Math 220A Fall 00 D.A. Martin

Mathematical Logic and Set Theory

1 Basic set theory

Iterative concept of set.

(a) Sets are formed in stages 0,1,...,s,....

(b) For each stage s, there is a next stage s + 1.

)
)
(c) There is an “absolute infinity” of stages.
(d)
)
)

d) Vs = the collection of all sets formed before stage s.

e) Vo =0 = the empty collection.

(
(f) Vs41 = the collection of (a) all sets belonging to Vs and (b) all subcol-
lections of Vi not previously formed into sets.

Remarks. (1) A set is formed after its members. (2) Vj itself is formed
as a set at stage s.

Formal language for talking about sets.

Symbols:

vy, U1, V9,... variables

meaning “is identical with”
meaning “is a member of”
meaning “not”

meaning “and”

meaning “there is a”

— —~w > 1 m|

Formulas (inductive definition):

(i) If z and y are variables, then z = y and x € y are (atomic) formulas.

(ii) If x is a variable and ¢ and 4 are formulas, then —p, (¢ A %), and
(3x) ¢ are formulas .

(iii) Nothing is a formula unless (i) and (ii) require it to be.



Free occurences of a variable in a formula:

(i) All occurrences of variables in atomic formulas z € y and x = y are
free.

(ii) An occurrence of x in —yp is free in just in case the corresponding
occurrence of x in ¢ is free.

(iii) An occurrence of z in (¢ A 1)) is free in just in case the corresponding
occurrence of x in ¢ or in ¥ is free.

(iv) An occurrence of x in (Jy) ¢ is free in just in case x is not y and the
corresponding occurrence of x in ¢ is free.

Non-free occurrences of a variable in a formula are called bound occurrences.

We write “p(z1,...,x,)" for “@” to indicate that all variables occurring free
in ¢ are among the (distinct, in the default case) variables x1, ..., zy,.
Abbreviations:

(e Vi) for —(=p A —¢)
(b= ¢) for (¢ V)
(pev) for ((p—=9) AW —yp)
(Vz) for —(3Jz)-
r#£y for mxz=y
x¢y for —zxey

We often omit parentheses, and we often write “z,” “y,” etc., when when

we should be writing “v” with subscripts.

The Zermelo-Fraenkel (ZFC) Axioms. Below we list the formal ZFC
axioms. Following each axiom, we give in parentheses an informal version
of it. Our official axioms are the formal ones.

For all the axioms other those of the Comprehension and Replacement
Schema, let us use the following scheme of “abbreviation”:

xz for v z for wj w for wg yo for oy
y for wo u for w4 y1 for wg

For the two schemata, the variables are arbitrary. I.e., there is an in-
stance of Comprehension for each formula ¢ and sequence z,y, z, wy, ..., wy,
of distinct variables that contains all variables occurring free in ¢ plus the
variable y that does not so occur.



Aziom of Set Ezistence:
(Fx)z ==z

(There is a set.)
Axiom of Extensionality:
(V2)(7y) (V2)(z € ¢ z € y) > w = 1)
(Sets that have the same members are identical.)
Aziom of Foundation:

(Vo) (Fy)y ez — Fy)y ez A (V2)(z ¢ 2 V 2 ¢y)))

(Every non-empty set x has a member that has no members in common
with z.)

Aziom Schema of Comprehension: For each formula p(z, z, w1, ..., wy),
(Vwr) -+ - (Vwn)(V2)(Fy)(Vz) (z €y <> (z € 2 A )

(For any set z and any property P, there is a set whose members are those
members of z that have property P.)

Aziom of Pairing:
(Vz)(Vy)(Fz)(z € 2 ANy € 2)

(For any sets x and y, there is a set to which both x and y belong, i.e., of
which they are both members.)

Axiom of Union:
(Vo) (Fy)(Vz)(Vw) (w € 2z A z €x) » w € y)

(For any set x, there is a set to which all members of members of = belong.)

The axioms of Pairing, Union, and Comprehension give us some opera-
tions on sets. For any = and y, {x,y} is the set whose members are exactly
x and y. (It exists by Pairing and Comprehension.) Let {z | ¢(z,...)} be
the set of all « such that ¢(z,...) holds, if this is a set. For any set z,

U) ={z| By)(z €y Ny €a)}.



(U(z) exists by Union and Comprehension.) For any sets x and y, xUy is the
set U({x,y}). For any sets z1,...,x,, {x1,..., 2y} is the set whose members
are exactly xy,...,x,. (To see that this set exists, note that {z} = {z,z} for
any set  and that {z1,...,zpm+1} = {z1,...,2n}U{zns1} for 0 <m < n.)
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In the statement of the next axiom, “(3ly)” is short for the obvious way

of expressing “there is exactly one y.”

Aziom Schema of Replacement: For each formula ¢(z,y, z, w1, ..., wy),

(Vawr) - - (Ywn)(v2) (Vo) (z € 2 = (Fly) p)
= (Fu)(Vz)(z € 2 = (FY)(y € u A 9)))

(For any set z and any relation R, if each member x of z bears R to at
exactly one set y,, then there is a set to which all these y, belong.)

Remark. by Comprehension, Replacement can be strengthened to give

(Vwr) -« (Ywn ) (V2) (Vo) (z € 2 = (Tly) @)
= (Fu)(My)(y € u <> 3Bx)(x € z A ¢))).

Define S(z) = x U {z}. Note that () exists by Set Existence and Com-
prehension.
Axiom of Infinity:
(Ar)(D ez A (Vy)(y ez — S(y) € x))

(There is a set that has the empty set as a member and is closed under the
operation S.)

Let “z C 2”7 abbreviate “(Vw)(w € z = w € x).”
Aziom of Power Set.
(V)(Jy)(V2)(z C o — z € )
(For any set x, there is a set to which all subsets of z belong.)

Let P(x) = {z | 2 C z}. (It exists by Power Set and Comprehension.)
Let tNy={z]|z€x A ze€y}. (It exists by Comprehension.)



Aziom of Choice:

(Vz) (Vy1)(Vy2) (y1 €z AN ya €2) = (11 #D A (y1 =y2 V y1 Ny2 =0)))
— (F2)Vy)(y € z = (Fw)w € yN 2)))

(If z is a set of non-empty sets no two of which have any members in common,
then there is a set that has exactly on member in common with each member
of x.)

Remark. For all the axioms except Comprehension and Replacement, the
formal and informal versions are equivalent. But the formal Comprehension
and Replacement Schemata are prima facie weaker than the informal ver-
sions. The formal schemata apply, not to arbitrary properties and relations,
but only to properties and relations characterizable by formulas of the for-
mal language. (Warning: We shall later use the word “relation” in a precise
technical sense quite different from the intuitive way we used the word in
stating the informal version of Replacement.)

Justifications of the axioms. The ZFC axioms are supposed to be
true of the iterative concept of set. Following is an axiom-by-axiom attempt
to explain why.

Set Existence. () belongs to Vj.
Extensionality. It follows from the notion of identity for collections.

Foundation. Assume z # (). Let w be the collection of all sets formed
before any member of x is formed. Some member of = is formed at some
stage s. Since w is a subcollection of Vj, clause (f) of the iterative concept
implies that w is formed as a set at some stage s; no later than s. No y € «
can be formed at a stage so before s1, for then w would be a subcollection
of Vi, and so would be formed at or before so. If no y € x were formed at
s1, then Vi 41 would be included in w, and so w would belong to itself, an
impossibility. Any y € = formed at s; has the right properties.

Comprehension. The desired y is a subcollection of z and so of V;, where
z is formed at s.

Pairing. If x and y are formed at or before s, then they belong to V41,
which therefore works as z.

Union. If = is formed at s, then all members of z, and so all members
of members of x, belong to V;. Hence V; works as y.

Replacement. For each = € z, let s, be the stage at which the unique y
such that ¢(x,y, z,w1, ..., wy) is formed. The collection of all these s, is no



larger than the set z, so “absolute infinity” demands that there be a stage
s later than all the s,. Then V; works as u.

Infinity. By absolute infinity, there is an infinite stage s. Let x be the
collection of all y in V; that are formed at finite stages. Then x has the
required properties and is formed at or before s.

Power Set. If © is formed at s and if z C x, then 2 C V; and so z € Viy1.
Thus Vi1 works for y.

Choice. If x is formed at s, then we are looking for a z that might as
well be a subcollection of U(z) C V,. What we have to convince ourselves
is that such a subcollection exists.

The ordered pair (z,y) of sets z and y is {{z}, {z,y}}. Note that
(r,y) = (z,w) & (z=2 Ny=w).

Exercise 1.1. Write a formula of the formal language expressing the state-
ment that w = (z,y).

The Cartesian product u x v of sets w and v is {(x,y) |z € u A y € v}.
Theorem 1.1. u X v always exists.

Proof 1. Let z € u . Then (Vy€v)(3w) w = (x,y). Here, and later, we use
obvious abbreviations, such as “(Vy € v)...,” without explicit mention. By
Replacement and Comprehension, let z, = {w | (Jy € v) w = (z,y)}. Then
(Vo € u)(3!2) 2 = 2. (Note that there is a formula ¢ (z, z, u,v) expressing
the statement that z = z,.) By Replacement and Comprehension, let ¢ =
{2z | # € u}. The Cartesian product of v and v is U(q). O

Proof 2. P(P(uUw)) exists by Power Set and Comprehension. If z € u
and y € v, then (z,y) € P(P(uUw)). Thus u x v exists by Comprehension.
El

Remark. Proof 1 used Replacement but not Power Set. Proof 2 used
Power Set but not Replacement.

A relation is a set of ordered pairs. A function is a relation f such that

(V) (VY1) (Vy2) (2, 91) € F A (2, 42) € F) = y1 = y2).



The definitions of a one-one function, the domain of a function, and the
range of a function are the obvious ones. The notation f : £ — y means, as
usual, that f is a function whose domain is  and whose range is C y.

A set r is a linear ordering of a set x if r is a relation in z (i.e., r C
x X ) and r linearly orders z in the usual strict sense (i.e., we require that

(v, 9) ¢ 7).

A relation r is wellfounded if
(Vz)(x #0 — (Qyex)(Vzex)(z,y) ¢r).
Example. Let u be a set. Let
clu={(zy) €uxul|zey}

The Axiom of Foundation says that € [u is wellfounded for every wu.

We say that r is a wellordering of x if r is a linear ordering of x and r
is wellfounded. We say that r wellorders = if r is a relation and r N (z x x)
is a wellordering of .

A set z is transitive if U(z) C x.

An ordinal number is a set x such that

(1) z is transitive;
(2) €z wellorders z.

Remark. Foundation implies that (2) is equivalent with the assertion
that € [x linearly orders z.

Exercise 1.2. Let  and y be ordinal numbers. Show, without using Foun-
dation, that
reyVyexVre=y.

Hint. Let z = 2 Ny. Show that z is an ordinal number. Next show
that z € © or 2 = z and also that z € y or z = y. For the first of
these, assume that z # z. Since z C z, Extensionality implies that the set
z\z={we€x|w¢ 2z} is non-empty and so has an €-least member u. Prove
that z and u have the same members.

The set w is defined as follows:

rew+ Vy)((Dey A (V2)(zey = S(z) €y)) = z €vy).



w exists by Infinity and Comprehension. Note that
DewA (V2)(z € w— S(z) € w).
The members of w are called natural numbers.

Remark. In preparation for metamathematical results in 220C, we shall
make note of all uses of Foundation or Choice in proving theorems, and we
shall avoid using these axioms unnecessarily. In particular, we avoid using
Foundation in the following proofs, although using it would simplify matters.

Theorem 1.2. w is a set of ordinal numbers; i.e., every natural number is
an ordinal number,

Proof. Let y = {n € w | n is an ordinal number}; y exists by Comprehen-
sion. It is easy to see that ) € y. Let n € w. We assume that n € y and
show that S(n) € y. This will prove that w C y, and so that y = w.

By the definition of S(n),

(Vu)(u € S(n) <> (u € n V u=mn)).

Hence, for any v, v € U(S(n)) & (v € U(n) Vv € n) = (since n is transitive)
v En = v € S(n). Hence §(n) is transitive.

n ¢ n, since otherwise € [ n is not wellfounded, indeed is not even a linear
ordering of n. Moreover n does not belong to any u € n, since otherwise
transitivity gives n € n. Thus the relation € [ S(n) is just the wellordering
€ [n with n stuck on at the end. It is easy to prove that € [S(n) is a
wellordering, using the fact that € [ n is wellordering. g

Remark. The method used to prove the last theorem is mathematical
induction. To prove that every natural number has a property (such as being
an ordinal number), we prove that () has the property and that if n € w has
the property then so does S(n). By the definition of w, this implies that
the set of all natural numbers with the property is all of w, i.e., that every
natural number has the property.

Theorem 1.3. w s an ordinal number.

Proof. Let y = {n € w | n C w}. To prove that w is transitive, we must
show that y = w. We use mathematical induction. Trivially () € y. Suppose
ne€y. Thenue Sn) e (uenVu=n)= ucw. Hence S(n) Cw. But
also S(n) € w, so S(n) € y.



Theorem 1.2 and its proof show that € [ w is irreflexive (n ¢ n for n € w)
and asymmetric (m € n — n ¢ m for m and n elements of w). The fact
that every member of w is transitive implies directly that € [ w is a transitive
relation (k € m € n — k € n for for k, m, and n elements of w). Exercise 1.2
and Theorem 1.2 imply that € [ w is connected (m € nVn € mVm = n for
m and n elements of w). Thus € [w is a linear ordering of w.

To show that € [ w is wellfounded, we prove that each non-empty subset
of w has a (€ [w)-least element. Let v C w with v # 0. Let n € v. If
nNv = 0, then n is the (€ [w)-least element of v. Suppose then that
nNwv # (. By Theorem 1.2, the set n N v has an (€ [n)-least element m.
The transitivity of n implies that m is also the (€ [ w)-least element of v. [

Sometimes we shall want to assert theorem schemata rather than simple
theorems: we shall want to assert that, for every formula ¢, some sentence
derived from ¢ is a theorem. A convenient way to do this is to speak of
classes. We shall speak of {z | ¢(z,...)} as a class whether or not there is
aset {x | ¢(x,...)}. When the set exists, we identify the set and the class.
When the set does not exist, we call {z | ¢(z,...)} a proper class. Lower
case letters will be used only for sets. Upper case letters will be used mostly
for classes.

Terms like relation, function, domain, wellfounded, etc. are defined for
classes just as they are for sets. In class language, the Comprehension
Schema says that the intersection of a class and a set is a set.

Let V = {z | x = x}. V is a proper class, since otherwise Comprehension
would yield the self-contradictory Russell set {z |z ¢ x}.

An example of a proper class relation is € = {(z,y) | = € y}. In the hint
to Exercise 1.2, we wrote “€” instead of € [z and € [y. Retroactively this
notation is now explained.

Exercise 1.3. Prove that € is a proper class.

If Fis a class function and A is a class, then F'[A = {(z,y)€F |z € A}.

Theorem 1.4 (Schema of Definition by Recursion). Let F': V — V.
There is a unique (set) g : w — V such that

(Vn €w)g(n) = F(g [ n).
Proof. We first show that

(Vnew)3g)(g:n—=V A (VYmen)g(m) = F(g | m)).



For n = (), the empty g (i.e., () works. Suppose g : n — V' is the unique func-
tion with the property (Vm € n) g(m) = F(g [ m). Let ¢' = gU {(n, F(9))}.
Clearly ¢' : S(n) = V and (Ym € S(n))g'(m) = F(¢' |m). Hh:S8n) =V
satisfies (Ym € S(n)) h(m) = F(h | m), then h [ n = g by the uniqueness
property of g. But then h(n) = F(h [n) = F(g9) = ¢'(n), and so h = ¢'.
Our conclusion follows by induction.

By Replacement and Comprehension, let

c={y|@new)y:n—V A (Ymen)ym) = Fly [ m))}.

Suppose y; and y2 belong to z. Let y; : ny — V and y2 : ny — V.
If n1 = no then the uniqueness part of the assertion proved in the last
paragraph gives y; = yo. If ny € no then uniqueness gives y; = yo [ ny; if
ng € ny then uniqueness gives yo = y1 [ n1. Thus y3 C ys or yo2 C y;. Let
g = U(z). Tt is easy to see that g is a function and that domain (g) C w.
To see that w C domain (g), use the existence part of the assertion of the
last paragraph to get, for each n € w, ay € z withy : S(n) — V. It
is easy to see that (Vn € w)g(n) = F(g [ n). For uniqueness, assume that
(Vn € w)h(n) = F(h [n). For each n € w, g [S(n) = h[S(\), and so
g(n) = h(n). O

Remark. We needed Replacement only to get that g is a set (rather than
a proper class).

Theorem 1.5. (Vz)(3y)(y is transitive A z C y).

Proof. Define F': V — V by

z is not a function and u = 0
or z is a function and v = x UU(U(range (z))).

F(z)=u « {

Let g be given by Theorem 1.4. Let y = U (range (g)). Suppose v € y. Then
v € g(n) for some n € w. Hence v € U(range (g [ S(n))). Therefore

v CUU(range (g [ S(n)))) € F(g [ S(n)) = g(S(n)) Cy.
Since z = ¢(0), it follows that x C y. O

For any class A, let

NA={z](vWyed)zey}
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Comprehension gives that [ A is a set if A is non-empty. Note that w =
My |0 ey A (Vz2€y)S(z) € y}. The operation dual, in a natural sense, to
() is the operation /. We shall hence sometimes write |Jz for U(z).

For any set z let

trel (z) = ﬂ{y | y is transitive A = C y}.
Theorem 1.5 implies that trcl (z), the transitive closure of x, is always a set.
Theorem 1.6. Let
ON = {z | z is an ordinal number}.

The (class) relation € [ ON is a wellordering of ON. Indeed € | ON is well-
founded in the strong sense that every non-empty subclass of ON has an
e-minimal element. Furthermore ON is transitive.

Proof. The proofs that € [ON is irreflexive, asymmetric, transitive, and
connected are just like the corresponding parts of the proof of of Theo-
rem 1.3.

Suppose that A C ON is a non-empty class. Let x € A. If tNA =0,
then we are done. Otherwise apply the fact that z € ON to z N A. This
givesay € rNAwithynNzNA=0. Ifze€ynNAthen z€yeaxecON,and
SOz €@

To prove that ON is transitive, suppose x € y € ON. By the transitivity
of y, we have that x C y. The fact that € [z is a wellordering thus follows
easily from the fact that € [y is a wellordering. To show that x is transitive,
and so that x is an ordinal number, let z € w € x. We have that w, and
hence z, belongs to y. Since € [y is a transitive relation, we get that z € z.

O

When we talk of () in its role as an ordinal number, we shall call it 0.
We denote € [ ON by <. For ordinals « and 3, we write the natural a < 8
to mean that («, 5) € <, i.e., that « € .

Exercise 1.4. Show, for any ordinal number «, that S(«) is the immediate
successor of @ with respect to <.

Exercise 1.5. Let x be any set of ordinal numbers. Prove that /(z) is an
ordinal number.
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Theorem 1.6 makes possible proof by transfinite induction. 1f we want
to show that all ordinal numbers have some property expressed by a formula
p, it is enough to show that, for every ordinal number «,

(VB<a)p(B,...) = ¢la,...).

For then Theorem 1.6 implies that the class of @ € ON such that —¢(a,...)
cannot be non-empty. The following theorem gives us a useful division into
cases when we are using transfinite induction.

Theorem 1.7. If « is an ordinal number, then one of the following holds:

(1) (38 <o) a=S5(B);
(2) a =U(a).

Proof. Let a be an ordinal number, and assume that (1) fails. Since
U(a) C « for any ordinal «, we need only show that a C U(«). Let € a.
By Exercise 1.4, S(8) is an ordinal number < «. Since (1) fails, we must
have S(f) < a. But then 5 € S(8) € o, so 8 € U(w). O

Ordinals satisfying (1) are called successor ordinals. Non-zero ordinals
satisfying (2) are called limit ordinals.

Theorem 1.8 (Schema of Definition by Transfinite Recursion). Let
F:V = V. There is a (unique) G : ON =V such that

(Va € ON) G(a) = F(G | o).
Proof. We first show that
(Va € ON)(lg)(g: o =V A (VB <a)g(B) = F(G | B)).

We argue by transfinite induction. Let « be an ordinal and assume that
the statement holds for all smaller ordinals. The case a = 0 is trivial. If
a = §(B) for some ordinal 3, then we argue as in the proof of Theorem 1.4.
If v is a limit ordinal, then we use Replacement as for the special case @ = w
in the last part of the proof of Theorem 1.4 to get a z that is the set of all
g' that work for ordinals 8 < a. We let g = U(2).

Let
G=U{g|(BaeON)(g:a =V A (VB<a)g(B)=F(gp))}
It is easy to check that G, and only G, has the required property. EI
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Remark. Note that the proof gives an explicit definition of G from a
definition of F. Thus the theorem really is a theorem schema, and the
quantification over proper classes in its statement could be avoided.

Theorem 1.9. There is a unique V : ON — V' such that (where we write
Vo for V(a))

(a’) Vo = @,’

() Vs =P(Va);

(c) V=U{Vy | @ < A}) if X is a limit ordinal.
Proof. Let F(x) =0 if x = () or x is not a function whose domain is an
ordinal number. If & an ordinal and z : S(a) — V/, then let F'(x) = P(z(a)).

If X\ is a limit ordinal and x : A — V, let F(x) = U(range (x)). The desired
function is given by Theorem 1.8. i

Exercise 1.6. Show that a < 3 — V,, C Vj.
Theorem 1.10. (Uses Foundation) (Vz)(3a)z € V.
Proof. Suppose x belongs to no V,. Let

z={u € trcl(z) U{z} | (Va € ON)u ¢ V,}.

Since z # ), Foundation gives a u € z such that v Nz = (). Every member
of u belongs to trcl (z), and so every member of u belongs to some V.
For y € u, let ay be the least « such that y € V,,. By Replacement and
Comprehension, let « = U({cy | y € u}). By Exercise 1.5, a € ON. By
Exercise 1.6, u C Vi,. This gives the contradiction that u € Vs(q). O

By tranfinite recursion, one can define addition, multiplication, and ex-
ponentiation of ordinal numbers as follows:

a+0 = «a;

a+S8(p) = Sla+p);
a+A = U{a+pB| B <A})if Ais a limit ordinal.

a-0 = 0;
a-5(0) a-f+a;
a+X = U{a-p| B <A})if Ais a limit ordinal.
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o = 1 (=5(0);
25O — 0P

o = U{? | B < A}) if \is a limit ordinal.

The way this is done is as follows: Counsider the definition of +. We can
define a function F : ON x V — V. so that, e.g., if a and 8 are ordinals
and z : S(B8) — V, then F({(a,z)) = S(z(B)). If we define F,, : V=V
by Fy(x) = F({c,x)), then Theorem 1.8 applied to F, gives a function
+a : ON = ON. Since the proof of Theorem 1.8 gives us a definition of the
+4 from the parameter a, we get an explicit definition of +.

Note that a + 1 = S(a) for every ordinal c. We shall often write a + 1
instead of S(«). For the rest of this section, however, we shall continue to
write S(a) in order to avoid confusion with the different kind of addition
that we shall shortly define.

We now turn to the subject of cardinal numbers. If x and y are sets, let
us say that z < y if there is a one-one f : z — y. By x = y we mean that
there is a one-one onto f :x — y.

Theorem 1.11 (Schréder—Bernstein Theorem). If ¢ < y and y < =
then © ~ y.

Proof. Let f: 2 — yand g : y — x be one-one. Using Theorem 1.4, define
h:xxXw—zby

h(z,0) = =z;
h(z,8(n)) = g(f(h(z,n))).

Let
u={z€xz|(Ivex)(Inecw)(h(v,n) =2z A v ¢range(g))}.

Note that if z ¢ u then z € range(g). Let k : = — y be given by

| f(2) if z € w;
k(z) = { g Hz) ifz ¢ u.
(If 7 is any relation, r~! = {{(w,w') | (w’,w) € r}. Since g is a one-one

1

function, we have that ¢~ * : range (g) — y.)
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To see that k is one-one, assume that k(z) = k(z2). Exchanging z; and
29 if necessary, we may assume that either z; = 29 or else z; € v and 22 ¢ u.
Assume for a contradiction that the latter is the case. Then f(z1) = g7 (22),
and so g(f(z1)) = z2. Let v and n witness that z; € u. Since h(v,n) = 21,
we get that g(f(h(v,n))) = g(f(z1)) = z2. This means that h(v,S(n)) = 22,
contradicting the fact that zo ¢ u.

Assume that z € y \ range (k). Then g(z) € u, since otherwise k(g(z)) =
g1 (g(2)) = 2. Let v and n witness that g(z) € u. Obviously n # 0. Thus
n = S(m) for some m. We have then that g(z) = h(v,S(m)) = g(f(h(v,m)).
Hence z = f(h(v,m)). But h(v,m) € u, and so we get the contradiction
that

k(h(v,m)) = f(h(v,m)) = .

El
A cardinal number is an ordinal number « such that (V5 < «) 8 % a.

Theorem 1.12. Every natural number is a cardinal number. w is a cardinal
number.

Proof. For the first assertion, we show that
(%) (Vnew)(Vf)((f :n —n A f one-one) — f onto).

The case n = 0 is trivial. Let f : S(n) = S(n) be one-one. We must have
that n € range (f), since otherwise f [ n : n — n is not onto. Let a = f(n)
and let f(b) = n. Define g : n — n by

som) — { Fm) iEm#b;

a if m=".
By the induction hypothesis, range (¢g) = n. Thus
range (f) = {n} Urange (¢9) = S(n).

For the second assertion, note that if n € w and f : w — n is one-one,
then f [ S(n) : S(n) — n contradicts (). O

Theorem 1.13. Let « € ON\ w. Then S(a) is not a cardinal number.
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Proof. Define f: S(«) = « by

Sn) ifn<w;
fB)=4 8 fw<f <o
0 if 8 = «.

g

Let card (z) (= |z|) be the least cardinal number k such that z ~ &, if
it exists. Note that card (a) exists for all ordinals a. The following theorem
implies that that card (x) exists if = can be wellordered, i.e., if there is a
wellordering of x.

Theorem 1.14. Let v be a wellordering of x. Then there is an ordinal
number o such that (x,r) is isomorphic to («, € [a), i.e., there is a one-one
onto f: a — x such that

B<y<a—=(f(B),f(v)er

Furthermore, both « and the isomorphism f are unique.
Proof. Note that o and f must satisfy
(VB < ) f(B) is the r-least element of z \ range (f [ 5).

Define F': V' — V as follows. Let F(z) be the r-least element of z\ range (z)
if (38 € ON)(z: 8 — z A range(z) # z), and let F(z) = () otherwise. Let
G be given by Theorem 1.8.

For each ordinal 3, if range (G | ) C = then G(f) € « \ range (G | f).

Suppose that range (G | 5) C x for every ordinal . Then G : ON — z
and G is one-one. By Replacement (and Comprehension), we get that ON
is a set. By Theorem 1.6, this implies that ON € ON, which contradicts
Theorem 1.6.

Thus there is a f € ON such that range (G [ 5) is not a proper subset of z.
Let « be the least such ordinal. If «v is a limit ordinal, then range (G |«) C z
and so range (G [ @) = z. This follows also if « = S(3), since G(8) € =. In
both cases is it easy to see that G | « is the desired isomorphism. o

For cardinal numbers s and 0, we define the cardinal sum x4+ 6§ of k and

0 by
K+ 6 = card ({0} x k) U ({1} x 9)),
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if it exists. Our notation is ambiguous; we use the same symbol “+” both
for the cardinal sum and for the ordinal sum, i.e., for the + operation on
ordinal numbers defined on page 13. For the rest of this section, we shall
avoid confusion by writing o +on S for the ordinal sum of « and S.

Theorem 1.15. (a) For all cardinal numbers k and 0, k + § exists.
(b) For m and n € w, m+n=m-+oNn € w.
(c) If either of k and § does not belong to w, then k + 6 = max{k,d}

(= U({r,0})).

Proof. (a) Define an ordering r, s of ({0} x ) U ({1} x d) by placing (i, «)
before (7, 3) if and only if

a<fBV(e=pNi<jy).

It is easy to show that r, s is a wellordering. Let fi5: g — ({0} X &) U
({1} x 6) be given by Theorem 1.14. Then x + § = card (o).

(b) For fixed m € w, we prove by induction on n that m +oxn € w and
m+onn =~ ({0} xm) U ({1} xn). By definition, m+ox0 = m € w, and we
can define a one-one onto f : m — {0} x m by setting f(k) = (0, k) for each
k < m. Assume that m +oxn € w and that f : m +oxn — ({0} x m) U
({1} x n) is one-one and onto. Then m +ox S(n) = S(m +onn) € w. Let

f'=fu{{m+onn (1,n)}.

It is easy to see that f': m4+onS(n) — ({0} xm) U ({1} x S(n)) is one-one
and onto.

(c) It is enough to prove that k4 = k for every cardinal number k ¢ w.
Assume that this is false, and let x be the <-least counterexample. Note
that r, . is a wellordering of 2 x «, where 2 = {0,1}. We have that

k< K+ K Qg
Let fy (k) = (¢, ). Thus
&R {07 |07 e (5, 8)F € (2 x B) U{(0, B)} = S(card (8) + card (B)).

If B € w, then we would also have x € w. Hence the minimality of x gives
that k < S(card (3)), and Theorems 1.11 and 1.13 then give the contradic-
tion that x = card (3). O

For cardinal numbers s and §, we define the cardinal product k-9 of k
and ¢ by
k-0 = card (k X 0),

17



if it exists. Our notation is once more ambiguous, so for the rest of this
section we shall write -on for the ordinal product defined on page 13.

Theorem 1.16. (a) For all cardinal numbers k and 0, k- § exists.

(b) For m and n € w, m-n =m-oNn € w.

(¢) If either of k and 6 does not belong to w and neither of k and § is 0,
then k- § = max{k,d}.

Exercise 1.7. Prove Theorem 1.16.
Hint: (a) Define an ordering s, 5 of £ x § as follows:

max{q, f} < max{cd/,['} V
(o, B) 8k,0 (o, < { max{a,B} = max{d/,8'} Na<da V
max{a, 8} = max{d/, ('} Nha=d A < f.

