Remark: the exercise below will be graded carefully. Give explanations and computations.

Exercise 1

Let $T: \mathbf{R}^3 \to \mathbf{R}^3$ be the linear map given by the matrix

$$A = \left[\begin{array}{rrrr} 1 & -1 & 2 \\ 0 & 3 & -2 \\ 1 & 1 & 1 \end{array} \right].$$

Consider the basis

$$\mathcal{B} = \{ [1, 1, 0]^T, [1, -1, 1]^T, [0, 2, -2]^T \}$$

of \mathbf{R}^3 . Compute $[T]_{\mathcal{B}}$.

Exercise 2

Let $\theta \in [0, 2\pi]$. Consider the (rotation) matrix

$$A = \begin{bmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{bmatrix}$$

over the complex numbers \mathbf{C} .

(a) Compute the eigenvalues of A.

(b) Find an invertible matrix P and a diagonal matrix D such that $A = PDP^{-1}$ over the complex numbers.