1. EXERCISES FROM SECRET SOURCES

Exercise 1

Let $K \subseteq L \subseteq M$ be a tower of algebraic extensions. Prove: $K \subseteq L$ and $L \subseteq M$ are separable if and only if $K \subseteq M$ is separable.

Exercise 2

Let $L = \mathbf{F}_p(S, T)$ be the field of rational functions in two variables over \mathbf{F}_p , and set $K = L^p = \{x^p : x \in L\}.$

(a) Prove: $K = \mathbf{F}_p(S^p, T^p)$, and $K \subseteq L$ is a field extension of degree p^2 .

(b) Show that $K \subseteq L$ is not a primitive field extension.

(c) Give infinitely many different subfields E with $K \subseteq E \subseteq L$.

Exercise 3

Let L be a quadratic extension of a field K of characteristic not 2. Prove: $L \cong K(\sqrt{x}) \cong K[X]/(X^2 - x)$ for some $x \in K$. Show that we cannot remove the condition on the characteristic of L.

Exercise 4

Determine the degree over \mathbf{Q} of the splitting fields of the following polynomials.

(a) $X^2 + X - 2$. (b) $X^2 + 2X - 2$. (c) $X^3 + 2X - 2$. (d) $X^4 + 2X^2 + 2$.

Exercise 5

For a field K of characteristic p > 0 we call $[K : K^p]$ the imperfect degree of K (here $K^p = \{x^p : x \in K\}$). Prove:

(a) $[K:K^p] = p^{i(K)}$ with $i(K) \in \mathbb{Z}_{\geq 0} \cup \{\infty\}$.

- (b) For every finite extension $K \subseteq \overline{L}$ one has i(L) = i(K).
- (c) For every algebraic extension $K \subseteq L$ one has $i(L) \subseteq i(K)$.

(d) One has i(K(T)) = i(K) + 1.

2. Exercises from old qualifying exams

Exercise 6

True/False. For each of the following answer True or False and give a brief explanation.

(a) Every finited subgroup of $GL_n(\mathbf{Q})$ is abelian.

(b) A finite extension of \mathbf{Q} cannot have infinitely many distinct subfields.

Exercise 7

- (a) What does it mean for a field to be perfect?
- (b) Give an example of a perfect field. (No need to justify your answer.)
- (c) Give an example of a field that is not perfect. (No need to justify your answer.)

Exercise 8

For each of the following, either give an exapmle or briefly explain why no cuh example exists:

(a) a quadratic extension of fields that is not separable.

- (b) a nonabelian group in which all the proper subgroups are cyclic.
- (c) an infinite field where every nonzero element has finite multiplicative order.
- (d) a nonabelian group with trivial automorphism group.
- (e) an element of order 4 in \mathbf{R}/\mathbf{Z} .

Exercise 9

Suppose F is a field of characteristic p > 0. Define a function $\phi : F \to F$ by $\phi(x) = x^p$.

- (a) Show that ϕ is a field homomorphism.
- (b) Show that if F is fintie, then ϕ is an automorphism.
- (c) Give an example of a field F usch that ϕ is not an automorphism.

Exercise 10

Give an example of an extension of fields that is not separable. Compute its separable and inseparable degrees. (Fully justify your answers).

 $\mathbf{2}$