Show that s, s is a wellordering. Let f:s : af ; — K x 0 be given by
Theorem 1.14. Then & - § = card (o ;). , ,

(b) For fixed m € w, prove by induction that, for all n € w, m-onn € w
and m -on n =~ m X n. The case n = 0 is trivial. Assume that m -oxn € w
and that f : m -oxnn — m X n is one-one and onto. Then m -on S(n) =
m-oN N +oN ™ € w. Let

fr=Ffu{{m-onn+k, (kn)) | k<m}

Show that f':m -ox S(n) = m x S(n) is one-one and onto.

(c) It is enough to prove that x - k = k for every cardinal number x ¢ w.
Assume that this is false, and let x be the <-least counterexample. Let
far i — Kk X K be defined as in the hint for part (a). Then

kK<k-k<a,.
b

Let (o, 8) = fi .(k). Let p = max{a,}. Use the definition of sy, the
minimality of k, and Theorem 1.15 to deduce the contradiction that x =
card (p) < p < k.

For sets = and y, let “y = {f | f : © — y}. (Note that “y is contained
in the set P(x x y).) Since we to not have a convenient special notation
for the ordinal exponentiaton defined on page 14, we defer defining cardinal
exponentiation until after the next theorem, which concerns ordinal expo-
nentiation.
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Theorem 1.17. For m and n € w, ™n =~ n™ € w, where n™ is as defined
on page 14.

Proof. Fix n € w. For the case m = 0, note that n = {§} = 1 = n°.
nm

Assume that n™ € w and that n™ =~ ™n. Then nS0™ = ‘ON T € w.
Moreover

S(m)

nonn=n"-nx=n"xnx"nxn=x n.

(For the last =, define a one-one onto f by setting f({(g,k)) = g U {(m,k)}
for g:m — n and k < n.) O

We now define cardinal ezponentiation by setting k* = card (*x), if it
exists, for cardinal numbers x and A\. We shall make no more use of ordinal
exponentiation in this section.

Theorem 1.18. If0 #n € w and k ¢ w is a cardinal number, then K" = k.

Proof. Fix a cardinal number s ¢ w. For n € w, define f, : Sk - " x K
by setting fn(9) = (9 | n,g(n)). The functions f,, are one-one and onto.
Clearly 's ~ r. Assume that n > 0 and that & ~ x. Then

S x "k X Kk A KX KR K. O
For ordinal numbers « and sets y, let <%y = {f | (38 <) f: 8 = y}.
For cardinal numbers x and A, let 5<* = card (<*x), if it exists.

<w _

Theorem 1.19. If k ¢ w is a cardinal number, then K K.

Proof. The theorem is an easy consequence of Theorem 1.18 and the Axiom
of Choice, but we wish to avoid the latter. Let f, be as in the proof of
Theorem 1.18. Let h : kK X K — K be one-one and onto.

Define g, : ™k — K and g Sk x k — Kk X k simultaneously by
recursion as follows. Let gg be given by h. Given g,, let

9,({q, @) = {gn(q), ).

Now let
9sm) = hogno fsm),
where o means composition. (It is easy to justify this method of definition
via Theorem 1.4.) By induction we see that each g, is one-one and onto.
Next define a one-one p : w x Kk — <“k by setting p(n,a) = g, ().
(Here we write p(n,«) for p((n,«)).) Since ¥k = range (p) U {1}, we get
that <Yk =~ (w x k) U {1} =~ k. O
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Theorem 1.20. For every set x, © < %2, i.e., x <2 and x % *2.

Proof. Fix z. It is easy to see that “2 =~ P(x). We show that = < P(z).
To show that x < P(x) define a one-one f : z — P(x) by setting

fly) ={y} for all y € x.
Suppose that f : x — P(x) is onto. Let z = {y€x |y ¢ f(y)}. Let

z=f(y). Theny € f(y) @y ¢z ey ¢ fy) O
Theorem 1.21. There is no greatest cardinal number.
Proof. Let k be a cardinal number. Let

a={(z,r) | x C Kk A risa wellordering of z}.

For (z,r) € a, let g(x,r) be the unique « such that (o, € [@) is isomorphic
to (x,r). If a is an ordinal number and « < k, then there is an (z,r) € a
with a = g({(z,r)). (Let f : @« — Kk be one-one; let x = range(f); let
(f(B),f(7)) €er & B <~.) Let 6 = U(range(g)). Then 6 € ON and k < 6.
Indeed, ¢ is the least cardinal number > k. [l

For any set z such that card (z) exists, let ™ be the least cardinal
number greater than card (z).
By transfinite recursion define

Ny = w;
Ns@) = RNa©;
Ny, = U{Nﬂ | <A} for limit ordinals A.
It is easy to see that the N, a € ON, are all the cardinal numbers > w.
Theorem 1.22. (Uses Choice) Every set can be wellordered.

Proof. Fix aset x. Fory C x, let ay = {y} x (z\y). Let u = {ay | y C x}.
Let v be given by Choice. Define F' : V' — V as follows. Let F(z) be the
unique w such that (range (z),w) € v if (36 € ON)(z: f — = A range (z) #
x), and let F(z) = () otherwise. Let G be given by transfinite recursion.
Just as in the proof of Theorem 1.14, one can show that there is an ordinal
« such that G [ « is a one-one onto function from « to x. O

Corollary 1.23. (Uses Choice) For every set x, card(x) exists. For all
cardinals K and X, both k* and K< are defined.

By Theorems 1.20, we have that 2% > ¥, for every ordinal o. The
Continuum Hypotheses (CH) asserts that 2% = X;, and the Generalized
Continuum Hypothesis (GCH) asserts that 2% = Ns(q) for all ordinals .

20



2 Models, compactness, and completeness

Informally we shall consider a language to be a set of symbols, the union of

the following:

(1) a set of constant symbols;
(2) for each n, 0 < n € w, a set of n-place function symbols;
(3) for each n, 0 < n € w, a set of n-place relation symbols.

Since we want to use theorems of set theory in doing model theory (and for
other reasons concerning 220C), we adopt the following purely set theoretic

defintion as our official one.
A language is a pair (f,p) where
(@) f:w—=V;
(b) p:w\{0} = V;
(€) (Vm € w)(Vn € w)(f(m) N p(n)

p(m)Np(n))));
(d) each f(n) and each p(n) is disjoint from {2-n | n € w} U{1,3,5,7,9,11};

(e) no function whose domain is in w \ {0} belongs to any f(n) or p(n).

O A (m#n— (fm)Nf(n)=0=

If £ = (f,p), then f(0) is the set of constant symbols of L; for n > 0,
f(n) is the set of n-place function symbols of L; for n > 0, p(n) is the set of
n-place relation symbols of L. Clause (c) says that no symbol has two uses.

Logical symbols. The following symbols will be used with every language:

Informal Official

Vo, V1,02, ... 0,2,4,...
( 1
) 3
= 5
- 7
A 9
= 11

The symbols vy, vy, v, ... (officially 0,2,4,...) are variables.
Terms. Informally we can describe the terms of a language £ as consti-

tuting the smallest set such that

(i) all variables and constant symbols are terms;
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(ii) if F' is an n-place function symbol and ty,...,t, are terms, then the
expression F'(ty...t,) is a term.

More informally, we shall often add commas for clarity: F(ti,...,t,).
Officially terms of £ are finite sequences of symbols, where a finite se-
quence is a function whose domain is a natural number. To give the official
set-theoretic definition we first define some operations on finite sequences.
Ifg:m—V and h:n — V are finite sequences, let g~h: m+n =V
be given by

. | og(k) ifk<m;
(g h)(k)_{h(j) if k= m +j with j < n.

If h is a finite sequence of finite sequences, we define concat (h), the con-
catenation of h, by recursion on domain (h) as follows:

) 0 if domain (h) =0;
concat (h) =9 (concat (h | n))~h(n) if domain (k) = n + 1.

For finite sequences f, let (h(f) = domain (f). For any a, let (a) be the
unique element of {a}, i.e., let it be {(0,a)}.
Now let

Term§ = {(a) | a is a variable or a constant symbol} .

For n € w, let Term~,; be the set of all concat (h) such that, for some
ke w){0},

(a) h:k+3—V;

(b) R(0) € *(f(k)), where £ = (f,p);

(¢) h(1) =(() (e, h(1) =(1));

(d) h(k+2)=));

(e) (Vi <k)h(2+7) € U{Term% | m < n}.

A term of £ is any member of (J{Term% | n € w}.

Exercise 2.1. (a) Prove unique readability for terms. That is, show that
if t is a term of a language £ not belonging to Termoﬁ, then there are unique
k € wand h: k+3 — V such that ¢t = concat (h) and (a)-(e) above hold
of k and h, with (e) modified by replacing “m < n” by “m € w.” You may
(informally) prove the informal version of this fact.

(b) Would unique readabilty for terms still hold if we dropped the paren-
theses? Prove your answer.
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Formulas. Informally we can describe the formulas of £ as forming the
the smallest set satisfying the conditions

(i) if ¢; and t9 are terms, then t; = to is a formula;

(ii) if P is a a k-place relation symbol and t#,...,t; are terms, then
P(ty...tx) is a formula,

(iii) if ¢ is a formula, then so is —yp;
(iv) if ¢ and ¢ are formulas, then so is (¢ A ¥);

(v) if ¢ is a formula and x is a variable, then (3x) ¢ is a formula.

Officially we take formulas, like terms, to be finite sequences of symbols.
We let Formulaoﬁ be the set of all atomic formulas, i.e., the set of all finite
sequences corresponding to clauses (i) and (ii) above. For n € w, we let
FormulaZ ., be the set of all the sequences gotten from U{FormulaZ, | m <
n} via clauses (iii), (iv) and (v). We omit the official definition, which is
similar to that of the sets Term,,.

Exercise 2.2. (a) Prove unique readability for formulas. That is, show
that every formula either is atomic or else has a unique analysis via (iii),
(iv), or (v).

(b) Would unique readabilty for formulas still hold if we dropped the
parentheses? Prove your answer.

Officially let us define an occurrence of a variable x in a formula ¢ to be
(m, ) for any m < fh(yp) such that ¢(m) = x. Similarly define the notion
of an occurrence of a variable in a term.

By the complezity of a formula ¢, we mean the least n such that ¢ €
Formula,f. By recursion on complexity of formulas, we define the free occur-
rences of a variable in a formula. Every occurrence of a variable in an atomic
formula is free. An occurrence (m+1,-p) is free just in case the correspond-
ing occurrence (m, ¢) is free. An occurrence (m+1, (pAv)) with m < fh(yp)
is free just in case (m, ) is free. An occurrence (¢h(p) +m + 2, (¢ A ¥))
is free just in case (m,) is free. An occurrence (2, (3x)p) is not free. An
occurrence (m + 4, (Jy)p) of z is free just in case (m, @) is free and x and y
are different variables.

Models. A model 2 for a language L is a an ordered pair consisting of
(a) a non-empty set A = ||, the universe or domain of the model, and (b)
a function assigning

(1) to each constant symbol ¢, an element cg of A;
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(2) to each k-place function symbol F, a function Fy : A — A;
(3) to each k-place relation symbol P, a subset Py of ¥ A.

As a convention, when we denote a model by a Fraktur letter, then we denote
the universe of the model by the corresponding italic Roman letter.

In order to define the notions of satisfaction and truth, let us fix a
language £ and a model 2 for L.

The complezity of term ¢ is the least n such that ¢t € TermX. For terms
t and for s € <“A such that all variables occurring in ¢ belong to {v; | i <
(h(s)}, we define, by recursion on the complexity of ¢, an element ¢3 of A:

cy = cg for ca constant;
vig. = s(i);
(F(tr-.-tn)yy = Faultig,---tnd),

where “Fy (13, -..tny)” is an abbreviation for “Fy(q), where g : n — A and
q(i) = tiz1y for all ¢ < n.” Note that t§ is independent of s if no variables
occur in .

Satisfaction. We define, by recursion, for each n € w a relation
Sat® C Formula® x <“ A,

If (p,s) € Sat>, then the variables having free occurrences in ¢ must be
among {v; | i < ¢h(s)}. Also ¢ must of course belong to Formula%. We
shall omit mentioning these two requirements below.

(i) (t1 =ta, ) € Satd < t1f = tag -

(i) (P(t1...t),s) € Satd <> ¢ € Py, where ¢ : k — A and q(i) = t;413
for each 7 < k.

(i) (~p,5) € Satdy, © (o) ¢ U{Satd | m < n).

(iv) ((p A9),s) € Satp ) « ((p,s) € UfSaty, | m < n} A (4,5) €
U{Saty, | m < n}).

(v) ((Fv)) ¢, s) € Sat?,; <> (3s')(s' 2 s[domain (s)\{j} Aj € domain (s') A
(p.s") € U{Saty, | m < n}).

We let Sat® = |J{Sat> | n € w}. We say that 2 satisfies ¢[s] (in symbols,
A = o[s]) if (p,s) € Sat™. If only v;,,...,v;, have free occurrences in ¢,
then we may indicate this by writing ¢(v;,,...,v;,) for ¢. Moreover we
write 2 = ¢lai,...,a,] to mean that, for some (or equivalently, every) s
such that s(ij) = a; for each j, A = ¢[s].
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If a term ¢ has contains no variables, then we write ¢y for ¢5. 1f a formula
o has no free occurrences of variables (o is a sentence), then we write 2 = o
for A = o[s]. If o is a sentence and A = o then we say that A is a model of
o and that o is true in A.If ¥ is a set of sentences then we define

A satisfies ¥ < A=Y < Aisa model of ¥ & (Vo e X)UA = o.

Exercise 2.3. Theorem 1.4 shows that the definition above of Sat® yields
an explicit definition of Sat® from the parameter 2 and so gives us a proper
class function 2 — Sat®. Consider the language £ of set theory, which
(informally) is the set {“€”}. Think of V' as giving a “model” U with
|B| =V and with “€”y =¢€. Can Theorem 1.4 be used define, via clauses
like (i)—(v) above, a proper class Sat® C Formula® x <“V'? Explain.

A sentence or a set of sentences of a language L is valid in L if every
model 2 for £ satisfies it. A sentence or a set of sentences of L is consistent
(satisfiable) in L if some model 2 for £ satisfies it. It is easy to see by induc-
tion that validity and consistency in L of a sentence o or set ¥ of sentences
is independent of £ (for £ containing all symbols in o or X respectively),
so we shall usually omit “in £.” A sentence o logically implies a sentence
7 in £ (in symbols, o =2 7) if every model for £ that is a model of o is a
model of 7. Similarly define ¥ logically implies T in L (X }=, 7) for sets &
of sentences and sentences 7. It is easy to see that o =z 7 and X =, 7 are
independent of £, so we shall usually omit the subscript “£” and the phrase
“in L.V

A set X of sentences has Henkin witnesses if whenever (3z) p(z) € X
then there is a constant symbol ¢ such that p(c) € X, where p(c) is the
result of substituting ¢ for the free occurrences of x in (x).

Theorem 2.1 (Henkin Models). (Uses Choice) Let ¥ be a set of sen-
tences of a language L. Suppose that

(1) every finite subset of ¥ is consistent in L;

(2) ¥ has Henkin witnesses;

(3) for each sentence o of L, either o € ¥ or —o € X.
Then X has a model 2 such that card (A) < the cardinal number of the set of
constant symbols of L, where we mean by “card (A)” not the literal card (2A)
(namely 2) but rather card (A).

(The model 2 will be constructed without using Choice. We need Choice
to guarantee that the set of all constant symbols of L has a cardinal number.)
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We call a set x finite (e.g., in hypothesis (1)), if card (z) € w.

Proof. In preparation for the proof of the Completeness Theorem, we shall
explicitly record all facts about logical implication needed for the proofs
of Theorem 2.1 and Theorem 2.8. (We shall later see that all these facts
correspond to facts about a proof-theoretic notion of implication.)

Note that

A consistent <> =(IT)(AET A A= 7).

For the purpose of listing facts about =, let us take this as the definition of
consistency.

() {r}ET
(D) (AT AA CAY) = My

Lemma 2.2. Assume that A C ¥ is finite and such that A = 7. Then
T E X.

Proof. Otherwise hypothesis (3) gives that =7 € 3. By (I) and (1I),
AU{-1}E-T AN AU{-7} =T
This contradicts hypothesis (1). O

Let us call a formula ¢ prime if ¢ is either atomic or of the form (3z) ¢.
The formulas of £ constitute the smallest set containing the prime formulas
of £ and closed under the operations ¢ — = and (p, 1) — (¢ A ). This
gives rise to a variant notion of complexity of formulas, with respect to which
we may use induction and definition by recursion.

A waluation for L is a function v from the set of prime formulas of £ to
{0,1}. Given any valuation v for £ we can define by recursion a canonical
v* : Formula® — {0,1} such that v* extends v :

v*(p) = w(p) for ¢ prime;
() = 1-0"(p);
v ((pAe)) = min{v*(p),v*(¥)}.

(For n < m € w, m —n is the k such that n +k = m. It is easy to show the
existence and uniquness of such a k.)
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A formula ¢ of L is true under a valuation v if v*(¢) = 1. We say that
a set @ of formulas of L truth-functionally implies in £ a formula ¢ of L if,
for every valuation v for £, if each member of @ is true under v then ¢ is
true under v. A tautology of L is a formula true under every valuation for L.
It is easy to show by induction that truth-functional implication and being
a tautology are, in the natural sense, independent of £, so we shall usually
omit “in £”and “of £.” We write ® |= ¢ to mean that ® truth-functionally
implies .

Lemma 2.3. Suppose that A is a set of sentences of L and that 7 is a
sentence of L. If A = 7 then A f=T.

Proof. Suppose that 2 is a model for £ such that 2 = A but A = 7.
Define a valuation v for £ as follows:

0 if ¢ is not a sentence;
v(p) =< 0 if ¢ is a sentence and A j= ¢;
1 if ¢ is a sentence and A = ¢ .

It is easy to prove by induction on complexity that, for any sentence o of L,
o is true under v if and only if A = 0. Hence v witnesses that A &y 7. O

Our the next fact in our list is a weakening of Lemma 2.3.
(III) (A finite A A=y 7) = AT

The reason for not taking the full lemma as (III) will be explained later.
Let us write = o to mean that () |= o, i.e., that o is valid.
For constants (constant symbols) ¢; and ¢z of L, set

CL~Cy & cp=cy EX.
Lemma 2.4. ~ s an equivalence relation.

Proof. Note that

(IV) = c¢=c¢ for ¢ a constant.

By Lemma 2.2, this gives ¢ ~ c.
Assume that ¢; ~ cs.

E (1 =t2 = (p(t1) = ¢(t2))

(V) for ¢(z) atomic, ¢; and t2 terms without variables
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Here ¢(t;) is the result of replacing the free occurrences of = in ¢(z) by
occurrences of t;. Here also we make use of the abbreviation “—.” (See

page 2.)
With z = ¢; for p(x), we get from (V) that

)= cl] = Cy — (01201%02201).

Lemma 2.2 then implies that this sentence belongs to ¥X. Now one read-
ily checks that {o,(0c — 7)} ¢ 7 for any o and 7. By (III) and two
applications of Lemma 2.2, we get that ¢; = co € ¥ and so that ¢z ~ ¢;.
Assume that ¢; ~ ¢ and ¢y ~ ¢3. Applying (V) with = = ¢3 for p(z),
we get that
)= (02201 — (02203—>01=C3)).

Since ¢ = ¢; € ¥ and ¢o = ¢3 € X, it follows by (III) and Lemma 2.2 that
c1 = c3 € X and so that ¢; ~ c3. O

For constants ¢ of L, let [¢] = {¢' | ¢ ~ ¢}. Let

A ={[c] | ¢ is a constant of L}.

(VI) |= (E‘Ul) V1 = U1
Lemma 2.5. The set A is non-empty.

Proof. By (VI) and Lemma 2.2, the sentence (Jvy) vy = v1 belongs to X.
Hypothesis (2) yields a constant ¢ of £ such that ¢ = ¢ € ¥. Hence there is
a constant of L. O

Define ¢y = [¢] for each constant c of L.

E (Jz)Fler...cp) ==
(VII) for F' a k-place function symbol
and cy,...,c, constants

For F and cy,...,c, as in (VII), we get by (VII), Lemma 2.2, and hy-
pothesis (2) that there is a constant ¢ with F'(¢;...c;) = ¢ € X. Define

Fﬂ([cl]v T [Ck]) = [C] :

Here and hereafter we use the following notational convention: ai,...,ax
denotes the sequence ¢ of length k such that ¢(i) = a;41 for each i < k.
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We must show that this does not depend on the representatives cy,...,cg
and on the choice of c.

(tl = t2 — u(tl) = ’u(tg))

=
(VIII) for u(z) a term, ¢, and ty terms without variables

Suppose that F(ci...cx) = ¢ and F(c] ...c)) = ¢ both belong to ¥ and
that ¢; ~ ¢ for 1 <i < k. For 1 <j <k+1, let t; be the term

F(c) ... .. .cp).

(VILI) and (III) give us that ¢; = ;41 belongs to ¥ for 1 < j < k. Let
0 <i < k and assume that tx 1 ; = txr1 € . By (V),

F (k1 = terr = (Cpi—(ir1) = ter1—i = tep1—@r1) = tht1)) -

(IIT) and Lemma 2.2 then give that t;,_(;4+1) = tk41 € ¥. By induction
we get that t; =ty € X, that is, F(c1...¢;) = F(c] ... c}) belongs to X.
(V) and (III) give that F(c|...c}) = c belongs to ¥; (V) and (III) again
give that ¢ = ¢ € X.

Exercise 2.4. Prove that, for all terms ¢ without variables, ¢ty = [c] if and
only if ¢ = ¢ belongs to X.

We complete the definition of 2 by stipulating that
Py([e1]y---y[ck]) < Pler...cp) € 2.

Here we let Py(q) <> q¢ € Py, and we also use the notational convention
introduced above. The proof that the Py are well-defined is like the corre-
sponding proof for the Fy.

Lemma 2.6. Let o(x) be a formula of L, let ¢ be a constant of L, and let
B be a model for L. Then B |= ples] if and only if B = ¢(c), where p(c) is

the result of replacing the free occurrences of x in p(x) by occurrences of c.

We omit the proof, an easy induction on the complexity of ¢(x).
The following lemma completes the proof of the theorem.

Lemma 2.7. For every sentence o of L, A |= o if and only if o € X.
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Proof. We proceed by induction of the complexity of o.

Suppose o is t; = ta. Let t19 = [c1] and t29 = [c2]. The A = 0 &
[c1] =[e2] © ¢1 =2 € ¥ & (by Exercise 2.4, (V), and (III)) ¢, =ty € X.
The case that o is P(t1...t) is similar to the case that o is t; = to.
Ifois—7,thenA o & AFET & 7¢ X < (by (1) and (3)) o € X.

We have the following truth-functional implications:

{(nAm)}tEen {(nAR)}Fern {mn,n}Fw(nAR).

Ifois(mAm)thenA o & A EnandARE=n) & (€ Land r € X)
< (by (III) and Lemma 2.2) (11 A 72) € X.

= (p(c) = (3z) p(2)
(%) for ¢ a constant
Suppose that o is (3z) ¢(x). Then A = o & there is an a € A such
that A = ¢[a] < there is a constant ¢ of £ such that 2 = ¢[[c]] & (by
Lemma 2.6) there is a constant ¢ of £ such that 2 = ¢(c) < there is a
constant ¢ of £ such that ¢(c) € ¥ < (= by (IX), (III), and Lemma 2.2;
< by hypothesis (2)) (3z) ¢(x) € 2. O

Theorem 2.8. (Uses Choice) Let L be a language and let L* be obtained
from L by adding max{card (L), No} new constant symbols, where card (L)
is the cardinal number of the set of all non-logical symbols of L. Let 3 be a
set of sentences of L such that every finite subset of ¥ is consistent (in L).

Then there is a set X* D X of sentences of L* such that (1) every finite
subset of ¥* is consistent (in L*), (2) ¥* has Henkin witnesses, and (3) for
each sentence o of L*, either o € ¥* or —o € ¥*.

Proof. Let
k = max{Rg, card(L)}.

By Theorem 1.19, k<% = k. Since & is the cardinal of the set of all symbols
of L£*, the cardinal of the set of all sentences of £* is < k<%. There are at
least x sentences of £*. (Consider sentences ¢ = ¢ for constants c¢.) Thus k
is the cardinal of the set of all sentences of L*. Let

= Oq

be a one-one onto function from x to the set of all sentences of L*.

Let r be a wellordering of the set of all constant symbols of £*.

By transfinite recursion, we define sets X, of sentences of L* for o < k.
We shall arrange that

30



Yo = X
Y =U{¥s | B < A} for limit ordinals A < &;
for < a <k, ¥g C Yo

card (Eq41 \ Zo) <2 for a < k;

)
)
)
d) for a < k, every finite subset of X, is consistent (in L£*);
)
) for a < k, either oy € X471 Or 704 € Xpi1;

)

if a < kK, if 0y is (Fz) (), and if 0, € Lyt1, then p(c) € gy for
some counstant ¢ of L£*.

Once we carry out this construction, we can finish the proof by setting
¥ =%,

For @ = 0 and for limit «, we define ¥, as required by conditions (a)
and (b) respectively. Since consistency in £ implies consistency in L*,
(d) holds for @« = 0. Furthermore (d) holds for limit ¥y unless (c) fails
for some § and a < X or (d) fails for some o < A. for A in place of k. This
is because, as is not difficult to prove, if A is a finite subset of X then there
is a B < A such that A C Xg.

It follows that, however we define Y, for successor ordinals «, the small-
est ordinal v < k such that (a)—(g) fail for the X5, 5 <+, would have to be
a successor ordinal.

Assume then that o < x and that we are given X3, 8 < «, violating
none of (a)—(g).

Suppose first that A U {—0,} is consistent for every finite A C 3. Set

ZCH—I == Ea U {_la'a}.

Clearly none of (a)—(g) are violated by the g, § < a+ 1.
Before counsidering the other case, we prove the following lemma.

Lemma 2.9. Let A be a set of sentences and let o be a sentence. If AU{—o}
is inconsistent, then A = o.

Proof. We use two more facts about |=:
(X) AU{otET > AE(c—71)

(XI) C=7ANNMoel)AEo) - AET
We also need that

Ei (mo—= 1) = ((mo — —=7) = 0)).
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Suppose that A U {—o} is inconsistent. For some sentence 7, we have
that

AU{-o} s
AU{-o} E=-T.

By (X) we get that A = both (w0 — 7) and (-0 — =7). By (III) and (XI)

we get that A |=o. O

Now suppose that there is a finite A C ¥, such that A U {-o4} is
inconsistent. Fix such a A. By Lemma 2.9, we have that A |= o,.

The cardinal number of ¥, \ ¥ is < 2 - card(a) < k. Therefore the
cardinal number of the set of all new constants of £* (i.e., those that are
not constants of £) occurring in ¥, U {04} is < k. Since & is the cardinal
number of the set of all new constants of L£*, let ¢, be the r-least constant
of £* not occurring in ¥, U {04}

Let

Yat1 = Lo U {Ua}a

unless o4 is (3x) o (z) for some formula ¢,, in which case let

Ea+1 = Ea U {Uaa 3004(006)}‘

If we can prove that every finite subset of ¥,41 is consistent, then we
will have shown that (a)-(g) do not fail for the X5, 8 < o+ 1, and so we
will have completed the proof of the theorem.

Assume that A" U {o,} is inconsistent for some finite subset A’ of X,,.
By (XI), (III), and the fact that {——04} Fir 0o, we get that A" U {——04,}
is inconsistent. By Lemma 2.9, we get that A’ |= —0,. But then AU A’ is
an inconsistent finite subset of X,,.

(XII) AU{Y(c)} =7 - AU{@Ex)Y(@)} =T

for ¢ is a constant not occurring in A, ¥(zx), or 7

(If B is a model satisfying AU{(3x)y(x)} but not 7, then let b € B be such
that B |= ¢[b]. Let B’ be like B, except that cgr = b. Then B’ satisfies
A U{¢(c)} but not 7.)

Assume that some finite subset of 3,11 is inconsistent. Then ¥, =
Yo U {0a, 0alca)}, and there is a finite A C ¥, and there is a sentence 7
such that _

4 U{oa, palca)} F T3
AU {Uaa Soa(ca)} |: T

32



Using the the truth-functional implication {7, =7} ¢ 7', we may assume
that ¢, does not occur in 7. By (XII) we have

AU{0a, (37) pa(@)} =7
AU{0oqa, (F7) palz)} F 7.

But 04 is (3z) pa(x), so we have the contradiction that A, U {04} is incon-
sistent. g

Theorem 2.10. (Compactness I and Weak Lowenheim—Skolem The-
orem) (Uses Choice) Let ¥ be a set of sentences of a language L such that

every finite subset of X is consistent. Then there is a model A of 3 such
that card(2) < max{Rg, card(L)}.

Proof. Let £* be as in the statement of Theorem 2.8. Let ¥* be given by
that theorem. Let A* be the model of ¥* given by Theorem 2.1. Let 2 be
the reduct of A* to L. Clearly 2 |= 3. O

Theorem 2.11 (Compactness II). (Uses Choice) Let ¥ be a set of sen-
tences and let o be a sentence. If ¥ |= o then there is a finite A C X such
that A = o.

Proof. Suppose that ¥ |= 0. Then ¥ U {-c} is inconsistent. By Theo-
rem 2.10, there is a finite A C ¥ such that A U {—c} is inconsistent. But
then A = o. O

Exercise 2.5. Let £ be any language. A class K of models for £ is EC (is
an elementary class) if there is a sentence o of £ such that

K={A|A=o0o}.

A class K is ECp if there is a set X of sentences of £ such that
K={A|AE=X}.

Which of the following are ECA 7

(i) {2A| A is infinite} ;
(ii) {A| A is finite} .

Show that neither is EC.
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Theorem 2.12. Assume that ZFC (i.e., the set of azioms of ZFC) is con-
sistent. For variables x, let Number (x) be the formula “r is a natural
number.”

