3A: Extra exercises 4

Remark: the exercise below will be graded carefully. Give explanations and computations.

Exercise 1 (6 points)
Consider the matrix

$$
A=\left[\begin{array}{llllll}
1 & 0 & 1 & 0 & 1 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 & 1 & 0
\end{array}\right]
$$

(a) Compute the reduced row echelon form of A. (2 points)
(b) Find a basis of the null space of A. (1 point)
(c) What is the dimension of the null space of A ? ($1 / 2$ point)
(d) Find a basis of the column space of A. (1 point)
(e) What is the rank of A ? ($1 / 2$ point)
(f) Find all possible subsets of the columns of A which form a basis of the column space of A (tricky, 1 point).

Exercise 2 (4 points)
Consider the matrix

$$
A=\left[\begin{array}{rrrr}
2 & 0 & 2 & 0 \\
0 & 2 & -1 & 1 \\
1 & 3 & 1 & 2 \\
-1 & 1 & 1 & 0
\end{array}\right]
$$

(a) Compute the determinant of A using row reductions. (2 points)
(b) Compute the determinant of A using cofactor expansions. (2 points)

Exercise 3 (4 points)
Let

$$
A=\left[\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right], \mathbf{b}_{\mathbf{1}}=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \mathbf{b}_{\mathbf{2}}=\left[\begin{array}{c}
1 \\
-1
\end{array}\right]
$$

Let $\mathfrak{B}=\left\{\mathbf{b}_{\mathbf{1}}, \mathbf{b}_{\mathbf{2}}\right\}$.
(a) Prove that \mathfrak{B} is a basis of \mathbf{R}^{2}. (1 point)
(b) Compute $[A]_{\mathfrak{B}}$. (3 points; see Section 5.4)

