1. Dummit and Foote exercises

Exercise 1 (Dummit and Foote: 9.1.7)
Let R be a commutative ring with 1 . Prove that a polynomial ring in more than one variable over R is not a Principal Ideal Domain.

Exercise 2 (Dummit and Foote: 9.2.2)
Let F be a finite field of order q and let $f(x)$ be a polynomial in $F[X]$ of degree $n \geq 1$. Prove that $R[X] /(f(x))$ has q^{n} elements.

Exercise 3 (Dummit and Foote: 9.3.2)
Prove that if $f(x)$ and $g(x)$ are polynomials with rational coefficients whose product $f(x) g(x)$ has integer coefficients, then the product of any coefficient of $g(x)$ with any coefficient of $f(x)$ is an integer.

Exercise 4 (Dummit and Foote: 9.3.4)
Let $R=\mathbf{Z}+x \mathbf{Q}[X] \subset \mathbf{Q}[X]$ be the set of polynomials in x with rational coefficients whose constant term is an integer.
(a) Prove that R is an integral domain and its units are ± 1.
(b) Show that the irreducibles in R are $\pm p$ where p is a prime in \mathbf{Z} and the polynomials $f(x)$ that are irreducible in $\mathbf{Q}[X]$ and have constant term ± 1. Prove that these irreducibles afre prime in R.
(c) Show that x cannot be written as the product of irreducibles in R (in particular, x is not irreducible) and conclude that R is not a U.F.D.
(d) Show that x is not a prime in R and describe the quotient ring $R /(x)$.

Exercise 5 (Dummit and Foote: 9.4.1)
Determine whether the following polynomials are irreducible in the rings indicated. For those that are irreducible, determine their factorization into irreducibles. The notation \mathbf{F}_{p} denoted the finite field $\mathbf{Z} / p \mathbf{Z}, p$ a prime.
(a) $x^{2}+x+1$ in $\mathbf{F}_{2}[x]$.
(b) $x^{3}+x+1$ in $\mathbf{F}_{3}[x]$.
(c) $x^{4}+1$ in $\mathbf{F}_{5}[x]$.
(d) $x^{4}+10 x^{2}+1$ in $\mathbf{Z}[x]$.

Exercise 6 (Dummit and Foote: 9.4.2)
Prove that the following polynomials are irreducible in $\mathbf{Z}[x]$:
(a) $x^{4}-4 x^{3}+6$
(b) $x^{6}+30 x^{5}-15 x^{3}+6 x-120$
(c) $x^{4}+4 x^{3}+6 x^{2}+2 x+1$ (hint: substitute $x-1$ for x.)
(d) $\frac{(x+2)^{p}-2^{p}}{x}$, where p is an odd prime.

Exercise 7 (Dummit and Foote: 9.5.4)
Prove that $x^{3}+12 x^{2}+18 x+6$ is irreducible over $\mathbf{Z}[i]$. (hint: use Proposition 8.18 and Eisenstein's Criterion.).

2. Qualifying exam exercises

The problems below are (literally) taken from old qualifying exams from UCI.

Exercise 8

Let F be a field. Prove that $\langle F,+\rangle$ and $\left\langle F^{\times}, \cdot\right\rangle$ are not isomorphic as groups.

Exercise 9

Prove or disprove: The quotient ring $\mathbf{F}_{2}[x] /\left(x^{4}+x^{3}+x^{2}+x+1\right)$ is a field.

Exercise 10

Let F be a field. Prove that the ring $F\left[x^{2}, x^{3}\right]$ is not a unique factorization domain.

Exercise 11

Prove that a finite integral domain is a field.