There is a model A of ZFC and an a € A such that A |= Number [a] and
such that €y [{b| b €y a} is not wellfounded.

Proof. For n € w, let x,(x) be the formula “z =n.” (x,(z) is defined by
recursion on n.) Let £* be the result of adding to the language of set theory
a constant c. Let

Y =7ZFC U {Number (¢)} U {(Vvo)(xn(vo) = vo € ¢) | n € w}.
Let A be a finite subset of . Then there is some m € w such that
A CZFC U {Number (¢)} U {(Vvg)(xn(vo) = vo € ¢) | n < m}.

Let B be a model of ZFC. For each n € w there is a unique b € B such that
B = xu[b]; let n® be this unique b. Expand 9B to a model B* for £* by
letting cg« = m™. Clearly B* = A.

Since every finite subset of X is consistent, there is by Theorem 2.10 a
model A* of 3. Let 2 be the reduct of A* to L, and let a = cg~.

To see that €y [ {b| b €g a} is not wellfounded, let

y={b|becga N (Ynecw)AE x,[b]}

Since the €g-immediate predecessor of a belongs to y, y is nonempty. For
any b € y, the €g-immediate predecessor of b belongs to y, so y has no
Eg-least element. O

Remark. If A and a are as in the statement of Theorem 2.12, then a is
a non-standard natural number of 2. In §3, we shall construct models with
non-standard real numbers.

If 2 and B are models for a language £, then 2l and B are elementarily
equivalent (A = B) if they satisfy the same sentences of L.

Theorem 2.13. Let L be a language and let k = max{Ry,card(L)}. Fvery
model for L is elementarily equivalent to a model of cardinal < k.

Proof. Let 8 be a model for £. The theory of B (Th(%B)), the set of all
sentences o such that 8 |= o, is consistent. Apply Theorem 2.10. |
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Formal Deduction
Fix a language L.

Logical Axioms:

(1) All tautologies.
(2) Identity Axioms:

(a) t=t
for ¢ a term;

(b) (tl =1y — (@(tlayla s 7yn) - @(t%yla s 7yn)))
for ¢; and ty terms and ¢(x,y1,...,y,) an atomic formula.

(3) Quantifier Axioms:

(Wt Y15 yn) = (F2) (2,915 -+ Yn),

for ¥ (x,y1,...,yn) a formula and ¢ a term such that no occurrence of a
variable in ¢ gives a bound occurrence of the variable in ¥ (¢, y1,...,yn).

Rules:

(1) Modus Ponens: w

for ¢ and ¥ formulas;

(p =)
((Fz)p — )

for ¢ and ¥ formulas with = not free in .

(2) Quantifier Rule:

Remark. In stating the axioms and rules, we have used abbreviations
involving the symbol “—” (introduced on page 2).

A deduction in L from a set X of sentences is a finite sequence of formulas
(the lines of the deduction) such that every formula in the sequence either
(i) belongs to X, (ii) is a logical axiom, or (iii) follows from earlier formulas
by one of the two rules. A deduction in L of a sentence 7 from X is a
deduction in £ from X with last line .

A set ¥ of sentences deductively implies in L a sentence 7 (X, 7) if
there is a deduction in £ of 7 from X.

Remark. 1t will turn out that deductive implication is independent of L,
but this is not as easy to prove as the corresponding fact for the semantical
notion of logical implication.
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Theorem 2.14 (Soundness). For any language L, if X - 7 then X = 7.

Proof. Let D be a deduction from 3 in £ and let 2 be any model of X. By
induction one can show that, for all lines ¢ of D and for every s (with large
enough domain), 2 |= ¢[s]. This is trivial for ¢ € 3 and is easily checked
for logical axioms. Moreover it is easy to see that applications of the rules
preserve this property. O

Theorem 2.15. For any language L, (I)~(XII) hold with “F " in place
Of “|:'7?

Remark. The modified (I11), like the original (III), remains true if the
restriction that A be finite, is removed. This is because—as is not difficult
to show—compactness holds for truth-functional implication. Our reason
for the restriction to finite A is to save ourselves the effort of proving the
unrestricted version.

Proof. (I), (II), and (XI) follow directly from the notion of a deduction,
and do not depend on our particular axioms and rules.
(IV) and (V) are Identity Axioms, and (VIII) follows from Identity Ax-
ioms (a) and (b) using Modus Ponens.
For (III), suppose that A =y 7 with A finite. Let A be {o; | i < n}.
Then
(cp = (01— ... > (o1 = 7))

is a tautology. By n applications of Modus Ponens, we can get a deduction
of 7 from A.

(VI) follows by Modus Ponens from the Identity Axiom v; = v; and the
Quantifier Axiom (v; = v; — (Jvy) vy = v1).

For (VII), note that

ety vex) = Flety.. )
is an Identity Axiom and that
(F(ct, - cx) = Fler, .., cx) = (32) Fler,.-, cx) = o)

is a Quantifier Axiom. (VI) follows from these axioms by Modus Ponens.
(IX) is a Quantifier Axiom.
(X) is commonly called the Deduction Theorem. To prove it, let D be a
deduction in £ of 7 from A U {o}. Get a new sequence D' of formulas by
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replacing each line ¢ of D by (o — ). We shall show how to turn D’ into
a deduction of (o — 7) from A by inserting additional lines.

If a line ¢ of D belongs to A or is a logical axiom, then insert ¢ and the
tautology (¢ — (0 — ¢)). The line (0 — ¢) then comes by Modus Ponens.

If a line of D is o, then the corresponding line of D’ is the tautology
(0 — o).

If a line ¢ of D comes from earlier lines ¢ and (¢» — ) by Modus Ponens,
then insert the tautology

() ((0=9) = (0= (Y = ¢) = (0= ¢))

and the formula

(1) (0= =) =(0=9).

(1) comes from the () and (o — ) by Modus Ponens, and (o — ¢) then
comes from the (f) and (o0 — (¢¥» — ¢)) by another application of Modus
Ponens.

Suppose finally that a line of D is ((3x)¢ — ) and that it comes from
an earlier line (¢ — ) by the Quantifier Rule. That earlier line corresponds
to the line (o — (¢ — %)) of D'. Insert the following lines:

(0= (p=9) = (p=(0=19))

(
Az)p = (0 = 1))

The first and fourth of these lines are tautologies. The second and fifth come
by Modus Ponens. The third comes by the Quantifier Rule. Finally, the line
(0 — ¢) comes by Modus Ponens.

It remains only to show that (XII) holds. Assume that ¥ U {¢(c)} Fg 7
and that the conditions of (XII) are met. By (X) we have that X F. (¢(c) —
7). Let D be a deduction witnessing this fact. Let y be a variable not
occurring in D. We get a deduction D' from ¥ with last line (¢(y) — 7)
by replacing each occurrence of ¢ in D by an occurrence of y. Applying the
Quantifier Rule to the last line of D', we get ((3y)¢(y) — 7). From this, the
Quantifier Axiom (¢(z) — (Jy)¥(y)), and tautologies and Modus Ponens,
we get (¢(z) — 7). The Quantifier Rule now gives ((3z)y(z) — 7). O
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Let us say that a set ¥ of sentences of a language £ is deductively con-
sistent in L if there is no sentence 7 of £ such that X F, 7 and ¥ -, —7.
Otherwise X is deductively inconsistent in L. Since deductions are finite,
a X is deductively consistent in £ if and only if every finite subset of ¥ is
deductively consistent in L.

Theorem 2.16. (Uses Choice) Let ¥ be a set of sentences of a language L.
Suppose that

(1) ¥ is deductively consistent in L;
(2) ¥ has Henkin witnesses;
(3) for each sentence o of L, either o € ¥ or —o € X.

Then % has a model A such that card (A) < the cardinal number of the set
of constant symbols of L.

(As with Theorem 2.1, Choice is needed only to guarantee that the set of
all constant symbols of L has a cardinal number.)

Proof. The proof is exactly like that of Theorem 2.1, using Theorem 2.15.
O

Theorem 2.17. Let X be a set of sentences of a language L such that X
s deductively consistent in L. Let L* be obtained from L by adding new
constant symbols. Then X is deductively consistent in L*.

Proof. Assume that X is deductively inconsistent in £* Then there is a
sentence 7, which we may without loss of generality assume to be a sentence
of L, such that ¥ F,, 7 and ¥ kg, —-7. Let D; and Dy be deductions
witnessing these facts. Let ¢y, ..., ¢, be distinct and be all the constants of
L* occurring in either of D; or Ds that are not constants of £. Let y1,...,yn
be distinct variables not occurring in D; or Dy. Obtain D] and D) from
D1 and D respectively by replacing, for each ¢, each occurrence of ¢; by
an occurrence of y;. Then D} and D), witness that ¥ F, 7 and ¥z -7
respectively.

Theorem 2.18. (Uses Choice) Let L be a language and let L* be obtained
from L by adding max{card (L), R} new constant symbols. Let ¥ be a set
of sentences of L such that 3 is deductively consistent in L.

Then there is a set ¥* D X of sentences of L* such that (1) ¥* is
deductively consistent in L, (2) ¥* has Henkin witnesses, and (3) for each
sentence o of L*, either o € ¥* or —o € X*.
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Proof. The proof is exactly like that of Theorem 2.8, using Theorem 2.15
and using Theorem 2.17 to get that Xy = X is deductively consistent in L£*.
O

Theorem 2.19. (Uses Choice) Let ¥ be a set of sentences of a language L
such X is deductively consistent in L. Then there is a model A of ¥ such
that card(2) < max{X, card(L)}.

Proof. The proof is like that of Theorem 2.10. EI

Theorem 2.20 (Gédel Completeness Theorem). (Uses Choice.) Let
3 be a set of sentences of a language L and let o be a sentence of L. If
Y=o then Lk, o.

Proof. Assume that ¥ t#z 0. Then, by the analogue of Lemma 2.9, ¥U{-c}
is deductively consistent in £. By Theorem 2.19, there is a model 2 for £
such that 2 =X U {-o}. But then ¥ [~ o. O

Because of the Soundness and Completenenss Theorems, the symbol
“¢,” is superfluous, and we shall make no further use of it.

Exercise 2.6. Let £ be a language with a one-place relation symbol F'.
Give a deduction witnessing the following

{—|(E|vl)—nF(vl)} "g —|(E|1)2)—IF(1)2).

Exercise 2.7. Suppose we replaced our Quantifier Rule with the following
additional Logical Axioms:

((p = ¢) = (Ba)p = )

for x not occurring free in .

Would Soundness still hold? Would Completeness still hold? Prove your
answers.
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3 Model theory

For the next several definitions, fix a language L.
If 2 and B are models for £, then 2 and B are isomorphic (A = B) if
there is a one-one onto f : A — B such that

(1) f(ca) = e for every constant c of L;

(2) f(Fala,...,a;)) = Fyg(f(a1),..., f(ag)) forall k € w\{0}, all k-place
function symbols of F of £, and all (ay,...,a;) € ¥A;

(3) Pylai,...,ar)) <> Pg(f(a1),..., f(ag)) for all k € w\ {0}, all k-place
relation symbols P of £, and all (a1,...,a;) € *A.

Let 2 and B be models for £. The model A is a submodel of B (A C B)
if AC B and

(1) ey = cos for all constants ¢ of L;

(2) Fy = Fg [¥A for all k € w\ {0} and all k-place function symbols F
of L;

(3) Py =PgnNFAforall k€ w) {0} and all k-place relation symbols P
of L.

We say that 21 is an elementary submodel of B (2 < B) if A C B and, for
every formula p(z1,...,x,) of £ and any elements a,...,a, of A,

A= plar,...,an) & B =play,...,a,].

The condition that A C 8 can be weakend to A C B without affecting the
defined concept. To see why this is so, note, for example, that (2) in the
definition of A C B can be deduced using the formula F'(v; ...v,) = vy41.

If A is a model for £, let £4 be the language resulting from adding
to L distinct new constants ¢ for each a € A. (This can be done in a
definable fashion.) The elementary diagram of 2 is Th(A4), where A4 is
the ezpansion of 2 resulting from setting ¢, = a.

Theorem 3.1. Let A be a model for a language L. Suppose that B* is a
model for L4 such that B* is a model of the elementary diagram of 2U. Let
B be the reduct of B* to L. Then there is a B’ =B such that A < B'.

Proof. We may assume without loss of generality that AN B = 0.
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Define f : A — B by setting

f((l) :ca%*J
for a € A. For any formula ¢(z1,...,z,) of £ and for any elements ay, ..., a,
of A,
AE=plar,...,an] < Ag Ep(c™, ... ™)
< B Ep(d™, ..., )
< B olcg, ..., cg]
< B plege, .- Cg]
< Bl olf(ar),..., flan)].

Taking for ¢ the formula vy = vg, we get that f is one-one.

Let C = range(f). Let € be the model with universe C' such that
f A=< To see that € < B, let ¢ be a formula of £ and let by, ..., b, be
elements of C. Then

= plbr,...,by] & AE[fHb),...,fLHb)] & B = [by,..., b

Let B' = (B\ C) U A. Define B’ as follows. Let ¢y = ¢y for each
constant ¢ of L. For b/ € B’ let

Vo ifb € B;
N )
““‘{fw)ﬁyeA

Now define the interpretation of function and relation symbols by setting

Fae(by, .-, b) = g~ (Fs(g(by), -, 9(b})));
P%’( llaab;c) AN P%(g(bll)vag( ;c))
It is easy to see that B’ is as required. O

Theorem 3.2. (Uses Choice) Let
L= {07 1,<,+, '}'

Let SR be the obvious model for L whose universe is the set R of all real

numbers. The model R has a non-archimedean elementary extension; i.e.,
there is a A such that R < A and

(Fa € A)(Yn € w)(0gq<ga A atg - +oa <gly).
—_———

n
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Proof. Let £* be the result of adding to Lr a new constant c. Let

Y =Th(PRr) U {0<c} U {c+ - +c<1l|n€w}.

n

Every finite subset of X is satisfied by some expansion of Sir. By Theo-
rem 2.10, let B* = X. Apply Theorem 3.1. O

Theorem 3.3. (Upward Lowenheim—Skolem—Tarski Theorem) Let
A be a model for a language L and suppose that Kk is a cardinal number such
that

Kk > card() > Vg A k > card(L).

Then there is an elementary extension B of A such that card(B) = k.

Proof. Let L* be the result of adjoining to £4 distinct new constants c,,
a < K. Let

Y =Th(As) U {cq #cp | a# B}.

Every finite subset of X is satisfied by an expansion of 4. By Theorem 2.10,
this means that there is a model € for ¥ with card(¢€) < k. But then
card(€) = k. Apply Theorem 3.1 to get B. O

If 2 is a model for a language £ and ) # B C A, then a necessary and
sufficient condition for B to be the universe of a submodel of 2 is that (i) ey
belongs to B for each constant ¢ of £ and (ii) that B is closed under Fy
for each function symbol F' of 2. The following theorem gives a necessary
and sufficient condition for B to be the universe of an elementary submodel
of .

Theorem 3.4. Let 2 be a model for a language L. Let B be a non-empty
subset of A. Then the following are equivalent:

(1) There is a (unique) B < A such that |B| = B.

(2) For every formula o(y,x1,...,zy,) of L and any elements by, ..., by,
of B, there is an element b of B such that

A= (Qy)e)|bi,.-. bn] = A E=@[b,br,...,by].
Proof. That (1) implies (2) is easy to see. Suppose then that (2) holds.

We first argue that (i) and (ii) of the paragraph preceding the theorem
are satisfied, and so there is a submodel B of 2 with universe B. If ¢
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is a constant then 2 |= (Jz)x = c¢. By (2) there is a b € B such that
A = (z = ¢)[b]. Hence ¢y € B. If F is a k-place function symbol and
bi,...,b are elements of B, then A = ((Jy)F(z1,...,2zx) = y)[b1,..., byl
By (2) there is a b € B such that % = (F(z1,...,25) = y)[b,b1,..., bkl
Thus b = Fy(b1,...,b;). This argument shows that B is closed under Fy.

By induction on complexity, we show that for all formulas ¢(x1,...,x,)
of £ and any elements by, ..., b, of B,

B = plbr,...,by] < A= l[br,...,b].

For ¢ atomic this follows from B C 2. The cases that ¢ is =7 and that ¢
is (¢ A x) are straightforward. Suppose that ¢ is (Jy) ¥(y, z1,...,zy,). If
B = @[bi,...,by], then it follows easily that 2 = ¢[b1,...,by]. Assume that
A = [bi,...,by]. By (2) there is an b € B such that 2 |= ¢[b,b1,...,by,].
By induction, B |= ¢[b,by,...,b,]. Hence B |= p[b1,...,by]. O

Theorem 3.5 (Downward Léwenheim—Skolem Theorem). (Uses
Choice) Let A be a model for a language L and let X C A. Then there
is a B < A such that X C B and card (B) < max{®g, card (X),card (£)}.

Proof. Fix a wellordering r of A. For each formula ¢ of £, let n, be 0 if
¢ is a sentence and let n, be the largest number n such that v, occurs free
in ¢ otherwise. For each ¢(vo,v1,...,vp,), let f,:"* A — A be given by

the r-least a € A such that 2 = p[a, a1, ..., an,]

fw(al,...,anw) = it A = (Elvg)go[al,...,anw];
the r-least element of A otherwise.

(The functions f, are called Skolem functions.)
Let Yy = X. For k € w let

Ypr1 =Y, U U{range (fo 1™ (Yk)) | ¢ a formula of L}.

It is easy to prove by induction that card (Y;) < max{Xo, card (X), card (£)}
for each k € w.

Let B = |J{Yk | k¥ € w}. Then card (B) < max{Ny,card (X), card (£)}.
Obviously B # (). Since B is closed under all the f,, it follows that 2 and
B satisfy (2) of Theorem 3.4, and so (1) of Theorem 3.4 holds. O

Suppose that < is a linear ordering of a set I # (). If 2;, ¢ € I, are models
for a language £ and are such that

(ViGI)(Vj GI)(in -2 C Qlj),
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then (<,(2; | ¢ € I)) is a chain of models. (By (2; | ¢ € I) we mean the
function f with domain I such that f(i) = 2; for each i. We shall often use
such notation.)

Let («,(2; | @ € I)) be a chain of models for a language £. Let A =
Uicr 4i (e, U{A4; | i € I}). We define a model 2 with universe A as
follows:

(i) For constants ¢ of L, set cy = ¢y, for some (all) i € I.

(ii) Let F be a k-place function symbol of £ and let ay,. .., a; be elements
of A. There is an i such that all the a,, belong to A;. For some (any)
such i, set Fy(a,...,a;) = Fy,(a1,...,ak).

(iii) Let P be a k-place function symbol of £ and let ay, ..., a, be elements
of A. For some (any) i such that all the a,, belong to A;, define
Pgl(al, BN ,ak) — Pgli(al, e ,ak).

Note that 2A; C A for each ¢ € I. We call % the union of the chain of models.
A chain of models («, (; | ¢ € I)) is an elementary chain if

Vie)(Vjel)(ixj— A < Q[j).

Theorem 3.6. Let A be the union of an elementary chain (<, (2A; | i € I)).
Then A; < A for every i € I.

Proof. By induction on the complexity of formulas ¢(z1,...,x,), we show
that

(Vie I)(Yay,...,an € A)(A; = @lar,...,an] < A = @lal, ..., a,]).

The cases that ¢ is atomic, that it is a negation, and that it is a con-
junction are routine.

For the case that ¢ is (Jy) for some formula ¢¥(y, x1,...,x,), let i € I
and assume first that 2; = ¢[ai,...,ay]. Then there is a b € A; such
that ; | ¥[b,a1,...,a,]. By induction, % |= ¢[b,ay,...,a,] and hence
A= gla, ..., an]

Now suppose that A = ¢[ay,...,a,]. Let b € A be such that A =
¥lb,ai,...,ay]. Thereisa j € I withi<j or i = j and such that b € A;. By
induction we get that ; = 1[b,a1,...,a,] and so that ; = plai,...,a,].
Since 2; < 2, it follows that ; = ¢[ai,...,ay). O

Exercise 3.1. Let (w; <) be the obvious model for the language {<}. (We
shall frequently specify models in this way.) For models 2 of Th(w; <)—we
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omit a set of parentheses for appearance’s sake—and elements ¢ and b of
A, say that a ~g b if there are only finitely many elements of A that are
between a and b with respect to <g. Let [a]y be the equivalence class of
a € A with respect to ~g. Say that [a]gq<<g[bly if a<gb and there are
infinitely many c such that a<ge<gb. Use elementary chains to show that
there is a model B of Th(w; <) such that <<g is a dense linear ordering of
the set of equivalence classes of ~g with no last element.

Hint. First show that, for any model 2 of Th(w; <), there is an elemen-
tary extension € of 2 with the following properies:

(1) (Va € A)(3c € O) [a]e Kclele;
(2) (Va€ A) (Va' S A)([a]gl<<gl[a,]g[ — (e C) [a]¢<<¢[c]¢<<¢[a’]¢).

(Note that [a]e = [a]y for a € A.) To show that € exists, use compactness
and Theorem 3.1. Your expanded language could have one or infinitely many
constants for each instance of (2), though one constant suffices to take care

of (1).

If A and B are models for a language £, f is an elementary embedding

of 2 into B (f : A < B or A L B) if, for all formulas p(z1,...,z,)
of £ and any elements ay,...,a, of A, A = ¢lay,...,a,] if and only if
B = olf(ar), - flan)].

A theory in a language L is a set X of sentences such that whenever
Y = 7 then 7 € ¥. A theory in £ is complete if it is consistent and, for
every sentence 7 of L, either 7 or =7 belongs to .

Theorem 3.7 (Robinson Joint Consistency Theorem). (Uses Choice.)
Let £ and L" be languages and let L = L'NL". Let T' be a consistent theory
in L'. Let T" be a consistent theory in L". Let T be a complete theory in L
such that T CT'NT". Then T' UT" is consistent.

Remark. The statement of the theorem is somewhat imprecise. By
saying that £ = £’ N L"” we mean to imply that the only common symbols
of £ and L" are those of L, and that each of these common symbols is the
same kind of symbol in the three languages.

Proof. In order to do an elementary chain construction, we need the fol-
lowing two lemmas.
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Lemma 3.8. (Uses Choice.) Let L1 and Ly be languages each of which
extends a language Lo. Let A and B be models for L1 and Ly respectively.

Suppose that
Th(2 | Lo) = Th(B | Lo),

where, e.g., A [ Ly is the reduct of A to Lo. Then there is a model A* for
L1 and there is a function g such that

(i) A <A ;
(ii) g: B[ Lo <A | Lo.

Proof. We may assume that the constants of (£1)4 \ £1 are not symbols
of (£2)p and vice versa. We may also assume that (Lo)p and (L2)p have
the same constants c’.

We first show that Th((®8 | £Lo)p) U Th(2(4) is consistent. Assume oth-
erwise. Using compactness and forming conjunctions, we get that there are
sentences o € Th((®B [ Ly)p) and 7 € Th((A)4) such that {o, 7} is inconsis-
tent. Hence o = —7. There is a formula ¢(xy,...,z,) of Ly such that o is
p(cr, ..., cp) for constants ¢y, ..., ¢, of (Lo)B\Lo. Hence p(cy,...,cp) = 7.
Since the constants cy,...,c, are not constants of (£1)4, we can apply n
times property (XII) of = and get that

(Fz1) -+ (Fzp) (21, .-, 20) E -7

The sentence (Jz1) - - - (Ixy,) p(21, - . ., x,) belongs to Th(B[Ly). By hypoth-
esis it must then belong to Th(A [ £y), and so to Th(A4). This contradicts
the fact that it implies —7.

Let € be a model of Th((B [ £Lo)p) U Th(24). By Theorem 3.1, there is
a model A* for £ such that

Q[-<Ql*%¢f£1.

The function b — cg: is an elementary embedding of B [ Ly into € | Ly

A* [ Lo, so we get a g satisfying (ii). O

Lemma 3.9. (Uses Choice). Let Ly, L1, L2, A, and B be as in Lemma 3.8.
In addition, let
fiATLy<B[Ly.

Then there are 2% and g satisfying (i) and (ii) of Lemma 3.8 and such that

(11i) go f is the identity.
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Proof. We assume that (£y)4 and (£;)4 have the same constants ¢*, and
we let (L2)4 be the extension of Lo with these same constants, which we
assume are not symbols of Ly. Let B be the expansion of B to (L2) 4 gotten
by setting c“% = f(a) for each a € A. The hypotheses of Lemma 3.8 are
satisfied by the languages (£o)4, (£1)4, and (L2)4 and the models 24 and
B. By that lemma, we get 2 and g such that

(1) Aa <A
(2) g:B[(Lo)a <A (Lo)a-

Let A* = A [ £;. Clause (i) follows from (1), and clause (ii) follows from
(2). (Note that g is literally a function with domain B.) For (iii), let a € A.
Then

9(f(a) = glcly) = e = ¢4, =a. -

Let 2o and By be models of T’ and T" respectively. Applying Lemma 3.8
with languages £, £”, and £' and models 9B, and 2y, we get B = By and
fo: o1 L < By L

Suppose inductively that we have (1) a model ,, of 7", (2) a model B4
of T", and (3) an elementary embedding f,, : 2, | £ < B,,4+1 | L. Applying
Lemma 3.9 with languages £, £, and £” and models 2(,, and 98,11, we get
Ant1 > Ay and gpi1 : Bpsr [ L < Apsy [ L, such that gp4q o fr, is the
identity. By another application of Lemma 3.9, we get B2 > B4 and
for1 : ™Una1 L < Bpyo [ L, such that f,,41 0 gn41 is the identity.

Both (<, (2, | n € w)) and (<, (B, | n € w)) are elementary chains.
Moreover, for each n € w,

fn = (fn+1 ogn+1) © fn = fn+1 © (gn+1 o fn) = fn+1 rAn .

Similarly gn+1 = gn+2 [ Bpy1 for each n € w.

Let 20 and B the unions of the elementary chains (<, (2, | n € w)) and
(<, (B, | n € w)). By Theorem 3.6, A =T" and B |=T".

Let f: A — B be given by f = J,,c,, fn and let g : B — A be given by
9 = Upew 9n- 1t is easy to see that f and g are inverses of one another and
that f: 2] L =B | L. Define an expansion € of 2 to £' U L"” by making
f:€[L"=B. The model € witnesses that T UT" is consistent. O

Corollary 3.10 (Craig’s Lemma). Let o and T be sentences of some lan-
guage such that o |= 7. Then there is a sentence 0 of the language such that
every constant, function symbol, and relation symbol occurring in 6 occurs
in both o and T and such that o =6 and 0 |= 1.

47



Proof. Let the non-logical symbols of £ be those occurring in both o and
7. Let the non-logical symbols of £’ be those occurring in o, and let the
non-logical symbols of £” be those occurring in 7. Let Ty be the set of all
sentences 0 of £ such that o = 6. If Ty |= 7, then we get the desired € by
compactness. Let then 2 be a model for £” such that 2 |= Ty U {—7}. Let
T" = Th(2A) and let T = Th(2A [ £). Let T' be the set of consequences in
L' of TU{c}. If T" were inconsistent, then compactness would give a § € T
such that # = —o. This would yield the contradiction that ¢ = —6 and
so that =0 € Ty C T. Thus the hypotheses of Theorem 3.7 are satisfied.
By that theorem, 7" U T" is consistent, contradicting the assumption that
oET. O

Let £ be a language, and let £ U {P, P'} be the result of adding to L
new k-place relation symbols P and P’. Let X(P) be a set of sentences of
L U{P} and let X(P’) result from X(P) by replacing each occurrence of P
by an occurrence of P’.

We say that X(P) defines P implicitly if

S(PYUS(P) | (Vay) -+ (Yag) (P(xy, ... 2k) < Pl(21,. .. 28)) .

(In other words, if 2 is a model for £, then there is at most on way to
expand 2 to a model of 3(P).)

We say that 3(P) defines P explicitly if there is a formula ¢(z1,...,zg)
of L such that

Y(P) = (Vo) - - (Vi) (P21, .- ., xg) < @(x1,. .., 2k)) -
Theorem 3.11 (Beth’s Theorem). (Uses Choice.) X(P) defines P im-
plicitly if and only if X(P) defines P explicitly.

Proof. The “if” part of the theorem is obvious. For the “only if” part,
assume that X(P) defines P implicitly.
Adjoin new constants cy,...,c; to L. We have that

Z(P)UE(P,) ):P(cl,...,ck)—>P'(cl,...,ck).

By compactness, we get a finite A C X(P) and a finite A’ C X(P’) such
that
AUA ):P(cl,...,ck) —>P'(cl,...,ck).

We may assume without loss of generality that A’ is the set of sentences
that result from A when all occurrences of P are replaced by occurrences of
P
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Let o(P) be the conjunction of all the members of A and let o(P’) be
the conjunction of all the members of A’. Then

a(P)No(P') = P(cr,. .. cx) = Pller, ... ).
From this it follows that
a(P)AP(c1,...,ck) Eo(P) — Pler,... cr).

By Craig’s Lemma there is a sentence 0(cy,...,c,) of LU {c1,..., ¢} such
that

(a) o(P) A Plcry...,ck) EO(cy. . ck);
(b) O(c1,y... k) Eo(P) — Pley, ... c).

From (b) we it follows that
O(cy,...c) Eo(P)— Plcr,...,ck),

and so that
o(P) E0(ci,...ck) = Plcr,...ck) .
But (a) implies that

o(P) = P(ey,...,cx) = 0(c1y ... ck) .

Hence
O’(P) |: P(Cl,...,Ck) — 9(01,...,Ck).
Since ¢y, ..., ¢, do not occur in o(P),
U(P) ): (le) s (VCEk)(P(Il, . ,Ik) — 0(1‘1, . ,:L'k)) .
Since ¥(P) |= o(P), the proof is complete. O

Exercise 3.2. Prove the Robinson Joint Consistency Theorem directly from
Craig’s Lemma.

