230C: Exercises on representation theory

By: Michiel Kosters

Report mistakes to kosters@gmail.com

These exercises come from the UCI qualifying exams from 2009 - 2016.

Exercise 1

Let D_{10} denote the dihedral group of order 10.

- (a) Give an example of a non-trivial degree one representation $D_{10} \to GL_1(\mathbf{R})$.
- (b) Give an example of an irreducible degree two representation $D_{10} \to GL_2(\mathbf{R})$. Prove that your representation is irreducible.

Exercise 2

Let L_1, \ldots, L_r be all pairwise non-isomorphic complex irreducible representations of a group G of order 12. What are the possible values for their dimensions $N-i=\dim_{\mathbf{C}} L_i$? For each of the possible answers of the form (n_1,\ldots,n_r) give an example of G which has such irreducible representations.

Exercise 3

- (a) What does it mean for a representation to be irreducible?
- (b) Suppose p is a prime. Let $G = \mathbf{Z}/p\mathbf{Z}$ and let $\rho : G \to \mathrm{GL}_2(\mathbf{F}_p)$ be a representation. Show that ρ is reducible.

Exercise 4

- (a) Classify the conjugacy classes of the symmetric group S_3 and justify.
- (b) Construct the character table of S_3 .

Exercise 5

Let G be a finite group acting on a finite set S. Let $\mathbf{C}[S]$ be the abstract vector space over \mathbf{C} with basis S. Let χ be the character of the corresponding representation of G on $\mathbf{C}[S]$.

- (a) Show that for $\sigma \in G$, the value $\chi(\sigma)$ is the number of fixed points of σ in S.
- (b) Show that the inner product $\langle \chi, 1_G \rangle$ is the number of G-orbits in S, where the inner product is given by $\langle \chi_1, \chi_2 \rangle = \frac{1}{|G|} \sum_{\sigma \in G} \chi_1(\sigma) \chi_2(\sigma^{-1})$.

Exercise 6

Let G be a finite cyclic p-group and let $\rho: G \to \operatorname{Aut}_F(V)$ be a representation on a finite dimensional vector space V over a field F of characteristic p. Assume that ρ is irreducible. Prove that ρ is trivial, i.e., G acts trivially on V.

Exercise 7

Let G denote a fintie group, let K denote a field, and let $\varphi : G \to GL_n(K)$ denote a representation.

- (a) Prove or disprove: $\varphi(G') \subseteq \mathrm{SL}_n(K)$, where G" is the commutator subgroup of G.
- (b) Prove or disprove: $\varphi(Z(G)) \subseteq \operatorname{SL}_n(K)$, where Z(G) is the center of G.

Exercise 8

Give the character table (over \mathbb{C}) of the quaternion group Q_8 . Justify your answer.

Exercise 9

Let $V \subset \mathbf{C}[X,Y,Z]$ be the 6-dimensional vector space of homogeneous polynomialds of degree 2 over \mathbf{C} . (A polynomial is homogeneous of degree 2 if it is a linear combination of monomials each of which has total degree 2, such as XZ or Y^2 .).

View V as a representation of S_3 , with S_3 acting by permuting the variables.

- (a) Give the character table of S_3 (no proof required).
- (b) What is the character of the representation of S_3 on V?
- (c) Express the character of this representation as a sum of irreducible characters.

Exercise 10

Let $V = \mathbb{C}[S_3]$, the complex group ring of S_3 . View V as a representation of S_3 , with S_3 acting on V by conjugation (not by multiplication).

- (a) Give the character table of S_3 (no proof required).
- (b) What is the character of the representation of S_3 on V.
- (c) Express the character of this representation as a sum of irreducible characters.

Exercise 11

Let χ be the character of a d-dimensional complex representation ρ of a finite group G. Prove that $|\chi(g)| \leq d$ for all $g \in G$, and that if $|\chi(g)| = d$, then $\rho(g) = \zeta I$ for some root of unity ζ depending on g.

Exercise 12

Compute the character table of the dihedral group of order 8.

Exercise 13

Consider complex representations of the finite group G up to isomorphism.

- (a) Show that if G is abelian, then every irreducible representation of G has degree 1.
- (b) Show that the number of degree 1 representations of G is equal to G/[G,G], where [G,G] denotes the commutator subgroup of G.

Exercise 14

Consider complex representations of the finite group S_4 up to isomorphism.

- (a) Show that S_4 has exactly two one dimensional complex representations.
- (b) Prove that its other pairwise non-isomorphic complex representations have dimension 2, 3, 3.