1. Dummit and Foote exercises

Exercise 1 (Dummit and Foote: 12.1.6)

Show that if R is an integral domain and if M is any nonprincipal ideal of R then M is torsion free of rank 1 but it is not a free R-module.

Exercise 2 (Dummit and Foote: 12.2.9) Find the rational canonical form of

1 01			
0	-1	-1	1
0	0	0	.
-1	0	0	
-			

Exercise 3 (Dummit and Foote: 12.2.17)

Determine representatives for the conjugacy class for $GL_3(\mathbf{F}_2)$.

Exercise 4 (Dummit and Foote: 12.3.16) Determine the Jordan canonical form for the matrix

1	1	1	$ \begin{array}{c} 1 \\ -1 \\ 1 \\ 1 \end{array} $
0	1	0	-1
0	0	1	1
0	0	0	1

and determine a matrix ${\cal P}$ which conjugates this matrix into its Jordan canonical form.

Exercise 5 (Dummit and Foote: 12.3.24) Prove there are no 3×3 matrices A over **Q** with $A^8 = I$ but $A^4 \neq I$.

2. QUALIFYING EXAM EXERCISES

Exercise 6

Classify, up to conjugation, all 4×4 real matrices A which satisfy $A^3 = I$ where I is the identity matrix.

Exercise 7

(a) Determine all real matrices A with characteristic polynomial $X^3(X^2 + 1)$. (b) (ADDED PART) Determine all complex matrices A with characteristic polynomial $X^3(X^2 + 1)$.

Exercise 8

Classify, up to conjugation, all 4×4 real matrices with minimal polynomial $(X^2 + 4)(X - 1)$.

Exercise 9

Suppose that A is a nilpotent matrix. Show that det(A + I) = 1.

Exercise 10 If V is a vector space and $V = A \oplus B = C \oplus D$ with $A \cong C$, does it follow that $B \cong D$? Justify your answer.

Exercise 11 Suppose that V is a vector space and let GL(V) be the group of all invertible linear transformations from V to itself. Suppose G is a subgroup of

 $\operatorname{GL}(V)$ and define R to be the set of all linear transformations $T: V \to V$ such that T(g(v)) = g(T(v)) for every $g \in G$ and $v \in V$.

(a) Show that R is a ring.

(b) Suppose further that if W is any subspace of V such that $g(W) \subset W$ for every $g \in G$, then either W = 0 or W = V. Prove that if $T \in R$ and T is not the zero transformation, then T is invertible and $T^{-1} \in R$. (Hint: if $T \in R$, what can you say about the kernel and image of T?).