Exercise 3.3. A model a for a language L is finitely generated if there is a
finite X C A such that there is no 8 C A with X C B. Let T be a theory
in £ and let 2 be a model for £. Assume that every finitely generated
submodel of 2 is isomorphic to a submodel of a model of T'. Show that 2
is isomorphic to a submodel of a model of T

Hint. First prove an analogue of Theorem 3.1 for C.
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Exercise 3.4. Let £ be a language containing a two-place relation symbol
R. If 2 is a model for £, then an end extension of 2 (with respect to R) is
a B 2 A such that

(Va € A)(Va € B\ A)(Rs(a,b) A ~Re(b,a)).

Let T be a theory in £ and suppose that every countable model of T" has
an elementary end extension. Show that every countable model of T has an
uncountable elementary end extension.

Assume until further notice that L is a countable language.

For n € w, an n-type (in L) is a set X(x1,...,x,) of formulas with only
the (distinct) variables z,...,z, free and such that
(1) If new constants ci,...,c, are adjoined to L, then {p(ci,...,c,) |
o(xy,...,xn) € B(x1,...,2y)} is consistent.

(2) If ¢ is a formula of £ with only z,...,z, free, then either ¢ €
Y(z1,...,xp) or € X(z1,...,Ty).

A O-type is just a complete theory.
If T is a theory in L, an n-type of T is n-type of which T is a subset.
A model A for L realizes an n-type X(z1,...,z,) if there are elements
a1,-...,ay of A such that

Vo € E(z1,...,20)) A = plar, ..., ap].

If 2 does not realize X(zy,...,x,), then we say that 2A omits X(xq,...,z,).
If A is a model for £ and Y C A, let Ly come from £ by adding the new
constants ¢® for a € Y. Let 2y be the obvious expansion of 2 to Ly-.
For infinite cardinal numbers k, a model 2 is k-saturated if, for every
Y C A with |Y| < k, 2y realizes every one-type 3(z) of Th(y). If 2 is
| A|-saturated, then 2 is saturated. If 2 is both countable and w-saturated
(i.e. Np-saturated), then 2 is countably saturated.

Theorem 3.12. Let T be a complete theory in L. Then T has a countably
saturated model if and only if, for all n € w, T has only countably many
n-types.

Proof. Suppose that 2 is an w-saturated model of . We show by induction
on n that every n-type of T is realized in 2. The case n = 0 is trivial. (So
is the case n = 1: take Y = ().)
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Let n € wandlet ¥(z1,...,2,41) bean n+1-type of T. Let X(w1,...,x,)
C ¥(z1,...,op+1) be the corresponding n-type of 7. By induction, let
ai,...,a, be elements of A such that

(Vo(w1,...,2,) € B(x1,...,2,)) A |= @lay,. .., an].
Let Y = {ay,...,a,}. Let

X (wnt1) = {p(c™, ..., " apg) [@(z1, ..o Tns1) € (21,0, Tng1)

If ¢ is a new constant, then

{¢(0) | p(@n41) € T (@nt1)}

= {90(0047'" JCaTLJC) | (p($17---7$n+1) € E(.T]_,...,$n+1)}7

and so this set is consistent. The set X*(x,,41) fails to satisfy requirement (2)
for being a type in Ly, but it satisfies (2) except for formulas ¢ of Ly that
contain an occurrence of some ¢* within the scope of a quantifier containing
the corresponding x;. Moreover X*(x,41) fails only for the same trivial
reason to include Th(2(y). Thus there is a one-type ¥**(z,,41) of Th(2ly)
such that ¥*(z,41) C X (2p+1). By w-saturation, let a,4+1 € A be such
that 2y = Y[ap41] for all ¥(zp41) € E*(xp41). Thus A = pla,. .., ant1]
for all p(zy1,...,xp41) € X(21,...,Znt1), S0 A realizes X(zq, ..., Tp41).

To see that what we have proved implies the “only if” part of the the-
orem, suppose that 2 is a countably saturated model of T. Since ™A is
countable, 2 realizes only countably many n-types. But these are all the
n-types of T.

For the “if” part of the theorem, first let % be a countable model of T'.
(Recall that £ is countable.) We show that there is a countable B such that
20 < B and, for all finite Y C A and all one-types X(z) of Th(2Ay), By
realizes ¥(x). Starting with some countable model 2y of 7" and repeatedly
applying this lemma, we get

91049114912%"',

such that each (2l;41)y is countable and realizes each one-type of (2;)y for
each finite Y C A;. The union of this elementary chain is thus countable
and w-saturated.

To show that B exists, let Let

W={Y,2(x))|Y CA A Y is finite A X(z) is a one-type of Th(2y )}
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and let £* be the language
LaUA{d"™ (Y, 5(x)) € W},

where the d¥>*(*) are new constants. Since distinct one-types of Th(2y)
give rise to distinct (]Y| + 1)-types of T', we know that each Th(2ly) has
only countably many one-types. Thus £* is countable.

Let

I = Th(2a) U {p(@""®) | (¥,5(2)) € W A o) € D(a)}

Every finite subset of I' is satisfiable in an expansion of 2 4. To see this, let
(Y,X(x)) € W. Then note that, for any finite conjunction ¢(z) of members
of ¥(z), the sentence (3x)¢p(z) € Th(™Ay) C Th(A4). Thus compactness
gives a countable model B* of I'. Using Theorem 3.1, let 8 be isomorphic
to the reduct of ®B* to £ and such that 2 < ®B. O

Exercise 3.5. Prove that a model & is x-saturated if and only if, for every
n € w and every Y C A with |Y] < &, 2y realizes every n-type X(z) of
Th(2y). (You don’t have to give the detailed argument.)

Exercise 3.6. Let T be a complete theory and suppose that all countable
models of T are w-saturated. Show that all models of 1" are w-saturated.

Exercise 3.7. A set x is hereditarily countable if the transitive closure of
is countable. Let 2 be the model for the language of set theory which has
the set of all hereditarily countable sets as its universe and which is such
that €g=€ [A. Prove that 2 realizes uncountably many one-types of Th(%).

Hint. The set P(w) is uncountable.

Theorem 3.13. Let T be a complete theory in L. Any two countably satu-
rated models of T are isomorphic.

Proof. Let 2 and B be countably saturated models of 7. Let Y C A and
Z C B be such that Y and Z are finite. Let Y = {ay,...,a,}. Suppose that
f:Y — Z is one-one onto and is such that, for all formulas ¢(z1,...,x,)
of L,

A= pla,...,an] & B Eo[f(ar),..., flay)].
Let a € A. We show that there is a b € B such that, for all formulas
o(xy,...,xp41) of L,

AL plar,....anal ¢ B E p[f(ar),.... flan),b].
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To show this, let ¥(x,41) be the one-type of Th(2y) given by a. Let

ij(xn-i-l) = {So(cf(al)a s 7Cf(an)7 zn-i—l) | So(cala s 7can7xn+1) € E(:L.n-l-l)} .

Clearly X(x,41) is a one-type of Th(B). By saturation, B, realizes this
one-type. Let b witness this fact.

We can prove by the same method that for every b € B thereisana € A
such that, for all formulas p(z1,...,2,41) of L,

A E=plar,...,an,a] < B Ee[flar),..., f(an),b].

Since A and B are countable, these facts allow us, starting with the
empty f: 0 — ), to construct by recursion an isomorphism g : A = 8B. O

Theorem 3.14. Let T be a complete theory. Any two saturated models of
T of the same cardinality are isomorphic.

Proof. The proof is a direct generalization of the proof of Theorem 3.13,
So we omit it. U

Let T be a theory (in £). A type X(z1,...,xy,) of T is principal if there
is a finite A(z1,...,2,) C X(x1,...,x,) such that, for all ¥(x1,...,2z,) €
(21, 2p),

(V1) - (Vo) (MA(z1, -y zn) = (21,0 y2p)) €T,

where M\A(z1,...,z,) is the conjunction of all the formulas belonging to
A(zy,y...,Tp).

Theorem 3.15. Let T be a theory in £ and let n € w. The following are
equivalent:

(a) There is a non-principal n-type of T
(b) There are infinitely many n-types of T' (for fized x1, ..., xy).

Proof. To show that (a) implies (b), let ¥(z1,...,z,) be a non-principal
n-type of T. Let k € w and assume that

Eo(xl,... ,:L'n),... ,Zk,l(xl,... ,CL‘n)

are the only n-types of T' that are distinct from X(zy,...,x,). For each
1 < k let

0i(x1y.. . ) € B(x1, ... xp) \ Bilz1, ..., 20) -
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Let A(zy,...,z,) ={¢i | i < k}. Since X(x1,...,x,) is non-principal, there
isay(ry,...,xy) € Z(wl, .., &p) such that

I' = TU{(3z1) - Czn) (MNA(z1,. .. 20) A (x1,...,20))}

is consistent. Let 2 be a model of I'. Let aq,...,a, be members of A such
that
A = (MA(z1,...,z0) A (21, .., 20)) a1, ..., an].
Then
{1, .. an) | A= plar, ... an]}

is an n-type of T' that is distinct from X(x1,...,z,) and from each of the
(w1, .. Tn).

For the implication from (b) to (a), let ¢;, i € w, be all formulas of
L with only x1,...,z, free. Let kK € w and assume inductively that, for

each ¢ < k, v; is either ; or —p;. Also assume inductively that there are
infinitely many n-types of T' that include {¢; | i < k}. Obviously there is a
choice of @y that satisfies our induction hypotheses for £ + 1. Thus we get
{¥i | i € w}, an n-type of T'. If A(xy,...,x,) witnessed that this type were
principal, then there would be a k with A(zy,...,z,) C {¢; | i < k}. But
infinitely many n-types of 1" include this set. O

Theorem 3.16. Let T be a theory in L and let X(xy,...,x,) be a non-
principal type of T. Then T has a countable model that omits X(x1, ..., zy).

Proof. Let ¢;, i € w, be new constants. Let £* = LU {¢; | i € w}. We
shall construct a theory 7% O T in £* such that

1
2
3
4

T* is consistent;
f (3z)p(x) € T* then p(¢;) € T* for some i € w;

(1)
(2) i
(3) T* is complete;

(4) for alliq,..., i, € w, thereis a p(x1,...,2,) € X(x1,...,2zy) such that
o(Ciyyennyc) T

The existence of such a 7™ suffices to prove the theorem, as the following
argument shows. The proof of Theorem 2.1, with 7" for the ¥ of that
theorem, gives a countable model 2* of 7™ such that

A* = {cg~ | ¢ is a constant of L*}.
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For any constant ¢ of £*, an application of (2) with ¢ = = for ¢(z) shows
that every there is an ¢ such that ¢ = ¢; € T*. Thus

A" ={cia-

i€ w}.

This and (4) imply that the reduct of A* to £ omits X.

To construct T, we follow the proof of Theorem 2.8, with an extra step
to take care of (4).

Let o;, i € w, be all sentences of L* Let ((¢)1,...,(¢)n), ¢ € w, be all
elements of "w.

By recursion, we define sets X, of sentences of L* for « < w. We arrange
that

EUZT;

Yo =U{Zh | n €w};
fori <a<w, ¥; CYy;

card (3,11 \ X;) <3 fori € w;

)
)
)
d) for @ <w, X, is consistent;
)
) for i € w, either o; € ¥;11 or =0y € Xji1;
)

ifi € w, if o is (Iz) (), and if 0; € E;41, then ¢(c;) € ;41 for some
J € w;

(h) for ¢ € w, there is some ¥(zy,...,x,) € X(z1,...,2,) such that
~P(Cliyys s Ciy,) € Dig-

Once we carry out this construction, we can finish the proof by setting
T =%,

Assume that 7 € w and that we are given ¥;, j < 4, violating none of
(a)—(h).

If ¥; U{—o;} is consistent, then let X! = X; U {—o;}. Otherwise let
¥ = %; U{o;} unless o; is (Jy)p;i(y) for some ¢, in which case let X} =
¥ U{oi, pi(cj)}, where j is minimal such that ¢; does not occur in X; or o;.

Let 21, ..., zp be distinct variables not occurring in any member of 37\ T'.
Let 7 be the conjunction of all sentences in X} \ T. Let 7 come from 7 by
replacing, for 1 < m < n, all occurrences of z,, by occurrences of z,,. (The
point of this replacement is to make sure that no c;),, occurs in the scope

of (3z,,).) Let ¢jj,...,cj, be all the new constants occurring in 7 that
are not among cg,, ..., @), Let yi,...,yg be variables not occurring in 7
that are distinct from one another and from x1,...,z,. There is a formula

X(Y1s - - Yk> T1, - - -, T) Of L, such that 7 is x(cjp, .-+, ¢, Caypse e v 5 €0, )
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We show that there is a ¢(z1,...,2,) € X(2z1,...,2,) such that X} &
Y(C@)ys -+ -+ C), ). Assume otherwise. Then

TU {X(le,... 3 Clr Cli)y s - - 7C(i)n)} ): ’l,ZJ(C(i)l,... 7C(i)n)

for each ¢(z1,...,2z,) € E(x1,...,2z,). Properties (XII) and (X) of = imply
that

T (Jy) - Cur) XYLy - Yks Cayro - €)= PG+ -5 Ca)

for each ¥ (x1,...,2,) € X(21,...,25). Let X' (y1,--., Yk, 1,.-.,2y) be the
result of adding conjuncts x,, = T to X (Y1, ..., Yk, L1,...,Tp) for 1 <m <
m’ < n such that (i),, = (¢),. Then

T ): (Vxl) T (Vl"n)((zlyl) T (Elyk) X,(yla---aykal"la ce ,xn) — 1,[1(331,...,33n))

for each ¥ (x1,...,2,) € X(z1,...,2,). The sentence

(Fy1) - Cyr) X' W1y -+ Yk Cliyys - -5 €G0))

is logically implied by 7, so by 7, and so by X!. Hence this sentence is
consistent with 7'. If the formula

(Fy1) - Cye) X' W1, Yk T15 - -, Tp)

does not belong to X(z1,...,x,), then we get a contradiction by taking its
negation for ¢ (x1,...,z,). Otherwise the formula witnesses that X (z1,...,zy)
is principal, a contradiction.

Let Y1 = X} U{=¢(cy,,---»ca),)} for some ¢(z1,...,2y,) of the sort
we have just proved to exist. O

If T is a theory and k is a cardinal number, then 7" is k-categorical if
any two models of T" of cardinal x are isomorphic.

Theorem 3.17. Let T be a complete theory. Then T is Ng-categorical if
and only if, for every n € w, T has only finitely many n-types.

Proof. Suppose first that 7" has, for each n, only finitely many n-types.
We show that every model of T' is w-saturated, and so that every count-
able model of T is saturated. By Theorem 3.13, this implies that 7" is
Np-categorical.
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Let 2 be a model of T. Let Y = {by,...,by} be a finite subset of A.
Let X(z1,...,x,) be an n-type of Th(2y). Let X(x1,...,Tptm) be
{o(x1,. . Tpypm) | 0(@1, .y an, Py ™) € B(a,. .., 2,)}
Clearly S(Z1, ... Togm) 1S an_(n + m)-type of 7. By Theorem 3.15, let
A(z1, ..., Tpym) witness that X(x1,...,Tp4m) is principal. If ¢1,..., ¢, are
new constants, then

{olet, .. en, o ™) | (e, .. Tngm) € A(wl,...,xn+m)}

is consistent with Th(2y). Let A(zy,...,z,) be

{o(@1, ... mn, ) (2, Tpam) € Az, .., Tgm) } -
Then
(Fz1) - Fzp) MNA(2z1, ..., z5) € Th(Rly) .

Let ai,...,a, be such that Ay = (MA(z1,...,2z,))[a1,...,a,]. Because
the set A(z1, ..., Tpim) witnesses that (z1, ..., Zpim) is principal, we have
that A = ¢lay, ... ,ap,b1,...,by] forall p(zy,. .., Thim) € f](:z:l, e Tpm)-
It follows that 2y = v¥lay,...,a,] for all ¥(z1,...,z,) € (z1,...,Zy,).
Now suppose that n € w and that 7' has infinitely many n-types. By
Theorem 3.15, let X(z1,...,2,) be a non-principal n-type of T'. Clearly
T has no finite models. Thus it is enough to show that 7" has a count-
able model that realizes ¥(zy,...,z,) and a countable model that omits
Y(x1,...,25). The former can be proved by a simple compactness argu-
ment and the Lowenheim—Skolem theorem. The latter is a consequence of
Theorem 3.16. O

Ezample of an Ro-categorical theory: Let £ be {<}. Let T be the theory
of dense linear orderings without endpoints.

To see that T is Ng-categorical, let 21 and %6 be countable models of T'.
Let aq,...,a, be elements of A and let by, ..., b, be elements of B. Suppose
suppose that a; — b; is order preserving (i.e., that a;<ga; if and only if
b;<s3bj). Let a € A. One of the following must hold:

(i) a = a; for some i;
(i

) a<ga; for all 4;
(iii) a;<ga for all 7;
)

(iv) a;<ga<sgaj for some ¢ and j such that there is no ay, with a; <gap <ga;.
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Since B = T, there must be a b € B such that whichever of (i)-(iv) holds
continues to hold when each occurrence of the letter “a” is replaced by “b”
and each occurrence of “A” is replaced by “%”. Choosing such a b, we can
send a to b and extend the given order preserving correspondence. This
argument and its dual allow us to show 2l = B by a construction like that
of the proof of Theorem 3.13,

The argument allows us, moreover, to construct an isomorphism extend-
ing any given order preserving correspondence between finite subsets of A
and B. Hence our given (a; | i < n) and (b; | i < n) satisfy exactly
the same formulas in their respective models. This shows that each n-type
Y(x1,...,2,) of T is determined by a conjunction of formulas of the forms
x; = xj and z;<x;.

We finish our study of types by discussing briefly the concept of stability.
For cardinal numbers x, a theory T is k-stable if, for every model 2L of T
and every Y C A, if card (Y') < & then Th(2(y) has < k one-types. A theory
T is stable if T is k-stable for some infinite .

Theorem 3.18. Let T be a theory in L. If T is w-stable, then T is k-stable
for every infinite k.

Proof. Let k be an infinite cardinal, and suppose that 1" is not k-stable.
Let 2y witness this fact. By recursion on ¢h(s), we define for each s € <%2,
a formula ¢s(z) of Ly. We shall arrange that

(a) for each s € <¥2, @, 1m(s),00} 18 the negation of Y,urm(s),10};

(b) for each s € <¥2 there are more than k one-types of Th(2ly) that
include {¢; | t C s}.

It will follow that the {5 | s C x}, x € “w, can be extended to distinct one
types of Th(247), where Z is the set of all @ € Y such that ¢* occurs in some
Ps.

Let ¢y be © = . Let s € <“Yw and assume that ¢, is defined for ¢ C s
and has property (b). Let n = (h(s). If we cannot define ¢, 1/ 0y and
Psuf(n,1)} SO as to satisfy (a) and (b), then there is a type () of Th(2ly)
such that {¢; | t C s} C ¥(z) and such that, for any ¢¥(z) € E(z), no
more than x one-types of Th(2y) include {¢; | ¢ C s} U {—e}. Thisis a
contradiction.

g
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Exercise 3.8. Show that the theory of dense linear orderings without end-
points is not w-stable.

Hint. Consider the model (Q; <), where Q is the set of all rational
numbers. Let Y = Q.

Exercise 3.9. Let T" be a complete theory with a countably saturated
model. Prove that I' has a model that is atomic, i.e., realizes no non-
principal types.

Hint. Generalize Theorem 3.16.

Exercise 3.10. Let add constants ¢;, ¢ € w to the language {<}. Let T
be gotten from the theory of dense linear orderings without endpoints by
adding the additional axioms ¢;<c; for ¢« < j € w. Prove that there are
exactly 3 non-isomorphic expansions of (Q; <) to a model of 7. Which of
these is saturated and which is atomic?

Exercise 3.11. Show that the theory of algebraically closed fields of char-
acteristic 0 is not Wy-categorical but is k-categorical for every uncountable
cardinal .

We now drop our assumption that L is countable.

Let £ be a language, let I be a non-empty set, and let 2;, ¢« € I be
models for L. Let U be an ultrafilter on I.

We define 2 = [[;c; /U, the ultraproduct of (A; | i € I) with respect
to U, as follows:

Let [[;c; Ai be the set of all functions f such that domain (f) = I and
each f(i) € A;. For elements f and g of [ [;; A;, define
fruge{iel| f(i) =g} el.

Let [f],, be the equivalence class of f with respect to the equivalence relation
~UYy- Let

A={lfl | re]]A}-
el
If P is a k-place relation symbol of L, let

If ¢ is a constant of £, let cyq = [f];,, where f(i) = cy,. If Fis a k-
place function symbol of L, set Fy([f1],,---,[fuly) = [f]y, where f(i) =
Fy, (f1(3),... fn(3)). It is easy to check that 2 is well-defined.
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Theorem 3.19 (Los). (Uses Choice) For each formula ¢(x1,...,z,) of L
and for any elements f1,..., fn of [[;cr Ais

[T2/t b= ellfilys - Liald < GET A= @lfi(0) .-, falD]} €U
el
Proof. Let 2 = [[;c;%i/U. We proceed by induction on ¢. We omit the

subscipt “U.”
The case that ¢ is atomic is essentially by definition. If ¢ is =), then

A = LAl Lfall if and only if & b G{[A],..., [fu]l. By induction,
this holds if and only if {¢ | A; = ¥[fi(¢),..., fu(i)]} ¢ U. Since U is an

ultrafilter, this holds if and only if {i | 2; = ¢[f1(9),..., fn(?)]} € U. We
omit the routine case that ¢ is a conjunction.
Suppose that ¢(x1,...,2,) is (Jy) ¥(y,x1,...,2,). Then

A= Qlfil,-- [l & GacA)AEva,[fi], - [fal]
& Fge[A)AE¢llgl LAl [fal]

el
o (@Age]]A) i1k, f1(0),. .., fu@)]} €U
el
« {i|(3FeA)A; = b, f1(i),..., fa(@)]} €U

The Axiom of Choice is needed to show that the next-to-last line implies
the third-to-last line. O

Exercise 3.12. Use ultraproducts to prove the Compactness Theorem.

Hint. Let X be a set of sentences every finite subset of which is consistent.
Let I be the set of all finite subsets of X.

Exercise 3.13. Assume that £ is countable. Let U be a non-principal
ultrafilter on a countable set I, i.e., an ultrafilter to which no singleton {i}
belongs. Prove that every ultraproduct [ ], ?;/U is ¥;-saturated.

Hint. First show that there are elements Uy, & € w, of U such that
Miew Uk & U (indeed, so that the intersection is empty). Then, given a
one-type, choose f so that, for i € [\, Up \ Uy, f(i) satisfies in %4; the
first k formulas of the type.
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Exercise 3.14. An ultraproduct of the form [],.;2/U is called an ultra-
power, and we may call it 4/ /U. For any ultrapower ! /U, define an ele-
mentary embedding j : % < 2! /U.

Exercise 3.15. For « a cardinal number, an ultrafilter I/ is x-complete if
the intersection of any set of fewer than k elements of I/ belongs to U. A
countably complete ultrafilter is one that is N;-complete.

Suppose that I/ is a countably complete ultrafilter on a set I. Let A be
any set. Let B = (4;e€[A4)! /u.

(a) Prove that €g is wellfounded.

(b) Suppose that ¢/ is non-principal. (The existence of a countably com-
plete, non-principal ultrafilter cannot be proved in ZFC.) Show that there
is a largest cardinal k such that U is k-complete. Assume that A is tran-
sitive and that kK € A. Let j be the embedding defined in the (natural)
solution to Exercise 3.14. Let By be the set of all “ordinals” of 8. Prove
that 7 : (Bo; €s[By) = (8; € [8) for some ordinal 5 and some 7. Prove that
K is the smallest ordinal number « such that 7 (j(a)) # a.

Exercise 3.16. The solution to Exercise 3.12 suggested by the hint used
Choice (1) to get that every filter can be extended to an ultrafilter and (2)
because the proof of Theorem 3.19 used Choice. (One use was mentioned; an
implicit use was to get [ [;o; A; non-empty.) Eliminate the uses (2) of Choice
by employing a different I from that suggested in the hint to Exercise 3.12.

In the next section we shall study theories and models of arithmetic. We
close the section on model theory by proving a result about a fragment of
the main theory of the next section.

If iy < -+ <ip and if p(vi,,...,v;,) is a formula containing free occur-
rences of all of v;,...,v;, , then the universal closure of ¢ is the sentence
(Vvi, ) -+ - (Vi) . The universal closure of a sentence is the sentence itself.

If ¥ is a set of sentences and ¢ is a formula, then we say ¥ |= ¢ if
Y |= the universal closure of ¢. A formula is valid if its universal closure is
valid. Formulas ¢ and 9 are equivalent if (p <> 1) is valid, and ¢ and ¢ are
equivalent in T, for T' a theory, if T |= (¢ <> ¢).

A theory T in a language £ admits elimination of quantifiers if every
formula of £ is equivalent in 7" to a quantifier-free formula.

Theorem 3.20. Let T be a theory. Assume that, for every formula ¢ of
the form

(El*r)(Xl AN /\Xn)u
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with each x; atomic or the negation of an atomic formula, is equivalent in
T to a quantifier-free formula. Then T admits elimination of quantifiers.

Proof. Suppose first that ¢ is of the form (3x) ¢, with ¢ quantifier-free.
It is easy to see that every quantifier-free formula is equivalent to one of the
form

((X171 AL /\lenl) V...V (Xm,l VAN /\Xm,nm))u

with each x; ; atomic or negation of atomic. Thus we assume ¢ is

(Fz) (X110 A A X)) VooV (Xma A e oo A Xongn ) 5

with each x; ; atomic or negation of atomic. But this formula is equivalent
to

((F)(x1i Ao A X)) VooV (32) (ma Ao A Xongnn ) -

By hypothesis, each of the disjuncts is equivalent in 7' to a quantifier-free
formula. Hence ¢ is equivalent in 7" to a quantifier free-formula.
The theorem now follows easily by induction on ¢. O

Let £ = {0,S}, where 0 is a constant and S is a one-place function
symbol. For n € w, let us abbreviate

S(---S(t)--)
—_——

n n
by S"(t).
Theorem 3.21. Th(w;0,S) admits elimination of quantifiers.

Proof. Let T = Th(w;0,S). By Theorem 3.20, it suffices to prove that every
formula of the form (3z)(x1 A ... A xn), with each x; atomic or negation of
atomic, is equivalent in 7" to an quantifier-free formula. Fix a formula of
this form.

If ¢ and ¢’ are formulas and 1/ does not contain a free occurrence of
the variable y, then (Jy) (v A 4') is equivalent to ¢ A (Jy)y'. Thus we may
assume that each x; has an occurrence of the variable x.

By the symmetry of identity, each atomic formula of £ that contains an
occurrence of x is equivalent to one of the form

S7(x) = 8*(1)

where t is 0 or a variable. If ¢ is x, then S7(z) = S¥(t) is equivalent in T to
0 =0 if j = k and equivalent to 0 # 0 if j # k. Thus we may assume that
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for each y; there are j; and ¢;, where ¢; is a term not containing z, such that
Xi is the equation SJi(z) = ¢; or else is the negation of this equation.

If each x; is the negation of an equation, then it is evident that (w;0,S)
satisfies the universal closure of (3x)(x1 A... A Xn), so this formula is equiv-
alent in 7" to 0 = 0.

Suppose then that some Y; is S/i(z) = ;. In each x,,, m # i, we replace
Sim () = t,, by SIm(t;) = S%(t,,). If we also replace y; by

t; A0 A ... /\ti#sjifl(())

(or by 0 = 0 if j; = 0), then we get a formula equivalent in 7' to our original
one. The new formula is (3z) 1, where ¢ has no occurrences of x; so it is
equivalent to the quantifier-free formula ). O

From the proof just given, one can extract a list of axioms for Th(w; 0, S)
(an infinite list). This gives us a decision procedure for Th(w;0,S), an
algorithm for deciding whether any given sentence belongs to the theory.
(Simply list all deductions from the axioms until one is found of the sentence
or its negation.) The proofs of Theorems 3.20 and 3.21 also directly provide
a decision procedure.
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4 Incompleteness

The theory of (w;0,S, <), like that of (w;S), admits elimination of quanti-
fiers and is decidable (has a decision procedure). The same is essentially true
of Th(w;0,S,<,+), though this theory doesn’t literally admit elimination
of quantifiers.

Let M = (w;0,S8,<,+,-). The situation with Th(NM) is quite different
from that of its reducts just mentioned. We shall see in this section just
how different it is.

Let £P4 be the language {0,S,<,+,-}, for which we take 9 to be a
model.

Peano Arithmetic (PA) is the natural attempt to axiomatize 9. Peano
Arithmetic is the set of sentences implied by the following axioms:

Axioms for PA.

(a) Universal closures of the following formulas (where we employ some
obvious abbreviations and conventions):

(1) 0% S(vo);

(2) S(vo) = S(v1) = vo = vi;
(3) v0%0;

(4) vo<S(v1) > vp<uvy;

(5) vo+0 = vy;

(6) vo+S(v1) = S(vo+v1);
(7) vo-0 =0;

(8) wp+S(v1) = (vo-v1)+wp.

(b) The Schema of Induction, consisting of the universal closures of all for-
mulas of the form:

((p(0,21,...,xn) A (Vo) (p(z0,- .- 2n) = ©(S(z0), 1, .., 2y,)))
— (Vo) p(x0, ..., 2pn)) -

We wish to study a sufficiently strong finitely aziomatizable subtheory of
PA. For technical reasons, it is easier to work in a language with exponenti-
ation, so we first consider a theory QE which is not literally a subtheory of
PA. (In this, and in some other things, we are following Herbert Enderton’s
A Mathematical Introduction to Logic.)
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Let LPAE = LPAU{E]}.
QE is the set of sentences implied by Axioms (1)-(8) above and two
additional axioms, the universal closures of:

(9) wE0 = 5(0);
(10) vo ES(v1) = (vg Evy)-vg .
Let N = (w;0,8, <, +, -, F), where E(a,b) = a’. Clearly 2 |= QE.
Lemma 4.1. For all k € w,
QE = (z<S¥1(0) & (x =0V ... vz =S*0))).
Proof. We proceed by induction on k. By Axiom (4),
QE = (z<S*1(0) & (z<SF(0) v = = S¥(0))).

If £ = 0, our conlusion follows by Axiom (3). If £ > 0, it follows by induction.
O

Lemma 4.2. Ift is a term without variables and k = tyyv, then
QE =t = S¥(0).

