3A: Extra exercises 6

Remark: the exercise below will be graded carefully. Give explanations and computations.

Exercise 1

Let $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ be the linear map given by the matrix

$$
A=\left[\begin{array}{ccc}
1 & -1 & 2 \\
0 & 3 & -2 \\
1 & 1 & 1
\end{array}\right]
$$

Consider the basis

$$
\mathcal{B}=\left\{[1,1,0]^{T},[1,-1,1]^{T},[0,2,-2]^{T}\right\}
$$

of \mathbf{R}^{3}. Compute $[T]_{\mathcal{B}}$.

Exercise 2

Let $\theta \in[0,2 \pi]$. Consider the (rotation) matrix

$$
A=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

over the complex numbers \mathbf{C}.
(a) Compute the eigenvalues of A.
(b) Find an invertible matrix P and a diagonal matrix D such that $A=P D P^{-1}$ over the complex numbers.

