230B: Homework 4

By: Michiel Kosters
Report mistakes to kosters@gmail.com

1. Dummit and Foote exercises

Rings R below will always have a 1 .

Exercise 1 (Dummit and Foote: 10.1.8)
An element m of the R-module M is called a torsion element if $r m=0$ for some nonzero element $r \in R$. The set of torsion elements is denoted by

$$
\operatorname{Tor}(M)=\{m \in M \mid r m=0 \text { for some nonzero } r \in R\}
$$

(a) Prove that if R is an integral domain then $\operatorname{Tor}(M)$ is a submodule of M (called the torsion submodule of M).
(b) Give an example of a ring R and an R-module M such that $\operatorname{Tor}(M)$ is not a submodule. (hint: consider the torsion elements in the R-module R).
(c) If R has zero divisors show that every nonzero R-module has nonzero torsion elements.

Exercise 2 (Dummit and Foote: 10.2.13)
Let I be a nilpotent ideal in a commutative ring (see Exercise 7.3.37), let M and N be R-modules and let $\varphi: M \rightarrow N$ be an R-module homomorphism. Show that if the induced map $\bar{\varphi}: M / I M \rightarrow N / I N$ is surjective, then φ is surjective.

Exercise 3 (Dummit and Foote: 10.3.10)
Assume R is commutative. Show that an R-module M is irreducible (see Exercise 10.3.9: M has precisely 2 submodules) if and only if M is isomorphic as R-module to R / I where I is a maximal ideal of R.

Exercise 4 (Dummit and Foote: 10.3.11)
Show that if M_{1} and M_{2} are irreducible R-modules, then any nonzero R-module homomorphism from M_{1} to M_{2} is an isomorphism. Deduce that if M is irreducible then $\operatorname{End}_{R}(M)$ is a division ring.

Exercise 5 (Dummit and Foote: 10.3.24) (direct product of free is not always free) For each positive integer i let M_{i} be the free \mathbf{Z}-module \mathbf{Z}, and let M be the direct product $\prod_{i \in \mathbf{Z}_{\geq 1}} M_{i}$ and consider the submodule $N=\bigoplus_{i \in \mathbf{Z}_{\geq 1}} M_{i}$ (direct sum). Assume that \bar{M} is a free \mathbf{Z}-module with basis \mathfrak{B}.
(a) Show that N is countable.
(b) Show that there is some countable subset \mathfrak{B}_{1} of \mathfrak{B} usch that N is contained in the submodule N_{1} generated by \mathfrak{B}_{1}. Show also that N_{1} is countable.
(c) Let $\bar{M}=M / N_{1}$. Show that \bar{M} is a free \mathbf{Z}-module. Deduce that if \bar{x} is any nonzero element of \bar{M} then there are only finitely many distinct positive integers k such that $\bar{x}=k \bar{m}$ for some $m \in M$ (depending on k).
(d) Let $\mathfrak{S}=\left\{\left(b_{1}, b_{2}, b_{3}, \ldots\right): b_{i}= \pm i\right.$! for all $\left.i\right\}$. Prove that \mathfrak{S} is uncountable. Deduce that there is some $s \in \mathfrak{S}$ with $s \notin N_{1}$.
(e) Show that the assumption M is free leads to a contradiction: By (d) we may choose $s \in \mathfrak{S}$ with $s \notin N_{1}$. Show that for each positive integer k there is some $m \in M$ with $\bar{s}=k \bar{m}$, contrary to (c).

Exercise 6 (Dummit and Foote: 10.5.1ace)
Suppose that

is a commutative diagram of groups and that the rows are exact. Prove that:
(a) if φ and α are surjective, and β is injective, then γ is injective.
(c) if φ, α and γ are surjective, then β is surjective.
(e) if β is surjective, γ and ψ^{\prime} are injective, then α is surjective.

2. Other exercises

Let $f: M \rightarrow N$ be an R-module homomorphism. We let $\operatorname{coker}(f)=N / \operatorname{im}(f)$ be the cokernel.

Exercise 7 (Snake lemma; counts as 2 exercises)
Let R be a commutative ring with 1 . Assume that we have the following commutative diagram of R-modules with exact rows:

Show that there is an exact sequence

$$
\operatorname{ker}(a) \rightarrow \operatorname{ker}(b) \rightarrow \operatorname{ker}(c) \rightarrow \operatorname{coker}(a) \rightarrow \operatorname{coker}(b) \rightarrow \operatorname{coker}(c) .
$$