Proof. We use induction on the complexity of t. The case that ¢ is O is
immediate.

Assume that ¢ is S(u). By induction, QE = u = S"% (0). Hence QE |=
S(u) = S“x +1(0).

Assume next that ¢ is u; + ug. Let j; = (u1)or and let jo = (u2)gv. By
induction, QE = u; = $71(0) and QF }= uz = $72(0). Axiom (5) and jo
applications of Axiom (6) give that

QE = sj1(0)+sj2(0) - Sj1+j2(0) )

Applications of Axioms (7) and (8) give that QE = S71(0)-S72(0) =
SJ172(0), for any j; and j» € w. This allows us to handle the case that ¢
is ui-ug. The case that t is u; Eug is treated similarly, using Axioms (9)

and (10). O

Let T be a theory in a language £ containing 0 and S. A formula
o(v1,...,vy,) of L represents R C "w in T if, for all elements ay,...,a, of
w?

Rlar,...,an) — T E@(S™(0),...,8"(0));
“R(a1,...,an) — T —p(S™(0),...,5%(0)).
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If some formula represtents R in 7', then we say that R is representable in
T.

Representability is related to definability. If 2 is a model and R C " A,
then R is definable in 2 if there is a formula p(vq,...,v,) of £ such that,
for any members aq,...,a, of A,

R(ai,...,an) < AE=plag,...,a,].

For such a ¢, we say that ¢ defines R in . The relation between repre-
sentability and definability is the following. Suppose that 2 is a model of a
theory T in a language containing 0 and S. Suppose also that A = w, that
09 = 0, and that Sg = §. Then any formula that represents a relation in T’
also defines that relation in 2. The converse is not in general true.

We shall define representability of functions as well as of relations. A

natural definition would be: “p(v1,...,v,41) represents f in 7" if and only
if  represents the graph of f in T')” where the graph of f is the (n 4+ 1)-ary
relation that holds of (aq,...,ap4+1) if and only if f(aq,...,a,) = apy1. For

technical reasons, we shall define a stronger notion, though it will turn out
that the two notions are equivalent for any 7' containing Axioms (1)—(4).

If f:"w — wand T is a theory in a language containing 0 and S, then
a formula ¢(vy,...,v41) represents f in T if, for all aq, ..., ap,

T |5 (Vope1)(9(S"(0),..., 5 (0),vn11) ¢ g1 = ST“4)(0)).

Say that f is representable in T if some formula represents f in 7T'.

Note that if 7' contains Axioms (1) and (2) and ¢ represents f in 7" then
¢ represents the graph of f in T'. We shall say that T" proves p(v1,...,vp41)
functional if

T E (Yoi) - (Vop)(Funs1) (Vongo) (0(v1, - - -, Un, Ung2) 43 Ongo = Ung)

If T proves ¢(vy,...,v,+1) functional and ¢ represents the graph of f in T,
then ¢ represents f in 7. The converse does not hold in general.

Exercise 4.1. Show that, for every sentence o of £LPAF that is atomic or
negation of atomic,

QEEo + NEo.

Exercise 4.2. A formula ¢ of LPAF belongs to Ag (or, as we shall say, is
Ay) if ¢ belongs to the smallest set containing the atomic formulas and
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closed under negation, conjunction and bounded quantification. Closure of
Ay under bounded quantification means that

(Fz)(z<t A ) € Ap;
“A“{ (E) (<t A ) € Ao,

for any term ¢ not containing z. The ¥; formulas of LFAEF are those of the
form (3zy1)--- (Jzy) ¥, where ¥ is Ay.

(a) Prove that, for any Ay sentence o, QE o + N |=o.

(b) Prove that, for any 3y sentence o, QE =0 < 9 Eo.

A function is primitive recursive just in case (I)-(III) below require it
to be. (L.e., the primitive recursive functions form the smallest set of func-
tions containing the functions of (I) and closed under the operations of (II)
and (I1I).)

(I) The following are primitive recursive.
(a) S:w— w;
(b) I :"w — w, for 1 < i <n €w, where I*(a1,...,an) = a;;
(c) All constant functions f : "w — w.

(IT) (Composition) If f : ™"w — w and ¢1,...,9m : "w — w are primitive
recursive, then so is h, where

h(alu"'Jan) = f(g].(a].J"'?aTb)?"'JQm(a].?"'?aTb))'

(III) (Primitive Recursion) If f : "w — w and g : ""2w — w are primitive
recursive, then so is h, where

h(ai,...,an,0) = f(ay,...,an);
h(a17"'7an78(b)) = g(a17"'7an7b7h(a17"'7an7b))'

We allow functions of zero arguments (e.g., the f of (III)), all of which
are primitive recursive by (I)(c).

A function is recursive just in case it is required to be by (I)-(III), with
“primitive recursive” replaced by “recursive,” plus (IV) below.

(IV) (u-Operator) If g : "*lw — w is recursive and
(Vay € w) -+ (Ya, € w)(Ib € w)gla,...,an,b) =0,
then f is recursive, where
flay,...,ap) = pbg(ay,...,a,,b) =0,

and where “ub” means “the least b.”
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Lemma 4.3. The relations and functions representable in QE are closed
under complement, intersection, union, and bounded quantification. Inter-
section and union we construe as operations acting on pairs of relations
that are subsets of the same "w. Bounded quantification is the operation
(f,R) — R', where

R,(a17 s 70’71) A (Elan+1)(an+1 < f(a].J' o 7an) N R(ab' o 7an+1)) :

Proof. If ¢ represents R, then -y represents the complement of R; if ¢
and 1 represent R and R’ respectively, then ¢ A 1) represents RN R'; if ¢
and 1 represent R and R’ respectively, then ¢ V v represents R U R'.

To prove closure under bounded quantification, assume that ¢ (v, ..., v541)
and ¥ (vy,...,v,41) represent f and R respectively.
Let x(v1,...,v,) be, for some appropriate variable z,

(Fun41)(32)(p(v1, - -, 00, 2) A vpp1<z A P(v1, ..., Un,Vn41)) -

To see that x represents R’ in QE, fix numbers aq,...,a,. Since ¢
represents f, we have that

QE E (¥2)(p(S™(0),...,58%(0),2) > z = S/ (@-an)(0)) .
Thus x(S*(0),...,S%(0)) is equivalent in QE to
(Fvns1) (a1 <S L4 (0) A $(S*(0),...., 5 (0), vn41)) -

By Lemma 4.1, x(S%(0),...,S%(0)) is equivalent in QE to
$(8*(0),...,5%(0),0) V...V (8" (0),...,8°(0), S/ (@) "1 (0)),
(or, say, 0 # 0 if f(ai,...,a,) = 0). Since ¥ represents R, this formula
is provable or refutable in QE according to whether or not R'(ay,...,ay)

holds. O

Lemma 4.4. All the functions under clause (I) (in the definition of the
primitive recursive functions) are representable in QE.

Proof. Their graphs are represented by atomic formulas which QE (indeed,
every theory) proves functional. O

Lemma 4.5. The functions representable in QE are closed under composi-
tion (I1I).
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Proof. Given representable f and gi,...,¢gm, as in the statement of (II),

let ¥1(v1,...y0n41), - s ¥m(v1,...,vp41) Tepresent gi,..., g, respectively
and let x(vi,...,vm41) represent f. Let p(vy,...,v,41) be, for appropriate
variables z1,...,Tm,
(Fx1) -+ (Fzm) (Y1(v1, .o yon, 1) A
AV (U1, -« Ony ) A X(T1y - oy Ty Ung1)) -
Let ai,...,a, € w. For each j,

QE = 4;(S“(0),...,8%(0), ;) ¢ z; = S%(@1-0)(Q).
Thus QE =
©(S™(0),...,S8% (0),v,41) < x(S9(@10n) (), . §9m(a1an) (0) v, ).
But QE =

X(Sgl(al""’a")(O), o ng(aly"';an)(0)7 Un+1)
& Vpy1 = Sf(g1(a1,-s0n),e s gm (a1, 0n)) (0)) .

Therefore QE |=
(Fon 1) (£(S" (0), ., 8% (0), vm1) > vy = S/ )@t ()
g

Lemma 4.6. A relation R is representable in QE if and only if its charac-
teristic function Kg is representable in QE, where

[ 1 if R(ay,...,an);
KR(al,..-,an)_{ 0 ifﬁR(al,...,an)-

Proof. The proof is routine, and we omit it. O

Our next goal is to show that the functions representable in QE are closed
under the p-operator (IV). This would be easy if the sentence (Vv )(Vvo)(v1 <
vy V v1 = vy V vy < v1) were provable in QE. We could have made this sen-
tence an axiom of a strengthening of QE, as does Enderton in the book cited
earlier. But we did not do this, so our argument will be a little complicated.

Let WC(v;) be the following formula:

(0§vl AN (VUQ)(UQ(Ul — S(Ug)svl)) .

Think of WC as “weakly comparable.”
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Lemma 4.7. For every natural number k,

(a) QE | WC(S*(0));
(b) QE | (Yo1)(WC(v1) — (v;<SF(0) V v = S¥(0) v S¥(0)<wy)).

Proof. That QE E WC(0) follows from Axiom (3). Fix & > 0. By Exer-
cise 4.1 (or by Lemma 4.1), we know that QE = 0<S*(0). An application
of Lemma 4.1 gives that

QE |= 1)2<Sk(0) — (1)2 =0V ...Vuy = Skil(O)) .
But then
QE £ v2<SF(0) — (S(vp) = SY(0) Vv ... VS(v) = S¥(0)).

(a) follows by Lemma 4.1.

We prove (b) by induction on k. The case k = 0 comes from the first
conjunct of WC(v;). For the induction step note that, by Axiom (4), QE =
(v1<S*(0) — v1<S(S¥(0))) and that, by the second conjunct of WC(vy),

QE = (S*(0)<vi AWC(v1)) — S(SF(0))<wv; . 0

Lemma 4.8. The functions representable in QE are closed under the -
operator (IV).

Proof. Suppose that ¢(vy,...,v,42) represents g in QE and suppose that
(Va; € w) -+ (Vap, €w)(Fb € w) gla,...,an,b) =0.
Let f be given by
flay,...,ay) =pbg(ay,...,a,,b) =0.
Let ¢(v1,...,vp+1) be, for an appropriate z,
WC(vp41) A @(v1,...,0541,0) A (V2)(z2<vp41 = 2p(v1,...,0n,2,0)).

To see that 1) represents f in QE, fix a,...,a,. Using part (a) of Lemma 4.7
and the fact that ¢ represents g in QE, we deduce that

QE | WC(S/(@r4)(0)) A o(S*(0),...,5% (0),8/(*-4)(0),0),.
Using the fact that ¢ represents g in QE and using Lemma 4.1, we get that

QE E (V2)(z<S/(@10)(0) = —p(8%(0),..., S (0),z,0)).

70



Combining these two facts we get that

QE = ¢(S"(0),...,8%(0), /(@) (0)).
Moreover, the second of the two facts and part (b) of Lemma 4.7 give that
QE E (V2)(WC(2) A (8™(0),...,8%(0),%,0)) — S/(@-a)(0)<z).

Since WC(z) and ¢(S%(0),...,S%(0), z,0) are conjuncts of the formula
$(8(0),...,8(0),2),
QE E (¥2)(%(S™(0),...,5"(0),2) — S/ (0)<z).

Since QE = ¢(S*(0),...,S%(0),S/(e1-4a2)(0),0), consideration of the
last conjunct of ¢(S%(0),...,S%(0), z) shows us that

QE E (V2)(1(S™(0),...,8%(0),z) — S/@am)(0)g 7).
Thus
QE = (V2)(%(S™(0),...,8%(0),2) — z = STl@an)(q)), 0

Corollary 4.9. A function is representable in QE if its graph is repre-
sentable in QE.

Proof. Let R be the graph of f : n*¥ — w.
flay,...,ap) = ub K g(ay,...,an,b) =0.

Lemma 4.10. The relation < and the functions +, -, and E are repre-
sentable in QF.

Proof. By Exercise 4.1, < and the graphs of +, -, and E are represented
by vi<wvg, vi+ve = vz, vivy = v3, and vy Evy = w3 respectively. Use
Corollary 4.9 or the fact that very theory proves the last three formulas
functional. n
Lemma 4.11. {(a,b) | a divides b} is representable in QE.

Proof. For any a and b belonging to w,

a divides b <> (Jc<b)a-c=Db. O
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Lemma 4.12. (a) The set of all prime numbers is representable in QE.

(b) The set of all pairs of adjacent primes is representable in QE, where
(a,b) is a pair of adjacent primes if and only if a < b, both a and b are
prime, and there is no prime c such that a < ¢ < b.

Proof. The proof is an easy application of the closure of the representable
functions under bounded quantification. O

Lemma 4.13. The function a — pg is representable in QE, where p, is the
a + 1st prime.

Proof. We shall show that, for any a and b belonging to w, p, = b if and
only if b is prime and there is a ¢ < b%* such that

(i) 2 does not divide ¢;
(ii) For all ¢ < b and all < b, if (¢, 7) is a pair of adjacent primes, then

(Vj < ¢)(¢’ divides ¢ < 1 divides ¢).

(iii) b* divides ¢ and b**! does not.

To see this, fix ¢ and b and first note that if p, = b and

C=popLe P
then ¢ < b*" and ¢ satisfies (i)—(iii).
Suppose that b is prime and that ¢ satisfies (i)—(iii).
By induction we show that

(Vi e w)(p; <b — (pi* divides ¢ A p;"™ does not divide ¢)).

For i = 0 this is given by (i). Suppose that i = j + 1 and that p;/ divides
¢ but p;T1 does not. The desired conclusion follows from (ii) with ¢ = p;
and r = p;, since 5 < pjj <ec.

Now b is prime, and so b = p; for some j. Thus b divides ¢ and »/H!

does not. By (iii), it follows that j = a. O
For natural numbers ay, ..., a;,, let
'<a07 s 7am>' = p0a0+1 et pmam+1 .
For m = —1, let { } = 1. Let Seq be the set of all a such that a =
{ag,...,anp) for some m > —1 and some ay,...,ay,. For elements a and b
of w, let
(a)p = pun (py" 2 does not divide a) .
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Lemma 4.14. (a) For each m € w, the function

(ao,. .. ,am,l) g <a0, . ,am,1>—

is representable in QE. (b) The function (a,b) — (a), is representable in
QE. (c¢) Seq is representable in QE.

Proof. (a) holds by closure under composition. For (b), apply the pu-
operator to the characteristic function of the relation

T2 divides a .

b

For (c), note that

a€Seq < a>0A (Vi <a)(pi+1 divides a — p; divides a). O

For a € w, let

Ih(a) = pn (p, does not divide a) .

For a and b elements of w, let
alb=pn(a=0V(n#0A(Vj<b)(Vk<a)(p;" divides a — p;* divides n))).
The following lemma follows easily from the definitions and earlier results.

Lemma 4.15. The functions lh and (a,b) — (a[b) are representable in QE.
For allm > —1 and all ag, ..., an,

(i) h({ag,...,am)y) =m+1;
(17) {ag,...,am»-1b=<4ag,...,ap_1)-ifb<m+1.

For n € wand h: "tlw — w, let h : "tlw — w be given by

h(ai,...,an,b) =<{h(a,...,an,0),...,h(ar,...,an,b—1)).

Lemma 4.16. The set of functions representable in QE is closed under
primitive recursion (III).
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Proof. Let h: "T'w — w be defined from f : "w — w and ¢ : "T?w — w
as in the statement of (III). Assume that f and g are representable in QE.
We first show that h is representable:

h(ai,...,an,b) = pm(m € Seq A lh(m) =b
(Vi<b)((i=0A (m); = flar,...,an)) V
(F <)@ =j+1 A (m)i=glay,...,an,j,(m);)))).

Now we note that

h(a,...,an,b) = (h(ay,...,an,b+1))y. O
Theorem 4.17. Every recursive function is representable in QE.
Proof. This follows from Lemmas 4.4, 4.5, 4.16, and 4.8. |

Our next goal is to show that various functions coding syntactical rela-

EPAE

tions in languages such as are primitive recursive.

Lemma 4.18. If t(vi,...,v,) is a term of LYAY then the function
(ay,...,an) = (£(8*(0),...,5%(0)))a
1§ primitive recursive.

Proof. Successor and the constant function with value 0 are primitive re-
cursive by (I). Addition, multiplication, and exponentiation are successively
given by primitive recursion. For general terms, use composition and the
I}

O

Lemma 4.19. The functions sg, pred, and = are primitive recursive, where

sgla) = {1 ifa>0;

0 4a=0;
a—1 ifa>0;
pred(a) = {0 éazu

. _ a—b ifa>b;
a=b = {o ifa<b;
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Exercise 4.3. Prove Lemma 4.19.
Hint. Use primitive recursion.

Call a relation primitive recursive or recursive if its characteristic func-
tion is.

Lemma 4.20. The set of all primitive recursive relations is closed under
complement, intersection, and union. The relation < 1s primitive recursive.

Proof. Note that K g(ay,...,a,) =1 = Kg(ay,...a,), that Kgas(ai,...,an)
— Kp(ar,. .. an) Ks(ar,. ., an), that Kps(ar, . an) = sg(Kp(ar, . . an)
+ Kg(ay,...,ay)), and that K (a,b) =sg(b - a). O

Lemma 4.21. The set of primitive recursive functions is closed under the
two operations f w— g given by

g(a17"'7an7b) = Zf(alw'wanabl);

b'<b

glai,...,ap,b) = Hf(al,...,an,b').

b'<b

(We consider the empty product to have value 1.)

Proof. We consider only the case of > . That of product is similar. We
have

g(al,...,an,O) = 07
g(a17"'7an78(b)) = g(a17"'7an7b)+f(a17"'7an7b)'

Thus g comes by primitive recursion from functions that are primitive re-
cursive if f is. O

Lemma 4.22. The set of primitive recursive relations and functions is closed
under bounded quantification.

Proof. Let R'(aq,...,a,) <> (3b < f(a1,...,an)) R(ai,...,ap,b). Then

KR’(ala"'aan):Sg Z KR(ala"'aanab) : 0
b< f(ai,....an)
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Lemma 4.23. The set of primitive recursive functions is closed under the
bounded p-operator, i.e., under (f,g) — h, where

h(ai,...,an) =pb (b= f(a,...,an) V glay,...,ay,b) =0).
Exercise 4.4. Prove Lemma 4.23.

Lemma 4.24. The relations and functions representable in QE by Lem-
mas 4.11, 4.12, 4.13, 4.14, and 4.15 are primitive recursive.

Proof. The proofs of representability, with minor modifications, yield
proofs of primitive recursiveness. The main thing to note is that the uses
of the p-operator in defining (a),, a[b, and lh(a), are equivalent to the cor-
responding uses of the bounded p-operator, with the bound function f in
each case a constant function with value a. EI

Define * : 2w — w by

axb=a- [] Piay+i
i<Ih(b)

The following lemma is evident.

Lemma 4.25. The function * is primitive recursive. For m and n > —1
and for any elments ag, ..., am, by, ...,b, of w,

'<a07"'7am>'*<b07"'7bn>':'<a07"'7am7b07"'7bn>_'

For any n € w and any f : "tlw — w, define a function (ay,...,a,,b) —
*i<bf(a17 s 7an7i) by
*i<0f(a17"'7an7i) = ]-a
*i<b+1f(a1, Ce. ,an,i) = (*be(al, PN ,an,i)) * f(al, cee sy, b) .

The following lemma is also evident.

Lemma 4.26. The function (ai,...,a,,b) = ¥,pf(ay, ..., ap,i) is primi-
tive recursive if f is primitive recursive.

Recall our official definition on page 21 of the logical symbols of our
formal languages.

76



Fix a language £ all of whose symbols are natural numbers: ie., L =
(f,p) with all f(m) and all p(m) subsets of w. Let us assume the following
relations are primitive recursive:

{(k,m) | k€ p(m)};
{(k,m) [ k€ f(m)}.

Since we have not given the official definition of LFAE, let us now declare:

0 13
S 15
+ 17
- 19
E 21
< 23

Note that our assumptions about £ hold for £PAE,
We assign numbers to finite sequences of symbols of L (to expressions of
L) by setting
H(S0y- -y Sn) =480y, Sn)-

When we talk of the # of a symbol s, we mean #(s), i.e., {s}. We assign
numbers to sequences of expressions (for example, to deductions) by

#(¢07 s 7¢n) = '<#¢07 RS #lpn} .
Lemma 4.27. The following are primitive recursive:

(1) the set of all #’s of variables;

(2) the set of all #’s of terms;

(3) the set of all #’s of atomic formulas;
(4) the set of all #’s of formulas.

Proof. (1) For a € w, a is the # of a variable iff and only if
a € Seq A lh(a) =1 A 2 divides (a)o .

(2) Let f be the characteristic function of the set of all #’s of terms.
We shall show that f is primitive recursive, from which it follows that f is
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primitive recursive. Note first that f(0) = 1. For any number a, a is the #
of a term if and only if either a is the # of a variable or constant or

(@) (3e) (b < a A ¢ < pa® @ A ¢ € Seq A
b is the # of a lh(c)-place function symbol A
(Vi <1h(e))((¢); < a A (¢); is a term) A
a=bx#(() * (Ficm(e)(©)i) * #())) -

Because of the condition (¢); < a, we can replace “(c); is a term” by
“(f(a))(); = 1.7 Hence we can write f(a) and so f(a+1) as a primitive
recursive function of @ and f(a). By (III), f is primitive recursive.

(3) is easy using (2).

The proof of (4) is similar in structure to that of (2). O

Lemma 4.28. The set of all #’s of tautologies is primitive recursive.

Proof. If ¢ is a proper subformula of a formula ¢, then #¢ < #¢. Using
this fact, we can see that, for any a € w, a is the # of a tautology if and
only if a is the # of a formula and, for all e < p, 2D if

e€Seq Alh(e)=a+1A
(Vi<a)(e)i <1 A

(Vi < a)(Vj <i)(i = #(~) *j — (e»—l (e)) A
(i < a)(%5 <)%k <D = #(0 +

then (e), = 1. O

Lemma 4.29. (1) There is a primitive recursive function Sb such that, if
© is a formula or a term, x is a variable, and t is a term, then

Sb(#tp, #(x), #t) = #(t)

where @(t) is the result of substituting t for the free occurrences of x in .
(2) There is a primitive recursive relation Fr such that, if ¢ is a formula
and x is a variable, then

Fr(#¢, #(x)) <> © occurs free in ¢.

(3) The set of all #’s of sentences is primitive recursive.
(4) There is a primitive recursive relation Sbl such that, if ¢ is a formula
and x, t, and ¢(t) are as in (1), then

Sbl(#¢, #(x), #t) <

no occurrence of a variable in t becomes bound in ¢(t).
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The proof of the lemma will be a final examination problem.

Lemma 4.30. (a) The set of all #’s of logical azioms is primitive recursive.

(b) The set of all (#p,#1,#x) such that x follows from ¢ and ¥ by

Modus Ponens is primitive recursive.
(¢) The set of all (#p, #1) such that 1 follows from ¢ by the Quantifier

Rule is primitive recursive.

Proof. (a) We have already dealt with tautologies in Lemma 4.28. The
identity axioms are easily handled using parts (2) and (3) of Lemma 4.27
and the function Sb. Quantifier Axioms are handled using Sbl and Sb.

(b) and (c) are proved in a straightforward manner, with Fr used for the
latter. g

Lemma 4.31. Suppose that L extends LY . The set of #’s of azioms of
PA is primitive recursive.

Proof. There are finitely many axioms plus the induction schema. Instances
of the latter are easily characterized using Sb. 0

A theory T in L is recursively aziomatizable if there is a set X of sentences
such that

(i) {#o0 | o € £} is recursive;
i) T={r|X2E="1}.

The notion of a primitively recursively axiomatizable theory is similarly de-
fined, with “primitive recursive” replacing “recursive” in clause (i).

Remark. In fact, the class of recursively axiomatizable theories turns out
to be the same as the class of primitively recursively axiomatizable theories.

Lemma 4.32. Suppose that T is a primitively recursively axiomatizable the-
ory in L. Let X witness this fact. Then there is a primitive recursive relation
Pr such that, for all a and b € w, Pr(a,b) holds if and only if a is the # of
a sentence T and b is the # of a deduction of T from X.

Proof. The lemma follows easily from Lemma 4.30. |

Theorem 4.33. The functions reprensentable in QE are exactly the recur-
stwe functions.
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Proof. By Theorem 4.17, we need only show that every function repre-
sentable in QE is recursive. Suppose ¢(v1,...,v,+1) represents f : "w — w
in QE. Let Pr be given by Lemma 4.32 for 7' = QE. Note that the function

(a1, ..., ap+1) — #9(S1(0),...,S*1(0))

is primitive recursive, since the # of ¢(S%(0),...,S%+1(0)) is

Sb( e (Sb(#QDJ #(Ul)v #Sal (0))7 e ')7 #(Un+1)7 #San_H (0)) )

and since the function a — #S%(0) is easily seen to be primitive recursive.
Define a recursive function g : "w — w by

g(ai,. .. an) = pbPr(#p(S™(0),...,5%(0),S®)0(0)), (b),).

For all (aq,...,a,),

flay,...,an) = (g(ai,...,ap))o- O

We now know that the recursive functions have all the closure propeties
of those representable in QE. (We could have directly proved these closure
properties, as we did for the primitive recursive functions.) Thus we get the
following lemma.

Lemma 4.34. Lemma 4.32 continues to hold when the words “primitively”
and “primitive” are deleted from its statement.

Remark. By Lemma 4.34 and the proof of Lemma 4.33, any function
representable in any recursively axiomatizable theory is recursive.

Lemma 4.35 (Fixed Point Lemma). Let ¢(v1) be a formula of LPAE.
There is a sentence o such that

QE = (0 < (5%7(0)) .
Proof. Let ¢(v1,v2,v3) represent in QE the primitive recursive function
(a,n) — Sb(a, #v1,#S"(0)).
Note that, for any formula x(v1) and any n € w, this function sends (#x,n)

to #x(S8"(0)).
Let x(v1) be the following formula:

(Vv3) (¥ (v1,v1,03) = (v3)) -
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Let ¢ = #x(v1).
Now let o be the sentence

(Vu3) (4 (87(0),5%(0), v3) = ¢(v3)) -

Note that o is the result of replacing v; by S?(0) in the formula y(vy).
In other words, #o is the value of the function represented by % on the
argument (g, q). Hence

QE [ (Vu3)(4(87(0),57(0),v3) + v3 = S#7(0)).

In particular,

QE = ¥(57(0),57(0), $%7(0)).

Thus
QE = (0 = »(S77(0)).
But also
QE = (V03)(4(S(0),87(0),v3) — v3 = 8%7(0)).
Therefore
QE = (¢(S#7(0)) — 0). O
It is worth recording the following fact: Suppose ¢ (vy, ..., v,) represents

in QE a relation R. Since N = QE, we have that

(Vay € w) -+ (Va, € w)(R(ay,...,a,) <N EPlay,. .. a,]).

EPAE

Theorem 4.36. Let T be a recursively axiomatizable theory in such

that YV |=T. Then T is not complete.

Proof. Let Pr be given by Lemma 4.34. Let ¢ witness that Pr is repre-
sentable in QE. Let ¢(v;) be the formula

(va)—nfgb(vl, 1)2) .

Let o be given be the Fixed Point Lemma.
One can think of o as expressing its own unprovability in 7T'. Indeed, by
the observation preceding the theorem,

THooNEo.

If the consistent theory T' |= o or |= —o, then this contradicts the hypothesis
that N =T O
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Theorem 4.37. Let T be any theory in LYAY such that TUQE is consistent.
Then {#rt | 7 € T} is not recursive.

Proof. Suppose for a contradiction that {#7 | 7 € T'} is recursive. Let
T'={r|TUQE [ 7}.

Let p be the conjunction of the finitely many axioms of QE. Then
TeT « (p—>71)eT,

so {#7 | 7 € T} is recursive.

By Theorem 4.17, let ¢ (v1) represent {#7 | 7 € T'} in QE. Let o be
given by the Fixed Point Lemma with = as .

Suppose first that o ¢ T". Then

QE | —(S#7(0)).

But this implies that
QE o,
which in turn implies that o € T".

Suppose then that o € T'. We successively get that QE = 4(S#7(0)),
that QE |= —o, and that —o € T". a

Corollary 4.38 (Church’s Theorem). The set of all #’s of valid sen-
tences in LYY is not recursive.

EPAE

Corollary 4.39. If T be a recursively aziomatizable theory in such

that T'U QE s consistent, then T is not complete.

Proof. It suffices to prove that if ¥ is a set of sentences such that {#o |
o € ¥} is recursive and the theory 7" = {7 | ¥ = 7} is complete, then
{#r7 | 7 € T'} is recursive. For this, fix ¥ and let Pr be given by Lemma 4.34.
Assume that T is is complete. Define g : w — w by setting g(a) = 0 if a is
not the # of a sentence and otherwise setting

g(a) = ub (Pr(a,b) V Pr(#(~ ) * a,b)).

Since T is complete, g is a recursive function. Moreover, for any a € w,

ac{#7|17€T} +< (9(a) #0 A Pr(a,g(a))). O
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A theory T'in L is recursively decidable if {#7 | 7 € T'} is recursive. Oth-
erwise 1" is recursively undecidable. Thus Church’s Theorem shows that the
set of valid sentences of LFAF is not recursively decidable. (Church’s Theo-
rem is actully more general, holding for, say, any language with a two-place
relation symbol.) According to Church’s Thesis, the recursive functions
are exactly the effectively computable functions. Granted Church’s Thesis,
decidability and recursive decidability are the same.

To eliminate exponentiation and get incompleteness theorems for PA,
we shall use the following number-theoretic result.

Lemma 4.40 (Chinese Remainder Theorem). Let the positive integers
do, ..., dy be relatively prime. Let a; < d; for each i < n. Then there is a ¢
such that, for each it < n, a; is the remainder when c is divided by d;.

Proof. For any ¢ € w, let F(c¢) = (rg,...,ry), where each r; is the remainder
when c is divided by d;.

