1. Dummit and Foote exercises

Exercise 1 (Dummit and Foote: 13.1.2)
Show that $x^{3}-2 x+-2$ is irreducible over \mathbf{Q} and let θ be a root. Compute $(1+\theta)\left(1+\theta+\theta^{2}\right)$ and $\frac{1+\theta}{1+\theta+\theta^{2}}$ in $\mathbf{Q}(\theta)$.

Exercise 2 (Dummit and Foote: 13.2.13)
Prove that if $[F(\alpha): F]$ is odd then $F(\alpha)=F\left(\alpha^{2}\right)$.
Exercise 3 (Dummit and Foote: 13.2.16 and some extra)
(a) Let K / F be an algebraic extension and let R be a ring contained in K and containing F. Show that R is a subfield of K containing F.
(b) Find a counterexample to (a) when K / F is not algebraic.

Exercise 4 (Dummit and Foote: 13.2.22)
Let K_{1} and K_{2} be two finite extensions of a field F contained in a field K. Prove that the F-algebra $K_{1} \otimes_{F} K_{2}$ is a field if and only if $\left[K_{1} K_{2}: F\right]=\left[K_{1}: F\right]\left[K_{2}: F\right]$.

Exercise 5 (Dummit and Foote: 13.4.1)
Determine the splitting field and its degree over \mathbf{Q} for $x^{4}-2$.
Exercise 6 (Dummit and Foote: 13.4.2)
Determine the splitting field and its degree over \mathbf{Q} for $x^{4}+2$.
Exercise 7 (Dummit and Foote: 13.5.2)
Find all irreducible polynomials of degrees 1,2 and 4 over \mathbf{F}_{2} and prove that their product is $x^{16}-x$.

Exercise 8 (Dummit and Foote: 13.5.5)
For any prime p and any nonzero $a \in \mathbf{F}_{p}$ prove that $x^{p}-x+a$ is irreducible and separable over \mathbf{F}_{p}. [For the irreducibility: One approach - prove first that if α is a root then $\alpha+1$ is also a root. Another approach - suppose it's reducible and compute derivatives.]

2. Qualifying exam exercises

Exercise 9

Let $f(x)=x^{2}+x+2 \in \mathbf{F}_{5}[x]$.
(a) Prove that $f(x)$ is irreducible in $\mathbf{F}_{5}[x]$.
(b) Explain why $f(x)$ divides the polynomial $x^{25}-x$ in $\mathbf{F}_{5}[x]$.
(c) How many irreducible quadratic polynomials are there in $\mathbf{F}_{5}[x]$?

Exercise 10

Let $\overline{\mathbf{Q}} \subset \mathbf{C}$ be the subfield of elements that are algebraic over \mathbf{Q}. Prove that the field extension $\mathbf{Q} \subset \overline{\mathbf{Q}}$ has infinite degree.

Exercise 11

Suppose that $\alpha, \beta \in \mathbf{C}$ have minimal polynomial over \mathbf{Q} of degree 2 and 3 , respectively. Can $\alpha+\beta$ have minimal polynomial over \mathbf{Q} of degree 5? Give an example or prove that this is not possible.

Exercise 12

Construct a field with 32 elements. Prove that your construction produces a field with exactly 32 elements.

