3A: Extra exercises 7

Remark: the exercise below will be graded carefully. Give explanations and computations.

Exercise 1

Let A be the matrix

$$
A=\left[\begin{array}{ccccc}
0 & -2 & -2 & 1 & -1 \\
0 & 2 & 2 & 1 & 3 \\
0 & -1 & -1 & 1 & 0 \\
1 & 1 & 0 & 1 & 3
\end{array}\right]
$$

Let $W=\operatorname{Col}(A)$ be the column space of A. Let $\mathbf{v}=[8,0,-7,1]^{T} \in \mathbf{R}^{4}$.
(a) Compute a basis for W.
(b) Compute an orthonormal basis of W.
(c) Compute the orthogonal projection $\operatorname{Proj}_{W}(\mathbf{v})$ of \mathbf{v} on W.
(d) Compute the distance between W and \mathbf{v}.

Exercise 2

(a) Let $\mathbf{u}, \mathbf{v} \in \mathbf{R}^{n}$. Show that

$$
\mathbf{u} \cdot \mathbf{v} \leq\|\mathbf{u}\|\|\mathbf{v}\|
$$

(Hint: expand $\|\mathbf{u}-c \mathbf{v}\|$ for a specific $c \in \mathbf{R}$).
(b) Prove that for $a, b, c \in \mathbf{R}$ one has

$$
2 a^{2}+3 b^{2}+c^{2} \leq \sqrt{2 a^{2}+9 b^{2}+c^{2}} \sqrt{2 a^{2}+b^{2}+c^{2}}
$$

Exercise 3

Find an orthonormal basis of the null space of the matrix