Suppose ¢; and ¢y are distinct numbers smaller than [[,,, d;. If F(c;) =
F(c2), then each d; divides |c; — c2| and so, since the d; are relatively prime,
[L;<,, di divides |c1 — c2|. This contradiction shows that F(ci) # F(c2).

"Thus F(c) takes on [],., d; distinct values for ¢ < [[,., d;. But each
of these values is of the form (rg,...,r,) with each r; < d;. There are only
[Li<,, di such (ro,...,ry), so one of the F(c) must be (ao,...,an). O

Lemma 4.41. For any positive integer m, the numbers 1 + (i + 1) - m!,
1 < m, are relatively prime.

Proof. Let i and j be distinct numbers < m. Suppose that some prime p
divides both 1 + (¢ + 1) -m! and 1 + (j + 1) - m!, with ¢ and 5 < m. Then p
divides |i — j| - m!. Since p cannot divide m!, it follows that p must divide
|i — j|. But |i — j] < m, and thus we have the contradiction that p divides
ml.

Il

For elements ¢, d, and i of w, let r(c,d,i) be the remainder when c is
divided by 1+ (i + 1) - d.

Order the set of all pairs (a, b) of natural numbers first by max{a, b} and
then lexicographically. For pairs (a,b), let n(a,b) be the number of pairs
preceding (a,b) in this ordering. Define ¢; : w — w and ¢2 : w — w by
setting ¢;(n(a,b)) = a and g2(n(a,b)) = b.

Let Q be the set of consequences in £FA of Axioms 1-8.
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Lemma 4.42. The functions r, n, q1, and g are representable in Q.

Proof. Note that all our lemmas before Lemma 4.13 continue to hold if we
replace LPAE by £PA and QE by Q. We have

r(e,d,i) = pb(Fe<c)e=(1+(G+1)-d)-e+b;

max{a,b} = pcla<cANb<c);
n(a,b) = (max{a,b})*+a+b-K<(ba);
q1(c) = pa(F<c)n(a,b) =c;
@2(c) = wpb(Fa<c)n(a,b) =c.
O
Lemma 4.43. For any naturel numbers n and ag,...,a,, there are ¢ and
d such that
(Vi <n)r(c,d,i) =a;.
Proof. Given n and ay,...a,, let m = max{n,aq,...,a,}. Let d = m!.
Since the 1+ (i 4+ 1) - d are relatively prime, let ¢ be given by the Chinese
Remainder Theorem. (Note that each a; <1+ (i + 1) -d.) O
Lemma 4.44. Exponentiation is representable in Q.
Proof. Define functions f : ?w — w and E* : 2w — w by
fm,1) = r(qi(m),q2(m),i);
E*(a,b) = pm(f(m,0) =1 A (Vi<b) f(m,i+1) = f(m,i)-a).
Both f and E* are representable in Q. Moreover, we have that
(Va € w)(Vb € w)(Vi < b) f(E*(a,b),i) = a’.
Thus a® = f(E*(a,b),b) for all a and b. O

Theorem 4.45. All previous lemmas, theorems, and corollaries of Sec-
tion 4 hold with LF? replacing LYAF and Q replacing QE.

Theorem 4.46. PA is incomplete and recursively undecidable. Moreover

all recursively axiomatizable extensions of PA are incomplete, and all con-
sistent extensions of PA are recursively undecidable.
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Proof. This follows from Theorems 4.45, Theorem 4.36 or Corollary 4.39,
and Theorem 4.37. O

Theorem 4.36, Theorem 4.37, Corollary 4.39, and Theorem 4.46 are all
versions of Godel’s First Incompleteness Theorem. We end this section with
a brief sketch of Godel’s Second Incompleteness Theorem.

Let Pr be given by Lemma 4.34 for some recursively axiomatizable 7" in
LPA such that Q C 7. Let ¢ witness that Pr is representable in Q. Let
o be given by the Fixed Point Lemma, with QEq replacing QE and with
(Vv2)—1p(v1,v2) as ¢(v1). Thus T' |~ o if and only if o is true in N.

Suppose that o is false in N, i.e., suppose that T |= 0. Then there is a
b € w such that Pr(#o,b). For any such b,

Q = ¢(8%7(0),8°(0)).

Hence
Q = (Bu2)y(S#7(0),v2)
In other words,

Q | ~(8%7(0)).

But then Q = -0, and so T' = —o. Therefore T is inconsistent.

The argument of the last paragraph shows that if 7" is consistent then o
is true in M. The converse of this fact also holds: If o is true, then T |~ o,
and so 1" is consistent. Thus o is true in N if and only if T is consistent.

Using the formula v and formulas representing the set of all #’s of
sentences and the function a — #(—) * a, we can construct a sentence
"Con T7 of £PA that we may think of as expressing the consistency of T
Our argument then establishes the truth of

o+ "ConT".

Now comes the sketchy part of our discussion. If we have chosen natural
representing formulas, then we can show that

PAlEo++ "ConT™.

This is essentially because our basic tool in our (presumably set theoretic)
proof of (the set theoretic version of) this sentence was induction.
Now suppose that 7" is PA. Since PA is consistent, PA [~ 0. But then

PA |~ "Con PA™.
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In other words, the consistency of PA implies that the number theoretic
version of the consistency of PA is not provable in PA.

The argument establishes that any consisent, recursively axiomatizable
extension of PA cannot prove the number-theoretic sentence expressing its
own consistency. This result can easily be extended to theories in which PA
is interpretable. For example, one cannot prove in ZFC, if ZFC is consistent,
the set-theoretic formulation of the consistency of ZFC.
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5 Recursion Theory

Fix n € w\ {0}. To get a useful enumeration of the recursive functions, we
do a uniform version of the construction of the proof of Theorem 4.33. Let
Pr(a,d) hold if and only if d is the # of a deduction from the axioms of
Q of a sentence o of LA such that a = #0. Define T}, C ""2w by letting
T.(e,ai,...,an,d) hold if and only if

(i) For some formula p(v1,...,v,41) of LEA, #o =e;
(i) Pr(#¢(S*(0),...,5(0),59(0)), (d)1);

(iii) d is the smallest number satisfying (i) and (ii).
Define U : w — w by setting U(d) = (d)o.

Theorem 5.1. (a) For each n > 1, T, is primitive recursive.

(b) The function U is primitive recursive.

(¢) If n > 1 and f : "w — w is recursive, then there is an e € w such
that, for all numbers ay,...,ay,,

flay,...,ap) =U(pdTy(e,a,...,ay,d)).
(d) Every total (i.e., totally defined) function in this form is recursive.
Proof. For (a), note that clause (ii) is equivalent with
Pr(Shy(... (Sh(e, #v1, #8°(0)),...), #vn 1, #8D°(0)), (d)1) -

For (c), let p represent f in Q and let e = #¢. (d) follows from (a) and (b).
0

A partial (number-theoretic) function of n variables is an f : A — w
where A C "w.

A partial function of n variables is partial recursive if there are recursive
g and h such that

f(a17"'7an) zh(ubg(alw'waﬂdb) :0)7

where “xr ~ y” means “z and y are defined and equal or both are undefined.”

Lemma 5.2. For each n and e, the partial function f given by
flay,...,ap) = U(pdT,(e,a,...,a,,d))

18 partial recursive.
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Lemma 5.3. If f is a partial recursive function of n variables, then there
is an e such that, for all ai,...,ay,

f(ala s 7an) = U(:u‘dTn(eaala <+ Qp, d)) :
Proof. Let g and h witness that f is partial recursive. Let ¢(vy,...,v,42)
and 1 (v1,v9) represent g and h respectively in Q. Let y(vi,...,v,41) be
(32)(30(1}1, <oy Uny 2, 0) A (VZ,) (ZI<Z - _'@(017 <oy Un, Zla 0)) A ¢(Z7 Un—l—l)) )

for appropriate variables z and 2. It is easy to see that the sentence
x(S8%(0),...,S%(0),S¢(0)) is provable in Q if and only if ¢ >~ f(ay,...,a,).
(The main point is that only sentences true in 9t are provable in Q.) Thus
we can let e = #y. O

Theorem 5.4. The partial recursive functions of n variables are exactly the
functions {e},, where

{etn(ay,...,ap) 2 U(pdT, (e, ay,...,an,,d)).

Exercise 5.1. Define an operation of composition for partial functions and
prove that the partial recursive functions are closed under composition.

A subset A of w is recursively enumerable (r.e.) if A is the domain of a
partial recursive function.

Theorem 5.5. If A C w, then A is r.e. if and only if A is either empty or
the range of a recursive function, where the function can be taken to be of
one argument.

Proof. Suppose the A is r.e. Then there is an e such that A = {a |
(3d) Ty (e,a,d)}. Suppose that A # (). Let a € A. Define a recursive g by
setting

gy = { B0 TTLLe. O 00

a otherwise.
Now suppose that A = range (§) with g recursive. For b € w, let
f(b) = peg((e), ..., (e)n)) =b.

Clearly A = domain (f). To see that f is partial recursive, define g and h
by:

g(bc) = (g((c)1, -+, ()n)) = 0) + (b = g((1;- -+, ()n) ;
h(a) = a.

It is easy to see that there is a partial recursive function with domain 0:
Note that, e.g., {0} = 0. O
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Theorem 5.6. A subset A of w is recursive if and only if both A and —A
are r.e.

Proof. Suppose first that A is recursive. Define g and ¢’ by setting

gla) = pbKa(a)=1;
g(a) ~ pbKa(a)=0.

g and ¢’ witness that A and —A respectively are r.e.
For the converse, suppose that A = {a | (3d) T1(e,a,d)} and that -A =
{a | (3d)Ti(¢',a,d)}. Then

Ka(a) = K1y, (e,a, ud (11, (e,a,d) V Ti(¢',a,d))) . O
Let K ={e | (3d) Ti(e,e,d)}.
Theorem 5.7. The set K is r.e. but not recursive.

Proof. K is the domain of the partial recursive function f given by f(e) ~
U(pdTi(e e, d)).

Suppose that K is recursive. Then =K is r.e., and so there is an e such
that —=/C = domain ({e};). But then

e €K« (3d)Ti(e,e,d) <+ e ¢ K. O

Remark. An obvious and important fact that we have failed to mention
explicitly is that, for all n € w, the partial function f of n+ 1 variables given
by f(e,a1,...,a,) 2 U(udTy,(e,a1,...,a,,d)) is partial recursive.

Theorem 5.8 (s-m-n Theorem). For any positive integers m and n, there
is a recursive function S]* such that, for all e,ay,...,am,b1,...,by,

{e}min(at, . am,b1,...,0p) = {5 (e,a1,...,am)}n(b1,...,by).

Proof. The idea of the proof is simple. In the case that matters, when
e is the number of a formula ¢(vy,...,vpm4n+1), then we would like to set
Sit(e,ar, ..., am) = #¢(8(0),...,8"(0),v1,...,0p41). But, for 1 <i <
n + 1, some occurrences of v; that replace free occurrences of v,,; may be
bound. For this reason, we need to change the bound occurrences of these
v; to occurrences of other variables before we insert the v;, and even this
step requires preparation.
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First let Let f"(e,a1,...,ay) =

Sb( €, #Ub #Sal (0)) ) #UmJ #Sam (0))1

J

Sb(-- - Sh(Sby(: - -

n+1 m m

FVms1, FVet1) - FUmtn+1, FVetnt1) -

nIl

Next let

(e, c,i) = (¢)i+2(e+n+1) if (¢); is even and 2 < (¢); < 2(n+1);
IniG G4 = (¢)s otherwise.
Then let .

hu(e,e) = ] pir(eeVH
i<lh(a)
and let
k‘,T(G,al,. . 7am) = hn(ea f;,n(evala' . 7a77‘L)) :

Finally let

Spie,ar,. .. am) = Sb(ky'(e,a1,. .. am), #Vet1, #01) -, #Vetnt1, FVn41)

if e is the # of a formula ¢(vi,...,vnint1), and let SJ*(e, a1,...,am) =0
otherwise.

To see how the definition works, note that if e = #¢(v1,..., Vmint1)s
then

e, ar,. .. am) = #p(S*(0),...,8"(0),Vet1s. - Vetntl) -

In this case, k]"(e,ai,...,ay) is the number of a formula we shall call
P(S(0),...,5%(0),Vet1, .-, Vetn+1), the formula that is gotten from
©(S(0),...,8%(0),Vet1,---,Vetn+1) by replacing all occurrences of v; by

occurrences of veypny144 for 1 < ¢ < mn+ 1. The replaced occurrences of v;
are bound occurrences, since these are the only occurrences of v;. Finally,

STT(eaala s 7am) = #¢(Sal(0)7' o 7Sam(0)7vla' i 7Un+1) :
U

For subsets A and B of w, we say that A is many-one reducible to B
(A <, B) if there is a recursive f such that

(Va€ew)(a e A+ f(a) € B).

From now on, we shall usually write {e} for {e};.
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Theorem 5.9. Let H = {becw | {(b)o}((b)1) is defined}. Then H is r.e.,
K<nH, and H <, K.

Proof. H is obviously r.e.
Let f(e) = {e,e)}. Then, for any e € w,

e € K <> {e}(e) is defined <> {e, e} € H,

so K <, H.
To show that H <, K, we use the s-m-n Theorem. Define g by

g9(b,a) = {(b)o}((b)1) -
The partial function g is partial recursive, since
g9(b,a) ~ U(ud (T1((b)o, (b)1,d)).
Hence there is an e € w such that
(Vb)(Va) g(b,a) ~ {e}2(b,a).
Set f(b) = Si(e,b) for b € w. We have that
{f(0)}(a) = {Si(e,0)}(a) = {e}2(b,a) = g(b,a).

Suppose that b € H. Then {(b)o}((b)1) is defined. Hence g(b,a) is
defined for every a, and so {f(b)}(a) is defined for every a. In particular,
{f(®)}(f (b)) is defined, and this means that f(b) € K.

Now suppose that b ¢ H. Then {(b)o}((b)1) is undefined. Thus {f(b)}
is the completely undefined function, so f(b) ¢ K. O

Theorem 5.10. Let A C w be r.e. Then A <,, H and so A <,, K.

Proof. Let A = domain({e}). Define f by setting f(n) = {e,n). Then, for
all n,

n €A < {e}(n) is defined + {e,n)y € H. O

The s-m-n Theorem implies that if g is a partial recursive function of
m + n variables, then there is a recursive f such that

{f((alv"'7a77‘L)}n(b17"'7bn) zg(al,...,am,bl,...,bn),

for all aq,...,a,,b1,...,b,. From now on we shall use this consequence of
the s-m-n Theorem directly.
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Theorem 5.11 (Recursion Theorem). For all m € w and all recursive
f:w— w, there is an n € w such that {n}y, = {f(n)}m.

Proof. Define g by

g(u,ai,...,am) =~ {{u}(u)tm(ar,...,an).
It is easy to see that g is partial recursive, so the s-m-n Theorem gives a
recursive h such that, for all u,a1,...,a,,,
g(u,ay, ... am) ~{h(u)}m(ay,...,an).
Let {v} = f o h, the composition of f and h. Let n = h(v). We have that

{ntmar,...,am) =~ {h(v)}nm(al,...,an)
~ g(v,ay,...,an)
{{ot(w)tm(as,. . am)
{f(h(v)}m(ar,. .. am)
{f(n)}mlar, ... am).

1

1

1

g

Theorem 5.12 (Uniform Recursion Theorem). For eachm € w, there
s a recursive function ry, such that, for all e € w,

{e} is total — {rp(e)}m = {{e}(rm(€e))}m -

Proof. Define h as in the proof of Theorem 5.11. By the s-m-n Theorem,
let v be a recursive function such that

(Ve)(vn){uv(e)}(n) = ({e} o h)(n).
For each e, set rp,(e) = h(v(e)). O

For e € w, let W, = domain ({e}). Note that K = {e | e € We}.
An r.e. set C is creative if there is a recursive function f such that

Veew)(W.NC=0— fle) ¢ W, UC).

If C is creative, then C' is not recursive, for f(e) witnesses that -C # W,
whenever W, C =C. (We write =C for w\ C.)
The set K is witnessed creative by the identity function, for

WeNnK=0=e¢W.,=>e¢K.
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Theorem 5.13. If C is creative and A is r.e., then A <, C.

Proof. Let f witness that C' is creative, and let A be r.e. Define h by

0 ifae Aandc= f(b);
undefined otherwise.

h(a,b,c) ~ {

It is easy to show that h is partial recursive. By applications of the s-m-n
Theorem, let p and ¢ be recursive and such that

h(avbv C) = {p(a,b)}(c) )
p(a,b) = {q(a)}(d).
Note that, for all a and b,

W [ {f()} (the singleton) if a € A;
Plab) = otherwise .

Let = r1. By the Uniform Recursion Theorem, we have for all a that
{r(e(a))} = {{q(a)}(r(g(a)))}
= {pla,r(q(a)))}.

Hence, for all a, Wr(q(a)) = Wp(a,r(q(a))) .
We show that f or o g witnesses that A <, C. Note first that

a€A — Wyarga)) = 1f(r(q(a)))}
— Wig) = 1f(r(q(a)))}
— f(r(q(a))) € C.

(Since f witnesses that C' is creative, the next-to-last line implies that
Wiqa)) NC # (. This and the next-to-last line imply the last line.) Note
finally that

ad A = Wyar(gay) =0
= Wy =10
— f(r(q(a) € C.

(The last implication holds because f witnesses that C' is creative.) 0
Exercise 5.2. The join of subsets A and B of w is
{2n|ne A} U{2n+1|n € B}.

Prove that the join of A and B is a <,,-least upper bound for A and B.
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Exercise 5.3. (a) Show that if A is r.e. and A <,;, A then A is recursive.
(b) Prove that the hypothesis that A is r.e. cannot be dropped from (a).
Hint. Cousider the join of a set and its complement.

Exercise 5.4. A subset A of w is a many-one complete r.e. set if A is r.e.
and, for all r.e. B, B <, A. Thus all creative sets are many-one complete
r.e. sets. Prove that {e € w | W, # 0} is a many-one complete r.e. set.

Exercise 5.5. Let C be creative. Show that there is a recursive f such that
(Veew)(fle) e WenC V f(e) ¢ W, UC).

Hint. Let f witness that C'is creative. Use the s-m-n Theorem to define
a recursive p such that, for all ¢ and b,

Wp(a,b) =W,N {f(b)} :

Now use the s-m-n Theorem and the Uniform Recursion Theorem to get a
recursive s such that, for all a,

Wita) = Wp(a,s(a) -
Let f = fos.
Theorem 5.14. If C is a many-one complete r.e. set, then C is creative.

Proof. Let g witness that X <, C. By the s-m-n theorem, let h be
recursive and such that

(Ve)(Va) {h(e)}(a) = {e}(g(a)) .

Note that, for all e, Wj,,) is the preimage under g of We.

Let f = goh. To show that f witnesses that C is creative, let e be such
that W, N C = (). Taking preimages under g, we get that WhieyNK = 0. By
the definition of K, this implies that h(e) & Wj() UK. But then g(h(e)) ¢
W, uC.

O

Theorem 5.15. For all m and n, there is a one-one function S]" that wit-
nesses the truth of the s-m-n Theorem.
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Proof. Fix m and n. Let S™ have the property required of S™ in the
statement of the s-m-n Theorem. Define h : "*lw — w by setting

h(ag, .. .,am) = #(S%(0) = S*(0) A (--- A S“"(0) = S*"(0))---).

It is easy to see that h is a one-one recursive function and that all the values
of h are #’s of valid sentences of L', Define S by setting

S (e,ar, ... am) = #{()xhe,ar,...,an)*#(A)xS"(e,a,...,am,)*#().

g

Theorem 5.16. For each m € w, there is a one-one function ry, that wit-
nesses the truth of the Uniform Recursion Theorem.

Proof. Given m, define functions h and v, as in the proof of Theorem 5.12,
using one-one functions S}, and S}. The h and v so defined are one-one.
Hence r,,, = h o v is also one-one. Il

Theorem 5.17. IfC is creative, then there is a one-one function witnessing
that C' is creative.

Proof. Define a partial recursive function g by

5 if (3i <1h(n))y = (n);;
g(e,n,y) ~ { Z{/e}(y) otherwise . ’

Let p be recursive and such that

(Ve)(Vn)(Yy) {p(e,n) }(y) = g(e,n,y).
Thus
(Ve)(Vn) Wp(e,n) =WeU {(n)o, R (n)lh(n)—'l} :

Let f witness that C is creative. Define a recursive f by

60 = 47 N
Flesk+1) = Flek) e 4F(ple, fle, k)

By induction, we show that, for all &,

(i) f(e,k) € Seq;

(i) 1h(f(e,k)) =k +1;
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(iii) (VK" < k) f(e,k') = f(e, k) [E + 1;
(iv) WenC =0 — (Vi <k)(Vj <i) (fle, k)i # (Fle, k)53
(v) WenC =0 — (Vi <k)(f(e,k)); ¢ W, UC.

Clauses (i)-(iii) are clear. To verify (iv) and (v), note that

W oo fieny = We UL(F(e. k)i |8 < k).

e,f(e.k)

Define h by recursion as follows. If the numbers (f(e,e))k, k < e, are
distinct, let h(e) be the least of these numbers that is different from all the
h(e'), €' < e. Otherwise let h(e) be the least number that is different from
all the h(e’), € < e. The recursive function h witnesses that C' is creative.

El

For subsets A and B of w, say that A is one-one reducible to B (A <; B)
if some one-one f witnesses that A <,, B. Define the notion of a one-one
complete r.e. set in the obvious way. All our earlier results go through with
“one-one” replacing “many-one.” Hence we have the following theorem.

Theorem 5.18. An r.e. set C is creative if and only if C is many-one
complete if and only if C' is one-one complete.

A recursive permutation is a recursive one-one onto f : w — w. Two
subsets of w are recursively isomorphic if one is the image of the other
under a recursive permutation.

Theorem 5.19. Let A and B be arbitrary subsets of w. If A <1 B and
B <1 A, then A and B are recursively isomorphic.

Proof. Suppose that g and h witness that A <; B and B <; A respectively.

We define inductively recursive functions p : w — w, 7 : 2w — w, and
5 : 2w — w. There will be numbers m; i € w, and n;, i € w, such that, for
each k,

p(k) = {{mo, no} - - - s {mak—1,nak—1}) -

The m; will be distinct, as will the n;. Moreover we shall have that
m; €A < n; € B.

Given p(k), let moy be the least number different from all the m;, i < 2k.
Set r(k,0) = g(myy) and

r(k,1) if r(k,i) ¢ {no,...,nok—1};
g(m;), where n; =r(k,i), otherwise.

r(k,i—l—l):{
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Since g is one-one, it follows that, whenever r(k,i 4 1) is defined by the
second clause, the numbers r(k,0)...,r(k,i + 1) are distinct. For any i,
r(k,i) € B if and only if mgoy, € A.

Let ngi = r(k, ) for the least i < 2k such that r(k,i) ¢ {no,...,nox_1}-

Now let nggy1 be the least number different from all the n;, i < 2k.
Define s(k,i) and mog4q by analogy with the definition of r(k,7) and noy.

Now define f : w — w by setting f(m;) = n; for each i € w. Clearly f
witnesses that A and B are recursively isomorphic. O

Corollary 5.20. Any two creative sets are recursively isomorphic.

We now turn to the topic of relative recursion. If f : w — w, then the
functions recursive in f form the smallest set C such that

(I) The function S, all constant functions, all the I, and f belong to C;
(II) C is closed under composition;
(III) C is closed under primitive recursion;
(IV) C is closed under the p operator.

For R C "w, R is recurswe in f if Kp is recursive in f. The partial
functions partial recursive in f and the subsets of w recursively enumerable
in [ are defined in the obvious way.

Let LPAF be the result of adding to £FA a new one-place function symbol

F. For any f : w — w, let Q(f) be the set of all consequences (in LVAF) of
Axioms (1)-(8) plus

{F(s*(0)) =8/ (0) |a € w}.

Theorem 5.21. For all f, the functions recursive in f are the same as the
functions representable in Q(f).

Proof. Our proofs of Theorems 4.17 and 4.33 are easily adapted to give
a proof the present theorem, since f is representable in Q(f) and since the
relation Pr for Q(f) is recurive in f. O

For n > 1, let T} be defined just as was T}, but using Q(f) instead of
Q.

Theorem 5.22. For any f, 1! is recursive in f- The functions partial
recursive in [ are exactly the {e},’i, where

{6}7{(@17‘ e 7an) = U(MdTJ(eaala s 7an7d)) :
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Whenever T,{(e,al, ..., an,d) holds, then (d); is the # of some deduc-
tion. Any axiom of Q(f) that occurs as a line in this deduction must have
# smaller than d. Hence, for any such axiom of the form F(S*(0)) =
S/(@)(0), we must have that a < d. In particular, this means that whether
T,{(e, ai,...,an,d) holds depends only upon f | d.

Define 1)} C "3w by letting T} (c, e, a1, .. ,a,,d) hold if and only if

c€Seq A lh(c)=d A (VF)((Vi<d) f(i) = (c)i = T (e,ay,...,a,,d).

Note that we could have written the definition of 7! directly, without men-
tioning the f’s or the T,{’s.

Theorem 5.23. For each n, the relation T, is primitive recursive. For any
f,n, e anday,...,an,

{e} (a1, ...,an) 2 U(pd Ty (f(d),e,a1,...,an,d)).

Let us extend the definition of recursive enumerability to subsets of "w
by declaring A C "w to be recursively enumerable if A is the domain of a
partial recursive function. Similarly define the notion of A’s being recursively
enumerable in f, for f:w — wand A C "w.

Ifn>1 AC"™v,and k > 1, then A € ¥j (or A is Xj) if there is a
recursive B C "tk such that, for all ag,...,ap,

(al,...,an) €A < (Elbl)---(Qbk)(al,...,an,bl,...,bk) EB,

where the quantifiers alternate between 3 and V (so that QQ is 3 just in case
k is odd). Let A € Iy if and only if —=A € ¥j. Let Ag = X NII;. Similarly
define X (f), Hg(f), and Ak(f), replacing the condition that B is recursive
with the condition that it is recursive in f. We shall sometimes say, e.g.,
that A is g in f to mean that A € Xy(f).

We omit the easy proof of the following theorem.

Theorem 5.24. Letn > 1 and A C "w. Then A is X1 if and only if A is
r.e., and A is Ay if and only if A is recursive. For f 1w — w, Ais Xy in f
if and only if A is r.e. in f, and A is Ay in f if and only if A is recursive
in f.
For f:w — w, let
KI' = {e|{e}(e) is defined}
= {e| G T{(f(d),e,e,d)}
= f{elee W/},

where W/ = domain ({e}{)
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Theorem 5.25. For all f : w — w, we have:

(1) K7 is r.e in f;
(2) K7 is not recursive in f ;
(8) if ACwis r.e in f, then A <, KI;

(4) f is recursive in Ky .

Proof. The proofs of (1) and (2) are like the proofs of the corresponding
facts for .

Note that, for each m and n, a definition like that of the 5] function
gives a one-one recursive function 5’,’? such that, for all f, e, ai,...,am,
and by,..., by,

(S (eyar, e yam) Y (bry e ba) = {ed i (@r, oo amy b,y by)
We leave as an exercise the task of using S” to prove (3) and (4). O
Exercise 5.6. Prove parts (3) and (4) of Theorem 5.25.

For k € w, define 0%) : w — w as follows:

00 = Ky;
olktl) = K’Co(k).

Theorem 5.26. For any A C "w, A is Xgy1 if and only if A is r.e. in 0k,

Proof. The case k = 0 follows from Theorems 5.24 and 5.25, so assume

that £ > 0 and that the theorem holds for k.

First suppose that A is r.e. in 0tY). Let e be a number such that

A = domain ({e}?l(Hl)). Then, for all ay,...,ay,,

(a1, ra0) €A & G TOFD(d),e,ar, ... an,d)

< (3d)(3c)(c = 0k+D(d) A Th(c, e ar,. .. an,d)).
Now
¢ =06+tD(d) > (c€Seq A lh(c) =d A (Vi < d)(c); = 0D (5))
Moreover

(c)i = 0(k+1)(i) < (((e)i=1AN1i€ }Cg(k)) V(()i=0Aig }Co(k))).
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Since K" is r.e. in 0%) we have by induction that KO s Yk+1. Thus
there is a recursive B such that, for each 7 € w,

. k
1€ Ko™
. k

(Elbl) e (Qbk+l) (Za bla s 7bk+l) € B,
(Vbll) T (le;c+l) (Zablla v ,b;€+1) ¢ B.

Substituting and bringing all quantifiers to the front, we get that, for all
ap,...,an, (ai,...,a,) € Aif and only if

(3d)(3e) (Vi < d)(Tby) (WD) -+ (Qbg1)(Q'Bl, )
R(al, e ,an,d, C,i, bl, bllv e ,bk+1, b;c—l—l) y

—
—

with R recursive. Now, for any relation P,

~

(3b) (Vi < d) P(

(Vi < d)(3b) P(i,b) i (
(Vb) (Vi < d) P(i,b

—
(Vi < d)(Vb) P(i,b) <

b)) ;
)

Hence we can move (Vi < d) to the right past all the other quantifiers. Since
((B)os (b)1)
((0)o, (b)1)

we can contract adjacent pairs of like quantifiers. The end result is that we
show A to be X 9.

Now suppose that A is Y yo. There is then a C € Il such that, for
all aq,...,ay,,

(3b)(3') P(b,V)) < (3b)
b

P ;
(Vb)(W) P(b,b)) « (Vb) P ;

0
0

(a1,...,an) € A < (I)(ay,...,an,b) € C.
By induction, —C is r.e. in 0%), Let
D = {{a,...,ap,b) | (a1,...,an,b) ¢ C}.
Then D is r.e. in 0(¥), and so Theorem 5.25 implies that D <; KO® By the

definition of 0+1) | this gives that D is recursive in 0**t1), But A is ¥ in

Kp, hence r.e. in Kp, hence r.e. in 0*+1), a

Theorem 5.27. For each k > 1,

Akgzk A Akgﬂk A (EkUHk)gAk+1
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Proof. That A C X, and Ay C Il is by definition. Using vacuous
quantifiers, we can see that Xy C Agiq and II C Ag.

