < !

1

. Therefore every � 2 C

0

satis�es (a)

and (b).

Sin
e hA

�

j � < !

1

i witnesses the truth of �, let � 2 C be su
h that

A \ � = A

�

. By (b), A

�

is a maximal anti
hain of T

�

�

. By the de�nition of

B

�

, every b 2 B

�


ontains a member of A

�

. For b 2 B

�

, every member of b

is C

�




b

and so is C 


b

. Hen
e for ea
h b 2 B

�

there is a � 2 A

�

su
h that

� C 


b

. If � 2 T n T

�

, then there is a b su
h that 


b

C �. Putting all these

fa
ts together, we get that every element of T is C-
omparable with some

element of A

�

. In other words, A

�

|i.e., A \ �|is a maximal anti
hain of

T . But this means that A = A \ �. Hen
e A is 
ountable. �
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