Math 230c: Algebra Fields Exam Problems

This document contains a list of problems from recent UCI qualifying exams and comprehensive/advisory exams that involve material from early in 230c.

- 1. Find all primes p > 2 for which the polynomial $x^2 + x + 1$ is irreducible in $\mathbb{F}_p[x]$.
- 2. Let p > 2 be a prime number. Prove that $1 \cdot 2 \cdots (p-1) \equiv -1 \pmod{p}$.
- 3. Let $f(x) = x^2 + x + 2 \in \mathbb{F}_5[x]$.
 - (a) Prove that f(x) is irreducible in $\mathbb{F}_5[x]$.
 - (b) Explain why f(x) divides the polynomial $x^{25} x$ in $\mathbb{F}_5[x]$.
 - (c) How many irreducible quadratic polynomials are there in $\mathbb{F}_5[x]$?
- 4. What is the number of irreducible degree 4 polynomials in $\mathbb{F}_p[x]$, where p is a prime?
- 5. Construct a field with 32 elements. Prove that your construction produces a field with exactly 32 elements.
- 6. Determine the maximal ideals of the following rings and fully justify your answers:
 - (a) $\mathbb{Q}[x]/\langle x^2 5x + 6 \rangle$,
 - (b) $\mathbb{Q}[x]/\langle x^2 + 4x + 6 \rangle$.
- 7. Let F be a field such that the multiplicative group F^* is finitely generated. Show that F is finite. (Hint: Eliminate the case of characteristic zero by proving that \mathbb{Q}^* is not finitely generated. If F has finite characteristic p and $x \in F^*$ is of infinite multiplicative order then note x cannot be algebraic over the finite subfield $\mathbb{F}_p \subset F$ and consider irreducibles in $\mathbb{F}_p[x]$.)
- 8. Let \mathbb{F}_q denote the finite field with q elements, and let \mathbb{F}_q^* denote the elements of \mathbb{F}_q that have a multiplicative inverse. Suppose that p is prime and suppose r and N are positive integers. Consider the map $\mathbb{F}_{p^r}^* \to \mathbb{F}_{p^r}^*$ that sends x to x^N . What is the cardinality of its kernel and image? (Fully justify your answer.)
- 9. Suppose that E/F is a finite extension of the form E = F(r) with [E:F] odd. Prove that $E = F(r^2)$.
- 10. Suppose that E/F is a field extension of degree [E:F] = p and that p is prime. Show that for any $a \in E$ we have either F(a) = F or F(a) = E.
- 11. Let F < E and F < K be field extensions. Suppose [E : F] = n and [K : F] = m where m and n are relatively prime. Prove that [EK : F] = mn.
- 12. Let F and E be finite field with F < E. Prove that the cardinality of E is an integral power of the cardinality of F, that is, $|E| = |F|^k$ for some integer k.
- 13. Let $\overline{\mathbb{Q}} \subset \mathbb{C}$ be the subfield of elements that are algebraic over \mathbb{Q} . Prove that the field extension $\mathbb{Q} \subset \overline{\mathbb{Q}}$ has infinite degree.

- 14. If F < E is a field extension of finite degree, prove that E is algebraic over F.
- 15. Let F < E be a field extension. If $a, b \in E$ are algebraic over F show that a + b is also algebraic over F.
- 16. Let F be a field. Show that a polynomial $f(x) \in F[x]$ has no multiple roots if and only if f(x) and its derivative f'(x) are relatively prime. (Hint: You may assume that f has a splitting field E containing F.)
- 17. Suppose that $\alpha, \beta \in \mathbb{C}$ have minimal polynomials over \mathbb{Q} of degrees 2 and 3, respectively. Can $\alpha + \beta$ have minimal polynomial over \mathbb{Q} of degree 5? Give an example or prove that it is not possible.