Since K" " is r.e. in 01 but not recursive in 01 we have an
example of a set that belongs to ¥x \ Ag. But then N S belongs to
I, \ Ay,

The join of K9 and ~K°"™" is recursive in 0 and so belongs to
Apg+1, but it does not belong to 3y U I1. O

For n > 1, a subset A of w is one-one complete for ¥, if A € 3, and
every X, subset of w is one-one reducible to A. Similarly define one-one
complete for 11,,, many-one complete for X,, and many-one complete for
I1,.

Theorem 5.28. Let A be the set of all e € w such that We is finite. Then
A is one-one complete for Xo.

Proof. For each e € w,

ecA < (Im)(Vn)(n € We = n <m)
< (Im)(Vn)(Vd)(Ti(e,n,d) = n < m).

Thus A € Y.
Let B C w with B € ¥5. There is a recursive C' such that

(Ve)(e € B <> (Im)(Vn) (e,m,n) € C).
Define f: 2w — w by
fle,m) = pn (¥Ym' <m)(3n' <n)(e,m',n') ¢ C.

Since f is partial recursive, the s-m-n Theorem gives us a one-one recursive
g such that

(Ve)(vm) {g(e)}(m) = f(e,m).

To see that g witnesses that B <; A, assume first that ¢ € B. Then
there is an m such that (e,m,n) € C for all n. For m' > m, f(e,m’) is
undefined. Hence W) C m.

Now assume that e ¢ B. Then for every m there is an n such that
(e,m,n) ¢ C. Thus f(e,m) is defined for every m, and so W) = w. O

Exercise 5.4 gives an example of a set many-one complete (indeed, one-
one complete) for ;.
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Exercise 5.7. Show that {e | range({e}) = w} is one-one complete for Ily.

Exercise 5.8. Show that {e | =W, is finite} is one-one complete for 3.

Degrees of unsolvability.
For f:w — w, define the degree d(f) of f by

d(f)={9€“w|f<rgANg<rf},

where <, means “is recursive in.” Let

D={d(f) | f€“w}.

D is the set of degrees of unsolvability. Partially order D by
d(f)<dlg) & f<rg.

Theorem 5.29. The structure (D, <) is an upper semilattice with a least
element.

Proof. The least upper bound of degrees d(f;) and d(f2) is f, where for
each n,
f@2n) = fi(n);
f@2n+1) = fan).

The recursive functions all have the same degree 0, and this is the least
degree. g

Theorem 5.30. There exist incomparable degrees, i.e., < s not a linear
ordering of D.

Proof. We define inductively sg, s1,... and #g, ¢1,... such that
(a
(b
(c
(d

Vi € w) s; € Seq;

) ti € Seq;
Vi e w)(Vj €w)(i < j — (Ih(s;) <lh(s;) As;=s;[1h(s;)));
View)(Vj €w)(i < j— (Ih(t;) <lh(t;) At; =t;[1h(E;))).

Vi € w

) (
) (
) (
) (
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Let 80=t0=-< >—
Assume that s, and ¢, are defined.
If there is an s € Seq such that

(i) Th(s) > lh(s);

(ii) s[1lh(se) = se;
(iii) (3d <1h(s)) Tl1 (s[d, e, 1h(te),d);

then let s/ be the least such s and let
t =t x{U(ud T} (s,[d, e, 1h(t.),d)) + 1}.

Otherwise let s, = s and t, = te.
If there is a ¢ € Seq such that

(i) 1h(¢) > 1h(t));
(i) ¢ [1h(te) = te;
(ili) (3d < I0(t)) T} (¢[d, e, Ib(s}), d)
then let ¢, be the least such ¢ and let
Ser1 = sh kAU (ud T} (tes1[d, e, Th(s)), d)) + 1).

Otherwise let te1 = t, * {0) and let se1 = s x {0}

Let f : w — w be such that f(lh(s;)) =s; foralli € wandlet g:w — w
be such that g(lh(¢;)) = ¢; for all i € w.

To show that g £7 f, let e € w. We show that {e¢}/ # g. To see this,
note that {e}/ (lh(t,)) # g(Ih(t.)); for, if {e}/(Ih(t.)) is defined, then

g(lh(te)) = t,(I(te)) = {e}/ (Ih(tc)) + 1.
Similarly, for each e € w,
F(Ih(s})) = s.r1(1h(s))) = {e}(In(s})) + 1.
Hence f L1 g. O

For subsets A of w, let d(A) = d(K4). A degree is recursively enumerable
if it is d(A) for some r.e. A. There is a least r.e. degree, 0, and there is a
greatest r.e. degree, 0/ = d(01)) = d(K).

Theorem 5.31. There is an r.e. degree d such that

0<d<0.
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Proof. We shall construct a recursive function f : 2w — w satisfying
(Vs)(Ve)(f(s,e) >0 —= (e <s A f(s+1,e) = f(s,€))).

For s € w, we let
AS:{f(S,e)—1|f(8,6) >0}

The stated properties of f imply the recursiveness of {(s,m) | m € A®}. For
e € w, we let

Me = f(HSf(Sae) > 076) - L.
Finally we let
A = {me | me is defined} = UAS .
S

Thus A will be r.e.
We shall make d(A) > 0 by arranging that —A is infinite and, for all e,

(I) W, is infinite — W.NA#£0.

The numbers m, will be used to witness that (1) holds.
We shall make d(A) < 0" by arranging that

(II) ]CKA €Ay
By Theorem 5.26, (2) implies that K4 <7 0() and so that
d(A) < d(KK4) <o,

As we define f, we shall simultaneously define another recursive function
g:w—w.

Set f(0,e) =0 for all e.

Let s € w. Suppose f(s,e) is defined for all e. Suppose inductively that

(Ve)(f(s,e) >0 = W2 N A® #£0),

where

W ={n|(3d<s)Ti(e,n,d)}.

For each e, let

pd(d < s A TEH(Kas(d), e e, d)) if (3d < s) TLH(Kas(d), e e, d);
g(s,e) = -
0 otherwise.
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For each e < s, if both

(a) Wen AS =0;
(b) Fm<s)(me W Am >2e A (Ve' <e)m > g(s,e));

then, for the least such m, let f(s+ 1,e) = m + 1. If either (a) or (b) does
not hold, let f(s+1,e) = f(s,e).

Lemma 5.32. —A is infinite.
Proof. Each m. > 2e, and therefore
nlneAAn<2} C{meg|e <e},
a set of size < e. O
Lemma 5.33. For each e, limgg(s,e) exists.
Proof. Fix e. Let sg be such that
(Ve' < e) (m, defined — f(sg,€’) > 0).

Suppose that s > so and g(s,e) > 0. Any €' such that f(s,e’) = 0 and
f(s+1,€¢') > 0 must be greater than e, and so, by condition (b) above, must
satisfy me > g(s,e). Thus A*TL1 N g(s,e) = A°* N g(s,e). This implies that
g(s+1,e) = g(s,e). We have then shown that if g(s,e) > 0 for some s > sp
then g(s',e) = g(s,e) for every s’ > s. O

Lemma 5.34. For each e, limyg(s,e) > 0 if and only if e € K%A,

Proof. Let g(e) = limyg(s, e) and assume that g(e) > 0. for all sufficiently
large s, AN g(e) = AN g(e) . By the definition of g(s,e), e € KX4,

Now assume that e € KK4. Then (3d) T} (K4(d),e, e, d). Hence, for
every large enough s, (3d < s) T (K s (d), e, e,d), and so g(s,e) > 0. O

Lemma 5.35. (1) holds.

Proof. Let ¢ € w and suppose that W, is infinite. Let m € W, with m > 2¢
and m > g(€') for all ¢ < e. Let s be such that e < s, m < s, m € W2,
and g(s,e') = g(e¢') for all ¢ < e. If W¥N A% =, then (a) and (b) hold for
m at s, and so some m’ < m belongs to W2 N As*L, O

Lemma 5.36. (2) holds.
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Proof. For each e,
e € KE4 & limgg(s,e) >0

< (3s)(Vs
< (Vs)(3s

~ —

g

Exercise 5.9. Prove that there is set of size 2% of pairwise incomparable
degrees of unsolvability.
Hint. Modify the proof of Theorem 5.30 by defining (s, | u € <¥2).

Exercise 5.10. Show that there is no partial recursive function f such that,
for all e € w, if =W, is finite then f(e) is defined and every number > f(e)
belongs to We.

Exercise 5.11. Show that there are recursive functions f : 2w — w and
¢ : w — w such that

(a) for all e; and ez, Wiy, e,) and Wy, .,y are disjoint and recursive;

(b) foralle; and ey, if We, = = We, then Wy, ¢)) = We, and W, ¢,) =
We,.

Hint. All finite sets are recursive.

Exercise 5.12. Let A be a recursively enumerable set such that —A is in-
finite. Let f : w — —A be one-one onto and order preserving. Assume that
f eventually dominates every partial recursive function, i.e., that, for every
partial recursive g,

(Fm)(VYn > m)(g(n) is defined — g(n) < f(n)).

Prove that d(A) = 0.
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6 Constructible Sets

In this section, as in §1, we we our notation and terminology is pretty
much the same as that of Kenneth Kunen’s Set Theory: an Introduction
to Independence Proofs. In addition, our treatment of constructible sets is
derived from Kunen’s.

In ZFC without the axiom of Foundation, we proved (Theorem 1.9) the
existence of the class function o — V. Still working in ZFC — Foundation,
we can define the proper class WF by

WF = J{Va | @ € ON}.

Moreover it is easy to convince oneself that all the axioms of ZFC, includ-
ing Foundation, hold in (WF; € [ WF). Can one not show in this way the
consistency of the Axiom of Foundation? The answer is yes, but we have to
be careful about several things.

We can’t hope to show that the consistency of ZFC is a theorem of
ZFC — Foundation, for the second incompleteness theorem implies that the
consistency of ZFC cannot be proved even in ZFC (unless ZFC is inconsis-
tent). Of course, the argument outlined above doesn’t actually establish the
consistency of ZFC, since (WF; € | WF) isn’t actually a (set) model. And
we can’t really be “working in ZFC — Foundation” if we show that all the
axioms of ZFC hold in WF, for this assertion isn’t even expressible in the
formal language of set theory.

Let M be a class. For formulas ¢ (of the language of set theory), we
define ¢, the relativization of o to M, inductively as follows:

(a) (x=y)Misz=y;

(b) (zeyMiszey;

(©) (=)™ is —p™M;

(d) (pAP)Mis (™ ApM);
)

This definition requires some explanation.

Classes are the (sometimes nonexistent, from the point of view of ZFC)
extensions of formulas. So we should think of M as being {z | x(x)} for
some formula y. Thus clause (e) should really read

(e) ((Fx) @)™ is (Fo)(x(z) A pM).
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Hence the operation ¢ — ¢ depends not just on M but also on a formula
x defining M.

Even this amended account of the definition is not really accurate. A
class need not be definable. It may be given by a formula x(x, y1,...,y,). (If
we are using the language, then the formula is, in effect, specifying for us a
class; if we are talking about the language, then the formula isn’t specifying
a class unless we assign sets to the variables y;.) For classes M given by
such formulas, the definition of ™ must be modified so that the quantifiers
of ™ do not bind any of the variables y1,...,y, occurring free in the the
defining formula.

For any class M and formula ¢, ¢ is true in M, ¢ holds in M, and M
is a model of ¢ all mean the same as the formula oM.

Lemma 6.1. Let S and T be sets of sentences in the language of set theory
and let M be a definable class. Suppose that (for some formula defining M)

(1) T = M#0;
(2) Vo€ ST oM.

Then S is consistent if T is consistent.

Proof. Let x(x) be the given formula defining M for which (1) and (2)
hold. (Note that the Lemma is really about y and has nothing to do with
M qua class.)

Assume that T is consistent. Let 21 be a model of T'. Let B be given by

B = {acA[AExlal};
€y = €E9|B.

(1) implies that B # () and so that 9B is a model. It is routine to show that,
for any sentence o,
BlEo < A=,

Thus (2) implies that B |= S. O

Remarks:

(a) It is easy to give a direct proof-theoretic argument for the (equivalent)
version of Lemma 6.1 formulated in terms of deductive consistency.

(b) Suppose that S and T are, say, recursively axiomatizable theories.
Then the deductive consistency version of Lemma 6.1 for S and 7' can be
formulated in, for example, Peano Arithmetic. Moreover it can be proved
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in PA. The applications we make of Lemma 6.1 will all involve recursively
axiomatizable theories, and the arithemetic versions of (1) and (2) will be
provable in PA. Thus our relative consistency results are all essentially the-
orems of PA.

Lemma 6.2. If M is a transitive class, then the Aziom of FExtensionality
holds in M.

Proof. Let M be transitive. The relativization of Extensionality to M is
equivalent to

Ve M)Vye M) (VzeM)(z€x < 2z€y) 2z =1y).

Fix elements z and y of M and assume that (Vz€ M)(z € z <> z € y). Since
M is transitive, this implies that (Vz)(z € x <> z € y). By Extensionality,
T =1y. EI

Lemma 6.3. The Axiom of Foundation holds in every subclass of WF.
Proof. Let M C WEF. The relativization of Foundation to M is
VeeM)(GyeM)year —- (JyeanM)VzexnNM)z¢vy).

Let z € M. Assume that tNM # (. Since M C WF, there is a least ordinal
a such that z N M NV, # (). For this least a, let y € x N M N V,. Since all
members of y belong to Vg for some 8 < «, y is disjoint from = N M. |

Lemma 6.4. Let M be a class with the following property: For each formula
o(x, z,wy,...,wy) and for any elements z, wy, ..., wy of M,

{zez| oM(z,2,w1,...,w,)} € M.
Then every instance of the Axziom Schema of Comprehension holds in M.

Proof. Any relativization to M of an instance of Comprehension is of the
form

(Vwi e M) --- Vw, e M)(Vze M)Bye M)(NzeM)(z € y « (z € z A ™)),

for ¢ as in the statement of the lemma. Fix such a ¢ and fix elements z,
wy,...w, of M. Let y = {z €z | o"(z,2,w1,...,w,)}. By hypothesis,
y € M. Since (Vz)(x € y < (v € z A p™M)), we have in particular that
(Vo e M)(z €y« (v €z A pM)). O
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In our applications, M will be transitive, so that the set y will not have
elements x ¢ M satisfying o™ (x). Note that a class M (transitive or not)
satisfies the hypothesis of Lemma 6.4 if M if all subsets of elements of M
belong to M.

The following two lemmas are easy to prove.

Lemma 6.5. If M is a class such that, for all x and y belonging to M,
there is a z € M with {x,y} C z, then the Aziom of Pairing holds in M.

Lemma 6.6. If M is a class such that for all x € M there is ay € M such
that U(x) C y, then the Aziom of Union holds in M.

Lemma 6.7. Let M be a class with the following property: For each formula
o(x, z,wy,...,wy) and for any elements z, wy, ..., wy, of M, if

VexeznM)3y e M)(pM(ac,y,z,wl,...,wn),
then there is a u € M such that
{yeM | BzrecznM)eM(z,y,z,wi,...,wy)} Cu.
Then every instance of the Axziom Schema of Replacement holds in M.
Proof. The proof is similar to that of Lemma 6.4. a

We postpone discussing the Axioms of Infinity, Power Set, and Choice
until we have proved some results about absoluteness.

Let ¢(x1,...,2,) be a formula. If M and N are classes such that M C N,
then ¢ is absolute for (M, N) if, for any elements x1,...x, of M,
M

© xl,...,xn)H@N(xl,...,xn).

We say that ¢ is absolute for a class M if ¢ is absolute for (M, V), i.e., if,
for any elements x1,...,x, of M,

@M(xl,...,xn) € P o I

Lemma 6.8. If M C N, then the set of formulas absolute for (M,N) is
closed under negation and conjunction.

Proof. The lemma follows directly from the facts that the relativization of
- is the negation of the relativization of ¢ and that the relativization of
@ A ¢ is the conjunction of the relativizations of ¢ and . o
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Lemma 6.9. Let M and N be transitive classes such that M C N. Then
the set of formulas absolute for (M, N) is closed under bounded quantifica-
tion; that is to say, if ¢ is absolute for (M, N) then

Bz)(z ey A @)
is absolute for (M, N).

Proof. Given ¢(x,y, z1,...,2,) absolute for (M, N) and given elements vy,
Z1,...,2n of M, we have

((ELT)(.T €y A 90($7y7 Bl 7Zn)))M
AN (ElCL')(CL' SHTIA @M(:vaazla"'azn))
A (El‘r)(‘r €y A ()ON($7y7Z17"'7Zn))
& ((F) (@ ey A p(,y, 21, 2))Y

The first biconditional follows from the transitivity of M, the second from
the absoluteness of ¢ for (M, N), and the third from the transitivity of N.
O

The Ag formulas form the smallest set of formulas satisfying the following
conditions:

1)
2) If ¢ is Ay then so is —p.

3) If ¢ and 9 are Ag then so is (¢ A ).
4) If p is Ag then so is (Fz)(z € y A p).

(1) All atomic formulas are Ay.
(
(
(
Lemma 6.10. If M and N are transitive classes and M C N, then all Ag
formulas are absolute for (M, N).

The following useful lemma is easy to prove.

Lemma 6.11. Let T be a theory and let p(z1,...,zy,) and P¥(zq,...2z,) be
formulas such that

T = (Vo) (Vo) (e(z1, ..oy zp) < U(x1, ... 2p))

Let M and N be models of T such that M C N. Then ¢ is absolute for
(M,N) if ¢ is.
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If T is a theory in the language of set theory and ¢(vi,...,v,41) is a
formula of that language, then ¢ defines an operation (of n arguments) in
T if

T = (Yor) - (Vo) (Bvng1)@(v1, -5 Ung1) -
To have a uniform terminology, let us speak of any formula ¢(vy,...,v,) as
defining an n-ary relation in T. When we speak of a defined operation or

relation as being absolute, we mean that the defining formula is absolute.
Let ZF be ZFC — Choice.

Lemma 6.12. The following relations and operations are defined in ZF —
Foundation — Power Set — Infinity by formulas provably equivalent in ZF —
Foundation — Power Set — Infinity to Ay formulas. Hence they are absolute
for any transitive class M that is a model of ZF — Foundation — Power Set
— Infinity.

(a) z € y; (h) zUy;

(b) v =y; (i) zNy;

(c) » Cy; () z\y;

(d) {z,y}; (k) S(z);

(e) {z}; (1) x is transitive;
() (z,y); (m) U(z);

(g) 0; (n) Nz.

In (n), we construe (0 to be O in order to make () into an operation.

Proof. That we defined these relations and functions in ZF — Foundation —
Power Set — Infinity, we leave to the reader to check. We content ourselves
with making it clear that the defining formulas are equivalent in that theory
to Ay formulas.

(a) and (b) are obvious.

For (c), note that = C y if and only if (Vz € ) z € y.

For (d), observe that

z={z,y} & (r€zhyez N Ywez)(w=zV w=y)).

(e) is similar.
For (f), note that z = (z,y) if and only if

(Fwez)w={z} N (Qwez)w={z,y} N Ywez)(w={z} Vw={z,y}).

Since w = {x} and w = {z,y} are equivalent to Ay formulas, so is z = (z,y).
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For (g)—(k), note that

z=0 < (Vwez2z)w # w;
z=zUy < xzCzAyCzANMwez)(werVwey);
z=zNy < zCaxAzCyA Vwer)(wey— we z);
z=z\y < zCzxAzNy=0A Vwez)(w¢y—wez2);
z2=8(x) ¢ ze€zhzCzANMuwez)(w=zV weEz).

For (1), observe that z is transitive if and only if (Vz € z)(Vwez)w € x.
For (m) and (n), note that

y=U(x) & (Vzez)z2Cy A (Vzey)(Twerx)zew
and that

y=Nz < Vzex)yCz A Vzezx)Vwez)(Vucz)w eu— w € y)
/\(CL':(D—)ZJ:(D). 0

Lemma 6.13. Suppose that M is a transitive model of ZF — Foundation
— Power Set — Infinity such that (Vo € M)(Jy € M)P(x) "M Cy. Then
the Aziom of Power Set holds in M.

Proof. The relativization to M of Power Set is
(Ve e M)3ye M)(Vze M)((z C2)™ = z€y).

By Lemma 6.12, C is absolute for M, so the relativization of Power Set to
M is equivalent to

VeeM)FyeM)VzeM)(zCaxz—z€y).

But this is just what the second part of the hypothesis of the lemma says.
d

Remark. Since C is literally defined by a Ay formula, the lemma holds
without the assumption that M is a model of ZF — Foundation — Power
Set — Infinity.

Lemma 6.14. Let M be a transitive model of ZF — Foundation — Power
Set — Infinity. If w € M, then the Aziom of Infinity holds in M.
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Proof. The relativization to M of Infinity is
(Fze M)W ez A(Vyexzn M)SM(y) € z).

By the transitivity of M and the absoluteness of () and S, this is equivalent
to
(FreM)Dex ANVyez)S(y) € x).

But w witnesses that this is true. g
Lemma 6.15. (Uses Choice) Let M be a transitive model of ZF — Foun-

dation — Power Set — Infinity such that every subset of an element of M
belongs to M. Then the Aziom of Choice holds in M.

Proof. Using the transitivity of M and the absoluteness of () and N, we get
that the relativization to M of Choice is

(Vo e M)

(Yy1)(Vy2) (y1 €z Nya €2) = (11 #D A (Y1 =y2 V y1 Ny2 = 1))
— (FzeM)Vy)lyex— FweM)weynz)))

Let x € M satisfy the antecedent of the conditional. Let z be given by
Choice. Then
Vy)lyex = Fw)w eynz).

The transitivity of M implies that
Vy)ly ez — (FweM)weynz).
This in turn implies that
Vy)lyex - FweM)weyn(zNU(x)).

Since the U operation is defined in M and is absolute for M, the set U(x)
belongs to M. Since z NU(x) C U(x), the hypotheses of the lemma give
that z NU(z) € M. O

Theorem 6.16. (a) The class WF is a model of ZF.
(b) (Uses Choice) The class WEF' is a model of ZFC.

Proof. Since WF is transitive, Lemma 6.2 implies that Extensionality holds
in WF. Since WF C WF, Lemma 6.3 gives that Foundation holds in WF.
All subsets of WF belong to WF, so, by the remark after the proof of
Lemma 6.4, Comprehension holds in WF. It is easy to see that WF is closed
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under the operations of pairing and i/; hence Pairing and Union hold in WF
by Lemmas 6.5 and 6.6. We leave as an exercise to prove that the hypothesis
of Lemma 6.7 holds for WF. By that lemma we then get that Replacement
holds in WF. We now have that WF is a model of ZF — Foundation — Power
Set — Infinity. For x € WF,

P(z) NWF =P(z) € WF.

Hence, by Lemma 6.13, Power Set holds in WF. By Lemma 6.14 and the
fact that w € WF, we have that Infinity holds in WF. Since the hypotheses
of Lemma 6.15 hold in WF, Choice holds in WF if it holds in V. |

Theorem 6.17. (a) If ZF — Foundation is consistent, then so is ZF.
(b) If ZFC — Foundation is consistent, then so is ZFC.

Proof. (a) follows from Lemma 6.1 and and part (a) Theorem 6.16, and
(b) follows from Lemma 6.1 and and part (b) Theorem 6.16. O

Exercise 6.1. Prove the the Schema of Replacement holds in WEF.

Announcement. We shall no longer note uses of Foundation.

Lemma 6.18. The composition of absolute operations and relations is ab-
solute: Suppose that T is a theory, that M C N, that M and N are models
of T', and that that Gy, ...,Gy are n-argument operations defined in T that
are absolute for (M, N).

(a) Let R be an m-ary relation defined in T that is absolute for (M, N).
Then the n-ary relation R' given by

R'(z1,...,2,) & R(Gi(z1,...,20),. ., Gz, .., 2))

is defined in T and is absolute for (M, N).
(b) Let F' be an m-arqument operation defined in T that is absolute for
(M,N). Then the n-argument operation H given by

H(xy,...,2p) = F(Gi(x1,. ..y xn)y. o, G(z1, ..., 2))

is defined in T and is absolute for (M, N).
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We prove (b). The argument for (a) is similar. It is easy to see that H

is defined in 7T". To prove its absoluteness, let x1,...,z, be elements of M.
Then
HM(xy,...,2,) = FM(GY(x1,...,2,),...,GM(21,...,2,))
= FNGW(x1,...,20),...,GM(21,...,2,))
= FNGN(zy,...,z0),...,GN (x1,. .. 2,))
= HN(zy1,...,2,). O

Lemma 6.19. The following relations and operations are defined in ZF —
Power Set and are absolute for transitive models of ZF — Power Set.

(a) z is an ordered pair;

(b) uxwv;

(c) z is a relation;

(d) domain () (= {w | (Iy)(x,y) € 2}) ;

(e) range (z) (= {y | (Fz){z,y) € 2}) ;

(f) z is a function;

(0) () (:{ g(w) if () (z,y) € 2 >

otherwise;

(h) z is a one-one function.

Proof. (a) zisan ordered pair if and only if (Jz€ld(2))(TyeU (2)) z = (z,y) .

(b) The first of our two proofs of the existence of u x v was in ZF —
Power Set, so x is defined in ZF — Power Set. For absoluteness, note that
z = u X v if and only if

(Vz eu)(Vy €v) (z,y) € 2z A (VYw € 2)(Fzx € u)(Ty € v)w = (z,y) .

(c) z is a relation if and only if every element of z is an ordered pair.
(d) u = domain (z) if and only if

(Vo € u)(3y e UU(z )))( Y) €2
ANNVeeldU(2)Vy eUU(2)))(z,y) €Ez2— x Eu).

(e) v = range (z) if and only if

(Vy €v)(Fz eU(U(2)))(x,y) € z
AN NVeeUd(2)Vy eUU(z)))({(z,y) € 2z =y EW).
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(f) z is a function if and only if z is a relation and

(Vo e UU(2))(Vy € UU(2)))(Vy' € UU(2)))
((z,y) € 2 A (z,y) € 2) =y =4).

(g) y = 2() if and only if

(x,yy € z A (v elUU(U(2))) (z,v) € 2)
Vy=0A-3weldl(z)))((z,v) € z)).

(h) z is a one-one function if and only if z is a function and
(Ve e UU(2))) (V' eUU(2)))(z(x) = 2(2") — =z =2). O

From now on, when we state that an operation or relation is absolute
for transitive models of a theory 7', we mean that the operation or relation
is defined in 7" and is absolute for transitive models of T'.

Lemma 6.20. The following operations and relations are absolute for tran-
sitive models of ZF — Power Set.

(a) x is an ordinal;

(b) x is a limit ordinal;

(¢) x is a successor ordinal;
(d) x is a finite ordinal;

(e) w;

(f) 0,1,2....

Proof. (a) z is an ordinal if and only if x is transitive and € [z is a linear
ordering of z. The first clause is absolute by Lemma 6.12 and the second is
given by a A( formula (all the quantifiers are bounded to z).

(b) z is a limit ordinal if and only if z is an ordinal and =z # () and
(Vy € ) S(y) € x.

(c) x is a successor ordinal if and only if = is an ordinal and z is neither
() nor a limit ordinal.

(d) z is a natural number if and only if = is an ordinal number and
neither x nor any member of z is a limit ordinal.

() x = w if and only if z is a limit ordinal and no member of z is a limit
ordinal.

) z2=0c2=0; 2=a+1< (Fzez)(zr=a AN z2=S8(x)). O
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Exercise 6.2. Explain briefly which axioms of ZFC are true in the following
transitive classes. (The classes are all sets, so “true in M” can be taken in
either of our two senses.)

le ;

5) Vi for k inaccessible.

A cardinal k is inaccessible if k is uncountable and regular and if, for all
K < Kk, 28 < k.

Exercise 6.3. A formula of the language of set theory is 3 if it is of the
form (dz1)...(3x,) ¢ with p a Ay formula. A formula is II; if it is of the
form (Vzi1)...(Vz,) ¢ with ¢ a Ag formula. If T" is a theory, a formula ¢ is
provably Ay in T if there are formulas ¢ and y such that 1 is X1, x is Iy,
and T = both (¢ <> ¢) and (¢ <> x).

Let ¢ be provably A; in T and let M and N be transitive models of T
such that M C N. Prove that ¢ is absolute for (M, N).

Lemma 6.21. Let M be a transitive model of ZF — Power Set. Then every
finite subset of M belongs to M.

Proof. There is only one subset 2 of M with card (z) = 0, namely ), and
this set belongs to M. Assume inductively that every size n subset of M
belongs to M. Let « C M with card () = n+ 1. Then there isa y C M
and there is a z € M such that card (y) = n and = = y U {z}. By induction
y € M, and so Lemma 6.12 gives that z € M. O

Lemma 6.22. The following are absolute for transitive models of ZF —
Power Set.

(a) x is finite;

(b) <“z.
Proof. (a) z is finite if and only if there is a one-one function f with
domain (f) € w and range (f) = =. If v € M, then Lemmas 6.12 and 6.20

imply that any such f is a subset of M and so, by Lemma 6.21, an element
of M.
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(b) We must show that<“z is defined in ZF — Power Set. To do this we
first use induction to prove in ZF — Power Set that "x exists for every set
x and every n € w. This is true for n = 0, because "z = {{)}. It is easy to
define a one-one correspondence between "z x z and "1z, so our assertion for
n + 1 follows from the assertion for n using Lemma 6.19 and Replacement.
Next we use Replacement to get the existence of {"x | n € w}. Since
<Wr = U{"x | n € w}, we finally get the existence of <“z. Absoluteness
holds because z € <“z if and only if z is a function and domain (z) € w and
range (z) C . O

Lemma 6.23. The following are absolute for transitive models of ZF —
Power Set.

(a) r wellorders x;

(b) ot(x,r), that is, the unique ordinal « such that (x,r) is isomorphic
to (o, € [ a) if r wellorders x and 0 otherwise.

Proof. That r linearly orders z is expressible by a A formula.

Suppose that r wellorders . Then every non-empty subset of z has an
r-least element. Let y € M be such that (y C x)™ and (y # 0)M. Then
y C x and y # 0. Let z be an r-least element of y. Then z € M and it is
true in M that z is the r-least element of y.

