Math 230c: Algebra Fields Exam Problems

This document contains a list of problems from recent UCI qualifying exams and comprehensive/advisory exams that involve material from early in 230c.

1. Find all primes $p>2$ for which the polynomial $x^{2}+x+1$ is irreducible in $\mathbb{F}_{p}[x]$.
2. Let $p>2$ be a prime number. Prove that $1 \cdot 2 \cdots(p-1) \equiv-1(\bmod p)$.
3. Let $f(x)=x^{2}+x+2 \in \mathbb{F}_{5}[x]$.
(a) Prove that $f(x)$ is irreducible in $\mathbb{F}_{5}[x]$.
(b) Explain why $f(x)$ divides the polynomial $x^{25}-x$ in $\mathbb{F}_{5}[x]$.
(c) How many irreducible quadratic polynomials are there in $\mathbb{F}_{5}[x]$?
4. What is the number of irreducible degree 4 polynomials in $\mathbb{F}_{p}[x]$, where p is a prime?
5. Construct a field with 32 elements. Prove that your construction produces a field with exactly 32 elements.
6. Determine the maximal ideals of the following rings and fully justify your answers:
(a) $\mathbb{Q}[x] /\left\langle x^{2}-5 x+6\right\rangle$,
(b) $\mathbb{Q}[x] /\left\langle x^{2}+4 x+6\right\rangle$.
7. Let F be a field such that the multiplicative group F^{*} is finitely generated. Show that F is finite. (Hint: Eliminate the case of characteristic zero by proving that \mathbb{Q}^{*} is not finitely generated. If F has finite characteristic p and $x \in F^{*}$ is of infinite multiplicative order then note x cannot be algebraic over the finite subfield $\mathbb{F}_{p} \subset F$ and consider irreducibles in $\mathbb{F}_{p}[x]$.)
8. Let \mathbb{F}_{q} denote the finite field with q elements, and let \mathbb{F}_{q}^{*} denote the elements of \mathbb{F}_{q} that have a multiplicative inverse. Suppose that p is prime and suppose r and N are positive integers. Consider the map $\mathbb{F}_{p^{r}}^{*} \rightarrow \mathbb{F}_{p^{r}}^{*}$ that sends x to x^{N}. What is the cardinality of its kernel and image? (Fully justify your answer.)
9. Suppose that E / F is a finite extension of the form $E=F(r)$ with $[E: F]$ odd. Prove that $E=F\left(r^{2}\right)$.
10. Suppose that E / F is a field extension of degree $[E: F]=p$ and that p is prime. Show that for any $a \in E$ we have either $F(a)=F$ or $F(a)=E$.
11. Let $F<E$ and $F<K$ be field extensions. Suppose $[E: F]=n$ and $[K: F]=m$ where m and n are relatively prime. Prove that $[E K: F]=m n$.
12. Let F and E be finite field with $F<E$. Prove that the cardinality of E is an integral power of the cardinality of F, that is, $|E|=|F|^{k}$ for some integer k.
13. Let $\overline{\mathbb{Q}} \subset \mathbb{C}$ be the subfield of elements that are algebraic over \mathbb{Q}. Prove that the field extension $\mathbb{Q} \subset \overline{\mathbb{Q}}$ has infinite degree.
14. If $F<E$ is a field extension of finite degree, prove that E is algebraic over F.
15. Let $F<E$ be a field extension. If $a, b \in E$ are algebraic over F show that $a+b$ is also algebraic over F.
16. Let F be a field. Show that a polynomial $f(x) \in F[x]$ has no multiple roots if and only if $f(x)$ and its derivative $f^{\prime}(x)$ are relatively prime. (Hint: You may assume that f has a splitting field E containing F.)
17. Suppose that $\alpha, \beta \in \mathbb{C}$ have minimal polynomials over \mathbb{Q} of degrees 2 and 3, respectively. Can $\alpha+\beta$ have minimal polynomiial over \mathbb{Q} of degree 5 ? Give an example or prove that it is not possible.
