1. Exercises from secret sources

Exercise 1

Determine the degrees of the irreducible factors of $X^{13}-1$ in $\mathbf{F}_{5}[X], \mathbf{F}_{25}[X]$ and $\mathbf{F}_{125}[X]$.

Exercise 2

For which primes p is $\mathbf{F}_{p}[X] /\left(X^{4}+1\right)$ a field?

Exercise 3

Prove that for every prime p one of $2,3,6$ is a square modulo p. Conclude that the polynomials

$$
X^{6}-11 X^{4}+36 X^{2}-36=\left(X^{2}-2\right)\left(X^{2}-3\right)\left(X^{2}-6\right)
$$

has a root modulo p for every prime p but no root in \mathbf{Z}.
Exercise 4 (Artin-Schreier-radicals)
Let K be a field of characteristic $p>0$ and let $K \subseteq L$ be a cyclic extension of degree p. Prove: $L=K(\alpha)$ where α is a zero of an Artin-Schreier polynomial $f=X^{p}-X-a \in K[X]$. (hint: consider the resolvent $\sum_{i=0}^{p-1} i \sigma^{i}(x)$ where $x \in L$ has trace $1=\operatorname{Tr}_{L / K}(x)=\sum_{i=0}^{p-1} \sigma^{i}(x)$ and $\left.\langle\sigma\rangle=\operatorname{Gal}(L / K)\right)$.

Exercise 5 (Dummit and Foote, 14.9.3)
Let p be an odd prime, let s and t be independent transcendentals over \mathbf{F}_{p}, and let F be the field $\mathbf{F}_{p}(s, t)$. Let β be a root of $x^{2}-s x+t=0$ and let α be a root of $x^{p}-\beta=0$ (in some algebraic closure of F). Set $E=F(\beta)$ and $K=F(\alpha)$.
(a) Prove that E is a Galois extension of F of degree 2 and that K is a purely inseparable extension of E of degree p.
(b) Prove that K is not a normal extension of F. (if it were, conjugate β over F to show that K would contain a p-th root of s and then also a p-th root of t, so $[K: F] \geq p^{2}$, a contradiction).
(c) Prove that there is no field K_{0} such that $F \subseteq K_{0} \subseteq K$ with K_{0} / F purely inseparable and K / K_{0} separable. (If there were such a field, use that purely inseparable extensions are normal and the fact that the composite of two normal extensions is again normal to show that K would be a normal extension of F).

2. EXERCISES FROM OLD QUALIFYING EXAMS

Exercise 6

Let p be a prime and F an algebraically closed field of characteristic p. Let $n=p^{a} m$, where m is a positive integer not divisible by p. How many n-th roots of unity are there in F ? Prove your answer.

Exercise 7

Let K / F be an algebraic extension of fields and let R be a ring such that $F \subseteq R \subseteq$ K. Prove that R is a field.

Exercise 8

Determine the splitting field of $x^{5}-2$ over the finite field \mathbf{F}_{3}. Then determine the

Galois group over \mathbf{F}_{3} of $x^{5}-2$, both as an abstract group and as a set of automorphisms.

Exercise 9

Let n be a positive integer. Prove that the polynomial $f(x)=x^{2^{n}}+8 x+13$ is irreducible over \mathbf{Q}.

Exercise 10

Let p be a prime. Prove that the Galois group for $x^{p}-2$ over \mathbf{Q} is isomorphic to the group of matrices

$$
\left(\begin{array}{ll}
a & b \\
0 & 1
\end{array}\right)
$$

with $a, b \in \mathbf{F}_{p}, a \neq 0$.

