230B: Homework 2

By: Michiel Kosters
Report mistakes to kosters@gmail.com

1. Dummit and Foote exercises

Exercise 1 (Dummit and Foote: 8.1.7)
Find a generator for the ideal $(47-13 i, 53+56 i)$ in $\mathbf{Z}[i]$, that is, find the greatest common divisor of $47-13 i$ and $53+56 i$.

Exercise 2 (Dummit and Foote: 8.1.8; see hints in book)
Let $F=\mathbf{Q}(\sqrt{D})$ be a quadratic field with associated quadratic integer ring \mathcal{O} and field norm N (see Dummit and Foote, section 7.1).
(a) Suppose D is $-1,-2,-3,-7$ or -11 . Prove that \mathcal{O} is a Euclidean domain with respect to N.
(b) Suppose that $D=-43$. Prove that \mathcal{O} is not a Euclidean norm with respect to any norm.

Exercise 3 (Dummit and Foote: 8.2.6)
Let R be an integral domain and suppose that every prime ideal in R is principal. This exercise proves that every ideal of R is principal, i.e., R is a P.I.D.
(a) Assume that the set of ideals of R that are not prinicipal is nonempty and prove that this set has a maximal element under inclusion (hint: use Zorn).
(b) Let I be an ideal which is maximal with respect to being nonprincipal, and let $a, b \in R$ with $a b \in I$ but $a \notin I$ and $b \notin I$. Let $I_{a}=(I, a)$ be the ideal generated by I and a, let $I_{b}=(I, b)$ be the ideal generated by I and b, and define $J=\left\{r \in R: r I_{a} \subseteq I\right\}$. Prove that $I_{a}=(\alpha)$, and $J=(\beta)$ are principal ideals in R with $I \subsetneq I_{b} \subseteq J$ and $I_{a} J=(\alpha \beta) \subseteq I$.
(c) If $x \in I$ show that $x=s \alpha$ for some $s \in J$. Deduce that $I=I_{a} J$ is principal, a contradiction, and conclude that R is a P.I.D.

Exercise 4 (Dummit and Foote: 8.2.8)
Prove that if R is a P.I.D. and D is a multiplicatively closed subset of R (not containing 0), then $D^{-1} R$ is a P.I.D.

Exercise 5 (Dummit and Foote: 8.3.3)
Determine all the representations of the integer $2130797=17^{2} \cdot 73 \cdot 101$ as the sum of two squares.

Exercise 6 (Dummit and Foote: 8.3.11; see hints in book)
Prove that R is a P.I.D if and only if R is a U.F.D. that is also a Bezout Domain (see exercise 8.2.7).

2. Qualifying exam exercises

The problems below are (literally) taken from old qualifying exams from UCI.

Exercise 7

A commutative ring R with identity $1 \neq 0$ is called boolean if $x^{2}=x$ for every $x \in R$.
(a) Find all boolean integral domains.
(b) Prove that every prime ideal in a boolean ring is maximal.

Exercise 8

For which primes p can one find a nonzero homomorphism $\mathbf{Z}[i] \rightarrow \mathbf{Z} / p \mathbf{Z}$?

Exercise 9

Let R be the ring $\mathbf{Z}[\sqrt{-5}]$.
(a) Show that R is not a UFD.
(b) Factor the principal ideal (6) into a product of prime ideals in the ring R.

Exercise 10

Determine whether each of the following statements is true or false, and justify your answer with a proof or counterexample (justify your counterexample). (a) The groups $\mathbf{Z} / 20 \mathbf{Z} \times \mathbf{Z} / 6 \mathbf{Z}$ and $\mathbf{Z} / 12 \mathbf{Z} \times \mathbf{Z} / 10 \mathbf{Z}$ are isomorphic.
(b) The group of units in $\mathbf{Z} / 12 \mathbf{Z}$ is isomorphic to $\mathbf{Z} / 4 \mathbf{Z}$.
(c) Every UFD is a PID.
(d) For every commutative ring R, every subring of R is an ideal of R.
(e) For every commutative ring R, every ideal of R is a subring of R.
(f) For every commutative ring R with unity, every prime ideal of R is a maximal ideal of R.

