3A: Extra exercises 6

Remark: the exercise below will be graded carefully. Give explanations and computations.

Exercise 1 ($5=3+2$ points)
(a) Prove the following statement. For $\mathbf{u}, \mathbf{v} \in \mathbf{R}^{n}$ one has:

$$
|\mathbf{u} \cdot \mathbf{v}| \leq\|\mathbf{u}|\|\mid \mathbf{v}\| .
$$

Hint: Let $\mathbf{w}=\operatorname{Proj}_{\mathbf{v}}(\mathbf{u})$. Expand $\|\mathbf{u}-\mathbf{w}\|^{2} \geq 0$.
(b) Prove that for $a, b, c \in \mathbf{R}$ one has

$$
2 a^{2}+3 b^{2}+c^{2} \leq \sqrt{2 a^{2}+9 b^{2}+c^{2}} \sqrt{2 a^{2}+b^{2}+c^{2}} .
$$

Exercise $2(5=1+1+2+1$ points $)$
Let A be an $n \times n$ matrix such that $A^{2}=A$.
(a) Show that 0 and 1 are the only eigenvalues of A.
(b) Show that $E_{0}=\operatorname{Nul}(A)$ and $E_{1}=\operatorname{Col}(A)$ (here E_{i} is the eigenspace at eigenvalue i).
(c) Show that any $\mathbf{u} \in \mathbf{R}^{n}$ can be written uniquely as $\mathbf{u}=\mathbf{u}_{1}+\mathbf{u}_{2}$ where $\mathbf{u}_{1} \in \operatorname{Nul}(A)$ and $\mathbf{u}_{2} \in \operatorname{Col}(A)$.
(d) Give an example of such an A with $A^{2}=A$ where the null space and column space are not orthogonal (in the book, we only study orthogonal projections, where this is the case).

