1. Dummit and Foote exercises

Exercise 1 (Dummit and Foote: 12.1.6)
Show that if R is an integral domain and if M is any nonprincipal ideal of R then M is torsion free of rank 1 but it is not a free R-module.

Exercise 2 (Dummit and Foote: 12.2.9)
Find the rational canonical form of

$$
\left[\begin{array}{ccc}
0 & -1 & -1 \\
0 & 0 & 0 \\
-1 & 0 & 0
\end{array}\right]
$$

Exercise 3 (Dummit and Foote: 12.2.17)
Determine representatives for the conjugacy class for $\mathrm{GL}_{3}\left(\mathbf{F}_{2}\right)$.
Exercise 4 (Dummit and Foote: 12.3.16)
Determine the Jordan canonical form for the matrix

$$
\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

and determine a matrix P which conjugates this matrix into its Jordan canonical form.

Exercise 5 (Dummit and Foote: 12.3.24)
Prove there are no 3×3 matrices A over \mathbf{Q} with $A^{8}=I$ but $A^{4} \neq I$.

2. Qualifying exam exercises

Exercise 6

Classify, up to conjugation, all 4×4 real matrices A which satisfy $A^{3}=I$ where I is the identity matrix.

Exercise 7

(a) Determine all real matrices A with characteristic polynomial $X^{3}\left(X^{2}+1\right)$.
(b) (ADDED PART) Determine all complex matrices A with characteristic polynomial $X^{3}\left(X^{2}+1\right)$.

Exercise 8

Classify, up to conjugation, all 4×4 real matrices with minimal polynomial ($X^{2}+$ 4) $(X-1)$.

Exercise 9

Suppose that A is a nilpotent matrix. Show that $\operatorname{det}(A+I)=1$.
Exercise 10 If V is a vector space and $V=A \oplus B=C \oplus D$ with $A \cong C$, does it follow that $B \cong D$? Justify your answer.

Exercise 11 Suppose that V is a vector space and let $\mathrm{GL}(V)$ be the group of all invertible linear transformations from V to itself. Suppose G is a subgroup of
$\mathrm{GL}(V)$ and define R to be the set of all linear transformations $T: V \rightarrow V$ such that $T(g(v))=g(T(v))$ for every $g \in G$ and $v \in V$.
(a) Show that R is a ring.
(b) Suppose further that if W is any subspace of V such that $g(W) \subset W$ for every $g \in G$, then either $W=0$ or $W=V$. Prove that if $T \in R$ and T is not the zero transformation, then T is invertible and $T^{-1} \in R$. (Hint: if $T \in R$, what can you say about the kernel and image of T ?).