Now suppose that “r wellorders z” is true in M. Since the proof of
Theorem 1.14 goes through in ZF — Power Set, it is true in M that there
is an ordinal number « such that (z,r) is isomorphic to (a, € [ ). Let f be
such that in M it is true that f is an isomorphism between (¢, € [ ) and
(x,r). By the absoluteness of the relevant notions, this is also true in V.
Hence r wellorders z.

The argument just given proves (a), but it also shows that if r wellorders
x then otM (x,r) = ot(z,7). By (a) and the absoluteness of 0, we have (b).

O

We can extend our notion of absolute definable relations to relations
defined from set parameters. For simplicity, we make this extension only
for unary relations, i.e., for classes. Fix a class M. If A is the class {z |
o(x,ay,...,ay)}, let us say that A is defined in M if ay,...,a, are elements
of M. If A is defined in M, then

AM:{‘TEM|<)0M($7a17"'7an)}'

We say that A is absolute for M if A is defined in M and AM = An M.
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In an analogous fashion we now introduce the notion of absolute class
functions. For a class function F' = {(z,y) | ¢({x,y),a1,...,an)}, let us say
that F'is defined in M (as a function) if ai,...,a, are elements of M and
“F'is a function” is true in M. If F' is defined in M, then

FM = {(w,y) eM | @M(<x7y>va17"' 7an)}'

We say that F' is absolute for M (as a function) if F is defined in M and
FM = F | M (so that, in particular, domain (F™) = domain (F) N M).
Remarks:

(a) Being defined in M and being absolute for M depend upon the
defining formula and parameters and not just on the class or function.

(b) Definability in M could be defined in a natural way for defined op-
erations, although we have not done so.

(c) We have required that defined operations of n arguments be defined
on any xi,...,Tpn, but we allow absolute class functions to have domains
that are not all of V.

Lemma 6.24. Let F:V — V. Let G : ON — V be defined as in the proof
of Theorem 1.8. Thus

(Va € ON) G(a) = F(G | ).

Let M be a transitive model of ZF — Power Set. Assume that F is absolute
for M. Then G is absolute for M.

Proof. Since the proof of Theorem 1.8 goes through in ZF — Power Set
and since (F : V — V)M we have by earlier absoluteness results that G is
defined in M, that GM : ONN M — M, and that

(Va e ONNM)GM(a) = FE(GM [ a).

Using the absoluteness of F', we can prove by transfinite induction on « €
ONN M that GM(a) = G(«). O

Lemma 6.25. The operation trcl is absolute for transitive models of ZF —
Power Set.

Proof. The proof of the existence of trcl(x) goes through in ZF — Power
Set. That proof shows that trcl(z) = U(range (g,)) for some g, defined by
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recursion from an absolute F); (defined from = by a formula that is indepen-
dent of z). Thus trcl(x) = U(range (G [w)) for the G defined by transfinite
recursion from this same F),. O

For any set x, let rank () be the least ordinal « such that z € V4.
Since the V,, « > w, may not exist in models of ZF — Power Set, let us
adopt the following definition of rank (x) as our official definition. Given z,
define by transfinite recursion a function G, : ON — V by

G.(0) = 0
Gzla+1) = {yetrcl(z) |y CGyla)};
Gz(\) = U(range (G5 [ A\)) for limit ordinals A.
Then let rank () be the least «, such that  C G;(«). In ZF, one can easily

show that G, (a) = V, Ntrel(x), and so that the two definitions of rank (x)
are equivalent in ZF.

Lemma 6.26. The operation rank is absolute for transitive models of ZF
— Power Set.

Lemma 6.27. Let M be a transitive model of ZF. Then
(a) PM(z) =P(x)NM forz € M ;
(b) VM =V, N M fora € ONNM.

Proof. (a) follows from the absoluteness of C. (b) follows from the abso-
luteness of rank. O

The following lemma gives the relation between the relativization of a
formula to a set and the satisfaction of that formula by the model determined
by that set.

Lemma 6.28. Let p(x1,...,x,) be a formula and let b be a set. Then, for
any ai,...,a, belonging to b,

gob(al,...,an) — (hhe) =plat,...,a,].

Proof. We can show by induction on complexity that all instances of this
schema are provable. O

For any set x let FODO(x) be the set of all u C = such that, for some
formula (v, ...,v,) and some sequence (yi,...,y,) of elements of z (i.e.,
some f:n — x),

u={y €| (z;€) F ¢lyo,---ynl}-
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Lemma 6.29. For any set x,

(a) FODO(z) C P(z);

(b) if x is transitive, then x C FODO(z) ;

(c) every finite subset of x belongs to FODO(x) ;

(d) (Uses Choice) if card (x) > w then card (FODO(z)) = card ().

Proof. (a) is obvious.
(b) Assume that = is transitive and let b € x. Let p(vp, v1) be the formula
vg € v1. Then {a € z | (z; €) = ¢[a,b]} € FODO(x). But

facz|(z;€) Fpla,b]} = {acax|ach}
= b,

where the last equality holds because x is transitive.

(c) Let n € w and let u C x with card (u) = n. Let f : n — u be one-one
and onto. Then the formula \X/,,.,, vo = v; and f(0)..., f(n — 1) witness
that u € FODO(z). o

(d) Assume that card (x) > w. By (c¢), {y} € FODO(z) for every y € x.
Thus card (z) < card (FODO(x)). But card (FODO(x)) is no greater than
the cardinal of u x v, where u is the set of all formulas and v = <“z. Thus
card (FODO(x)) < Vg - card () = card (). O

Remark. Choice is needed for (d) only to get the existence of card ().

By transfinite recursion, we define a function L : ON — V. We write L,
for L(a).

(a) Lo =0;
(b) Lg+1 = FODO(L,);
(¢) Ly =U({Lq | @« < A}) if A is a limit ordinal.

Let L =U({Lq | & € ON}). Members of L are said to be constructible.

Lemma 6.30. For each ordinal «,

(a) Lq is transitive;
(b) (VB < a)Lp C La.

Moreover L 1is transitive.
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Proof. We prove (a) by transfinite induction. The case a = 0 is trivial.
The case that « is a limit ordinal follows from the fact that the union of
a set of transitive sets is transitive. The case « is a successor follows from
part (b) of Lemma 6.29.
The proof of (b) is just like the proof of the corresponding fact for V.
L is transitive because it is a union of transitive sets. O

For each z € L, let p(x) (the L-rank of x) be the least ordinal a such
that = € La+]_.

Lemma 6.31. (a) (Va € ON)(a € L A p(a) = ).
(b) (Va e ON)ONNL, = «.

Proof. It is easy to see that (a) and (b) are equivalent. We prove (b) by
transfinite induction.

The cases that « is 0 or a limit ordinal are trivial.

Assume that « is 5 + 1. Note that the proof of part (a) of Lemma 6.20
establishes that “z is an ordinal” is equivalent in ZF — Power Set to a 4
formula. Calling this formula Ord(z), we have, for y € Lg:

Lg = Ordly] « Ord™(y)
< Ord(y)

< 1y is an ordinal

Thus Ord(vy) witnesses that Lg N ON € L, so, by induction, that 5 € L.
We have then that ONN L, O o. But if 7 > o then v € 8 and so v € Lg.
Thus no v > « belongs to L. g

Lemma 6.32. For a <w, L, =V,. Forn € w, V, is finite, and so Ly is
finite.

Proof. The second assertion is easily proved by induction. The first asser-
tion then follows by part (c) of Lemma 6.29. O

Lemma 6.33. (Uses Choice) For a > w, card (L,) = card ().

Proof. By Lemma 6.31, card (Ly) > card («) for every c.

By transfinite induction, we show that card (L) < card («) for every
o> w.

The case o = w follows from Lemma 6.32.
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For limit o > w,

card (Ly) = card( U Lg)
B<a
card (o X supg,card (Lg))

IN N

card (« x card («))
card () .

The case that « is a successor follows from part (d) of Lemma 6.29. O

Remark. Choice is not really needed for Lemma 6.33, as the proof of
Theorem 6.43 will show.

Lemma 6.34. All axioms of ZF except perhaps Comprehension hold in L.

Proof. Extensionality holds, since L is transitive.

Foundation is trivial.

To show that Pairing holds, we use Lemma 6.5. Suppose that = and
y belong to L. Let a be such that both x and y belong to L,. Then
Ly € Loy1 C L, and {z,y} C L.

For Union, we use Lemma 6.6. Let © € L,. Since L, is traunsitive,
x C L. This fact and the transitivity of L, imply that U(x) C L.

For Replacement, we use Lemma 6.7. Let z and wy, ..., w, belong to L
and assume that

(Ve € 2N L)(3y € L) " (z,y, z, w1, ..., wy).
By the transitivity of L and by Replacement in V', there is an « such that
(Vo € 2)(3y € La) 9" (x,y, 2, w1, ..., wn).

For Power Set, we use Lemma 6.13. Let x € L. By Replacement in V,
let « be such that P(z) N L C L,.
For Infinity, we use Lemma 6.14 and the fact that w € L. d

A class C of ordinals is closed if the union of any subset of C' belongs to
C. If « is an ordinal, a closed subset of « is a subset C' of « such that the
union of any subset of C' bounded in « belongs to C.

Theorem 6.35 (Reflection Schema). Let M : ON = V. (We write M,
for M(a).) Let M = Uycon Ma. Assume that Mg C M, whenever 3 <
« € ON and that M)y = Uﬂ</\ Mg for all limit X. Let ¢ be a formula. Then
there is a closed, unbounded class C' of ordinals such that ¢ is absolute for

(Mq, M).

124



Proof. We proceed by induction on the complexity of ¢ (i.e., we show
inductively how the instances of the schema can be proved).

If ¢ is atomic, then we can let C' = ON.

If ¢ is =) and C witnesses that the theorem holds for ¢ (and M), then
C witnesses that the theorem holds for ¢.

If pis ¢y A x and C" and C"” respectively witness that the theorem holds
for ¢ and y, then C' = C' N C” witnesses that the theorem holds for (.

Assume that ¢ is (Jy) ¢¥(z1,...,2n,y). Define F : "V — ON by

a(Fy € M) M (xy, ..., 20,y)
F(<$17"'7$n>): 1f(3y€M)¢M($1,,$n7y)7
0 otherwise.

For ordinals « let

Gla) =U{F({x1,...,xn)) | (z1,...20) € "My}).
Let
C' = {a € ON | a is a limit ordinal A (V3 < «a)G(B) < a}.

The class C’ is obviously closed. To see that C’ is unbounded, let 3 € ON.
Let Bp = B and, for i € w, let 811 = max{B3;, G(B;)} + 1. If a = U, Bi
then f < o and a € C'. Let C" witness that the theorem holds for 1. Let
C = C'"'NnC". The class C is closed and unbounded. Let o € C and let
Z1,...,Ty belong to M,. Since « is a limit ordinal, there is a 8 < « such
that xq,...,z, belong to Mg. We have

eM(z1,. ) & GyeM)YM(zy,. .. z0,y)
& By e Mpgy, ... o) VM (@1, 20, y)
< (Jye Mg )¢M(1:1,...,1:n,y)
< (JyeMy)y (acl,...,q:n,y)
& (Fye M) pMa(zy, ..., z,,y)
o oMe(zy, . xy). O

Theorem 6.36. All axioms of ZF hold in L.

Proof. By Lemma 6.34, we need only show that comprehension holds in L.
Let ¢(v1,...,vn4+2) be a formula and let z and wy, ..., w, belong to L. By
Theorem 6.35, let a be an ordinal such that ¢ is absolute for (L, L) and
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such that z and wy, ..., w, belong to L,. We have, suppressing the w; for
brevity,
{rez|ol(z,2)} = {x€ly|xczn bz 2)}
{r€Lly|ze€z A pl(z,2)}
{z € Lo | (La; €) = (01 € v2 A @(v1,02))[, 2]}

€ La-i—l
Cc L.
By Lemma 6.4, we have shown that Comprehension holds in L. a

Our next task is to prove that V' = L holds in L.

Lemma 6.37. FEvery relation or function provable in ZF — Power Set to
be representable in Q is absolute for transitive models of ZF — Power Set.

Proof. We need to clarify the content of the lemma. When we say that,
e.g., a function f : "w — w is provable in ZF — Power Set to be representable
in @, we mean that f is defined (from no parameters) in ZF — Power Set
and ZF — Power Set proves that some formula ¢(v1,...,v,11) represents f
in Q.

If p is the representing formula, then ZF — Power Set proves that ¢
defines the relation or function in question in the modal 91. Since S, +,
and - are the restrictions of functions successively definable by transfinite
recursion from absolute functions, this guarantees absoluteness. El

For definiteness, let us take the symbol € to be officially the number 25.

Lemma 6.38. The following are absolute for transitive models of ZF —
Power Set:

(a) x is a variable;

(b) n—wvy;

(¢) x € Formula, i.e., x is a formula of the language of set theory;

(d) (z,y) € Free, i.e., x is a formula and y is a variable occurring free

mn .

Proof. (a) and (b) follow from Lemma 6.37.
For (c¢), note that the function n — Formula,, is defined by recursion from
an absolute function. Formula is the union of the range of this function.
For (d), note that the function sending each n to {(z,y) € Free | z €
Formula, } is definable by recursion from an absolute function. O
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Lemma 6.39. The 3-ary relation (y,z) € Sat(%€) is absolute for transitive
models of ZF — Power Set.

Proof. n— Satgf;e) is defined by recursion from an absolute function. [

Lemma 6.40. The operation FODO 14s absolute for transitive models of ZF
— Power Set.

Proof. FODO is defined in ZF — Power Set, since Replacement guarantees
the existence of FODO(z). Thus it is enough to show that the relation
u € FODO(z) is absolute. But v € FODO(z) if and only if v C = and

(Fp)(3s)(¢ € Formula A s € <z
A (Vi€ w)({p,vi) € Free — i < fh(s) + 1)
A (Vy € x)(y € u (p,(y)~s) € Sat@9))). O

Lemma 6.41. The function o — L, is absolute for transitive models of ZF
— Power Set.

Proof. This function is defined by transfinite recursion from an absolute
function. g

Theorem 6.42. The Axiom of Constructibility V = L holds in L.
Proof. We have that

(v = L)t (Vo € L)(3a € LNONE)(z € L)t

“
< (Vzel)(FacON)z e L,
< (MzeL)zxel. O

Theorem 6.43. The Axiom of Choice holds in L.

Proof. Fix a wellordering of Formula. By transfinite recursion, we define
a function o —<,. By induction we shall verify the following;:

(i) <4 is a wellordering of Lg;

(ii) (Vo € La)(Vy € La)(p(z) < p(y) = = <a y);
(ili) (VB < a) <gC<q-
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Set <= 0.

For a a limit ordinal, set <o= ., <p. It is immediate that (iii) holds
for a. The induction hypotheses that (ii) and (iii) hold for all ordinals < «
guarantee that (ii) holds for «. Since (ii) holds for «, any failure of (i) for «
would give a failure of (i) for some 3 < a.

Assume o = 3 + 1. For n € w, wellorder "(Lg) lexicographically, using
the ordering < of Lg. (If s and ¢ are distinct members of "(Lg), then s is
less than ¢ if, for the least m such that s(m) # t(m), s(m) <g t(m).) Now
order <“(Lg) by setting s less than ¢ if fh(s) < ¢h(t) or else (h(s) = ¢h(¢) and
s is less than ¢ in our ordering of ®(*)(Lg). Finally order Formula x <“(Lg)
lexicographically. It is easy to check that this ordering is a wellordering. For
x and y belonging to L,, set © <, y just in case one of the following holds:

(a) zelgNy€elg Na<guy;
(b) w€Lg Ay¢Lg;
(c) o ¢ Lg Ny ¢ Lg and the least element of Formula x <“(Lg) that

witnesses © € L, is less than the least element that witnesses y € L.

Clearly (i), (ii), and (iii) hold for a.

Define <p= Jycon <a- By (i)-(iii), < is a wellordering of L. Thus
V = L implies that <y wellorders V', and so V' = L implies Choice. Since
V = L holds in L, Choice holds in L. O

Lemma 6.44 (Mostowski Collapse). Let u be a set such that Exten-
stonality holds in w. Then there is a unique transitive set v such that
(u; €) = (v; €). Moreover there is a unique isomorphism

i (w €)= (v;€).
Proof. For z € u we define 7(x) by recursion on rank (z). Set

m(x) ={r(y) |y € xNu}.

Note that this is the only possible choice of 7(z) if 7 is to be an isomorphism
with range (7) transitive.
It is clear that
yex—m(y) €n(z).

To prove the converse, it is enough to show that 7 is one-one, and this will
show that 7 : (u;€) & (range (7); €). By induction on the maximum of
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rank(z;) and rank(zz)}, we show that m(x;) = 7(z2) — 21 = x2. We have

m(x1) =mw(x2) — A{n(y) |y exrNul ={r(y) |y € x2Nu}
—  (by induction) {y |y € z1 Nu} ={y |y € z2 Nu}
—  (by Extensionality”) z; = x2 . O

Lemma 6.45. Let k be an uncountable reqular cardinal. Then L, is a model
of ZF — Power Set + V = L.

Proof. Showing that L, is a model of ZF — Power Set will be part of a
final examination problem. That V' = L holds in L, follows by Lemma 6.41.
d

Lemma 6.46. Let z be a transitive model of ZF — Power Set + V = L.
There is an « such that z = L,,.

Proof. Let « = ONNz. Clearly « is a limit ordinal. The function v — L.,
is absolute for z. For x € z there is a v < o such that € L, holds in z. By
absoluteness, every element of z belongs to L. For each v < «, (L,)? = L5,
and so every element of L, belongs to z. EI

Theorem 6.47. The Generalized Continuum Hypothesis holds in L.

Proof. Let o be an infinite ordinal number. We show that
Pla)NL C Lo+ .

By Lemma 6.33, this implies that card (P(a) N L) < a*. Hence V = L
implies that 2¢4r4(®) = . Since V' = L holds in L, the theorem will be
proved.

Let « C o with o € L. Let 8 > « be such that x € Lg. By Lemma 6.45,
Lg+ is a model of ZF — Power Set + V = L.

By the Lowenheim—Skolem Theorem, let y be such that

(1) (y;€) < (Lg+;€);
(ii) aU{z} Cy;
(iii) card (y) = card («) .

By Lemma 6.44, Let z and 7 be such that z is transitive and

T (y;€) = (%5 €).
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Since (z;€) = (y;€) < (Lg+; €), 2 is a model of ZF — Power Set +
V = L. By Lemma 6.46, there is an ordinal v such that z = L,.

Since card (y) < card(L,) = card(z) = card (y) < card(«), we have
that v < a™.

It suffices then to prove that x € L,. Since x € y, we need only show
that m(z) = x. First we show by induction on < « that 7(n) = n. We
have

m(n) = {r()[&enny}
= (since e C y) {7 (&) [ £ € n}
= (by induction) {¢ | £ € n}

Finally we note that
m(@) ={r(n) [nexny}={r() |neat={nlnea}=2. 0O

Remark. One can construct a sentence o such that, for any transitive
class M, o holds in M if and only if M = L or there is an ordinal a such
that M = L,. Thus Lg rather than Lg+ could in principle have been used
in the proof.

Theorem 6.48. If ZF is consistent then so are

(a) ZFC + V = L;
(b) ZFC + GOH.

Proof. Assume that ZF is consistent. Then (a) follows from Lemma 6.1
together with Lemmas 6.42 and 6.43. (b) then follows from (a) and Theo-
rem 6.47. 0

The Axiom of Constructibility settles most interesting set-theoretic ques-
tions. A number of them can be answered using Jensen’s combinatorial
principle ¢. ¢ is the assertion that there is a sequence (A, | a < wy) (i.e.,
a function o — A, with domain wy) such that each A, C « and such that,
for any A C w; and any closed, unbounded subset C' of wy,

(JaeC)ANa=A4,.

Theorem 6.49. V =L — ¢.
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Proof. Assume V = L. We define A, by recursion. For « not a limit
ordinal, set A, = (). Assume that « is limit ordinal and that Ag is defined
for < a. Let p, be the least ordinal p such that there are A and C
belonging to L, such that A C «, C'is a closed, unbounded subset of «, and

VaeC)ANa+# A,

if such a p exists. In this case let A, and C, be the lexicographically least
A and C (using <z). If p, does not exist, let A, = 0.

Suppose that (4, | @ < wi) does not witness that ¢ holds. Let p be
the least ordinal such that some counterexample sets A and C' belong to L.
Let A and C be the lexicographically least such pair (again using <r,). Note
that p < ws.

Let (y; €) < (Lw,; €) with y countable and with

{w]-?p?A?C? <Aﬁ | a<w1>} - y.

Let z and 7 be such that z is transitive and 7 : (y;€) = (z;€). Let § < wy
be such that z = L;.

Let @ = m(wy). By final examination problem 4(a), we have that a C y.
It follows that

(i) Ana=mx(A);
(i) CNa ==n(C);
(iii) (Ag | B <o) =7((Ag | B <wi)).

Using (i)—(iii), the definitions of p, A, and C, and the fact that 7—! is an
elementary embedding of (Ls; €) into (L,,; €), we get that 7(p), ANea, and
C N« satisty in Ly the definitions of p,, A, and C, respectively. Thus

(a) 7(p) = pa;
(b) ANa = Ay;
(c) CNa=_Cy.

Since CNa = m(C), CNa is an unbounded subset of . Since C is closed, it
follows that o € C. This fact and (b) contradict the definitions of A and C.
|

One of the earliest applications of ) was to show that Souslin’s Hypoth-
esis fails in L.

To state Souslin’s Hypothesis, we need some definitions. Let R be a
linear ordering of a set X. If every R-bounded subset of X has a least upper
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bound, then (X; R) is said to be complete. If every set of disjoint open (in
the obvious sense) R-intervals is countable, then (X; R) is ccc: satisfies the
countable chain condition. Give X the order topology: the basic open sets
are the open intervals. If X has a countable dense subset then (X;R) is
separable.

The set R of reals, with its usual ordering, is—up to isomorphism—
the unique separable, complete, dense linear ordering without endpoints.
Souslin’s hypothesis says this characterization continues to hold when “sep-
arable” is replaced by “ccc.” Clearly the failure of Souslin’s Hypothesis is
equivalent to the existence of a Souslin line, a ccc, complete, dense linear
ordering that is not separable.

The existence of a Souslin line is can be shown equivalent to the existence
of a Souslin tree: a (T; <) such that

1
2
3
4

< is a partial ordering of T7;
Forallz € T, {y € T | z <y} is wellordered by <;
card(T) = Ny;

(T'; <) has no uncountable branches and no uncountable antichains.

(1)
(2)
(3)
(4)

Here a branch is a maximal subset of 7' linearly ordered by <, and an
antichain is a set of pairwise <-incomparable elements of T'.

Conditions (1) and (2) define the (set-theoretic) concept of a tree. Let
us call a tree (T; <) ultranormal if

for Sand vy €T, By — B <7;
T has a <-least element;

For each o < wp, the set of all 8 € T such that level(5) = « is
countable, where level(3) is the < order type of {y €T | v < (};

(v) if B € T then § has infinitely many immediate successors with respect
to <;

(vi) for each 8 € T and each « such that level(8) < a < wi, there is a
v € T such that level(y) = o and 8 < ;

(vii) if 5 and ~ are elements of T with the same limit level and the same
<-predecessors, then 5 = 1.

Lemma 6.50. If there is an ultranormal Souslin tree, then there is a Souslin
line.
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Proof. We first observe that it is enough to construct a ccc, dense, linear
ordering (X; R) that is not separable. If we have such an (X; R), then we
can let X' be the set of all Dedekind cuts in (X;R), i.e., the set of all
bounded initial segments of (X; R) without R-greatest elements, and we
can let ' R'y' <» o’ C ¢/. Clearly (X'; R') a linear ordering. The function
z — {y€X | yRz} embeds (X;R) into (X';R') and has dense range.
Therefore (X'; R') is dense, ccc, and not separable. If A is an R'-bounded
subset of X', then [JR' is the least upper bound of A; hence (X'; R') is
complete.
Let (T'; <) be an ultranormal Souslin tree. Let

X ={b|bisa branch of T'}.

To define an ordering R on X, let us first fix, for each 3 € T, an ordering <g
of the the immediate successors of 5 with respect to <. By (iv) and (v), we
can—and do—make <g isomorphic to the standard ordering of the rationals.
Let b and b’ be distinct branches of (T'; <1). By (vii), there is a <-greatest
that belongs to both b and b'. Let v and 7/ be the immediate <-successors
of 8 that belong to b and b’ respectively. Define

bRV « v<g9.

It is easy to see that R is a linear ordering of X. Suppose that [ is
an open interval of (X;R). let I = (b,b'). Define 3, 7, and ' as in the
preceding paragraph. Let o7 be such that v <g 67 <z 7. Observe that every
branch containing d; belongs to the interval I. Observe also that if I; and
I, are disjoint intervals, then 6;, and d;, are <-incomparable. The first fact
implies that the (X; R) is a dense ordering, and the second fact implies that
(X; R) has the ccc. For non-separability, let B be any countable subset of
X. Since every member of B is countable, | J,c b is countable. Let a € T be
> every member of this countable set. Then the set of branches containing
« is a neighborhood witnessing that B is not dense. g

Theorem 6.51. If & holds, then there is an ultranormal Souslin tree.

Proof. Let (A, | @ < w;) witness that ¢ holds.

We shall define an ultranormal tree (7'; <) by transfinite recursion. More
precisely, we shall define for each @ < w; a tree (Ty;<q), and we shall
arrange that

(a) for o < a < wy, Ty is the set of all elements of T, of <,-level < o/,
and < is the restriction of <4 to T7;
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(b) for @ < wy, (i)-(vii) hold with (T}; <o) replacing (7'; <) and with the
a + 1 replacing wj..

We shall then let T' = J,.,, To and < = J,.,, <a- The only task that
will remain to us is the verification that (7'; <1) satisfies condition (4) in the
definition of a Souslin tree.

Let o < wy and assume that (T,; <) is defined for ¢ < « in such a
way that (a) and (b) are not violated.

If =0 let Ty = {0} and stipulate that 0 does not bear <y to itself.

If « = o + 1 for some «, then assign to the ordinals 5 € T, of level
o disjoint countable infinite sets Bg C wi. Do this so that § < v ¢ T,y for
each v € Bg. Let

T, =Ty U J{Bs| B €Ty Alevel(B) =o'}

Let
Qo = < U{(B,7) | BE Ty Alevel(8) =a' Ay € Bg}.

Assume that « is a limit ordinal. Let («; | ¢ € w) be a strictly increasing
sequence of ordinals with supremum «. Let

T{i‘: = Ua’<a TOé’ ( = UiEw Tai )7
QZ = Ua’(a <L ( = UiEw 40‘1)

For g € T}, define (§; | ¢ € w) by recursion as follows. If A, is not a
maximal antichain in the tree (I7}; <) or if there is a £ € A, such that
£ <7, B, then set By = 3. Otherwise there is a £ € A, such that 5 <7, . Let
Bo be some such &. If level(3;) > «, then let 8,11 = 3;. If level(5;) < «y, let
Bit1 € Ty, be such that §; <q, fi+1 and level(Bi+1) = ;. (Such a ;4 exists
by condition (vi) on (T,;; <q;)-) Let bg be the unique branch containing all
the 3;. Let B, be the set of all the bg for 8 € T,;. For each b € B,, let ; be
a countable ordinal v such that v ¢ T} and v > every member of b. Make
sure that the function b — -, is one-one. Let

TQZT,;: U{’yb|b€Ba}.

Let
o =g U{{&7) | (bEBa NI ED)}.

To verify that (7'; <) satisfies condition (4), we first show that if (7% <)
has an uncountable branch then it has an uncountable antichain. Let b be
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an uncountable branch. By condition (v), each § € b has an immediate
<-successor that does not belong to b. Let

A={y|~v¢b A (38 €b)~ is an immediate <-successor of S} .

The uncountable set A is clearly an antichain of (T; <).

Since every antichain can be extended to a maximal antichain, it suffices
to prove that (7'; <) has no uncountable maximal antichains.

Let A be a maximal antichain of (7'; <). For limit o < wy, let (T7; <%)
be defined as above. Note that T7; is the set of 3 € 1" such that, with respect
to <, level(8) < a. Note also that <}, is just the restriction of < to T7.

Let C be the set of all limit o < wy such that

(a) Th =T Na;

(b) ANa is a maximal antichain of (T7}; <7,).

We shall prove that C is closed and unbounded in w;.

By the definition of T}, it is clear that {« | T} = T'N a} is closed in
wi. To show that C' is closed, it is therefore enough to show that the set of
all « that satisfy (b) is closed in w;. Suppose that («; | ¢ € w) is a strictly
increasing sequence of countable ordinals such that for each i, AN aq; a
maximal antichain of (T3 ;<y.). Let a = [J;c, . Let 8 € T;. For any
sufficiently large ¢ € w, 8 € T,;.. Thus 8 is comparable with some v € ANq;
C AN a. This shows that A N« is a maximal antichain in (77; <}).

For a < wq, let

fla) = pd(VBeTy) B <4;
glay = po(VBeT))(Fy e ANJ)y is <-comparable with j.

That f(a) and g(«) are defined for every « follows from the fact that T} is
countable (by (iv)) and the fact that A is an maximal antichain of (T'; <).
By an argument like one in the proof of Theorem 6.35, the set C' of all
countable ordinals closed under f and ¢ is an unbounded subset of w;.
By (ii), T Na C T} for every a < wy. Therefore every a € C' satisfies (a)
and (b).

Since (A, | @ < wy) witnesses the truth of O, let @ € C be such that
ANa=A4,. By (b), A, is a maximal antichain of T)}. By the definition of
Ba, every b € B, contains a member of A,. For b € B,, every member of b
is <o v» and so is <1y,. Hence for each b € B, there is a £ € A, such that
€<y If B €T\ T,, then there is a b such that v, < 5. Putting all these
facts together, we get that every element of 71" is <-comparable with some
element of A,. In other words, A,—i.e., AN a—is a maximal antichain of
T. But this means that A = AN «. Hence A is countable. 0
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