1. Exercises from a secret source

Exercise 1 Let $n \geq 2$. Consider the standard representation V of S_{n} on \mathbf{C}^{n}, defined by $\sigma\left(e_{i}\right)=e_{\sigma(i)}$. Show that V is the sum of precisely 2 irreducible representations (hint: use Exercise 3 ; let S_{n} act on $\{1,2, \ldots, n\}^{2}$; use Burnside's lemma).

2. ExErcises from old qualifying exams

Exercise 2

Consider complex representations of the finite group G up to isomorphism.
(a) Show that if G is abelian, then every irreducible representation of G has degree 1.
(b) Show that the number of degree 1 representations of G is equal to $\# G /[G, G]$, where $[G, G]$ denotes the commutator subgroup of G.

Exercise 3

Let G be a finite group acting on a finite set S. Let $\mathbf{C}[S]$ be the abstract vector space over \mathbf{C} with basis S. Let χ be the character of the corresponding representation of G on $\mathbf{C}[S]$.
(a) Show that for $\sigma \in G$, the value $\chi(\sigma)$ is the number of fixed points of σ in S.
(b) Show that the inner product $\left\langle\chi, 1_{G}\right\rangle$ is the number of G-orbits in S, where the inner product is given by $\left\langle\chi_{1}, \chi_{2}\right\rangle=\frac{1}{|G|} \sum_{\sigma \in G} \chi_{1}(\sigma) \chi_{2}\left(\sigma^{-1}\right)$.

Exercise 4

Let χ be the character of a d-dimensional complex representation ρ of a finite group G. Prove that $|\chi(g)| \leq d$ for all $g \in G$, and that if $|\chi(g)|=d$, then $\rho(g)=\zeta I$ for some root of unity ζ depending on g.

Exercise 5

Let $V \subset \mathbf{C}[X, Y, Z]$ be the 6 -dimensional vector space of homogeneous polynomialds of degree 2 over \mathbf{C}. (A polynomial is homogeneous of degree 2 if it is a linear combination of monomials each of which has total degree 2 , such as $X Z$ or Y^{2}.). View V as a representation of S_{3}, withc S_{3} acting by permuting the variables.
(a) Give the character table of S_{3} (no proof required).
(b) What is the character of the representation of S_{3} on V ?
(c) Express the character of this representation as a sum of irreducible characters.

Exercise 6

Let $V=\mathbf{C}\left[S_{3}\right]$, the complex group ring of S_{3}. View V as a representation of S_{3}, with S_{3} acting on V by conjugation (not by multiplication).
(a) Give the character table of S_{3} (no proof required).
(b) What is the character of the representation of S_{3} on V.
(c) Express the character of this representation as a sum of irreducible characters.

Exercise 7

Consider complex representations of the finite group S_{4} up to isomorphism.
(a) Show that S_{4} has exactly two one dimensional complex representations.
(b) Prove that its other pairwise non-isomorphic complex representations have dimension $2,3,3$.

Exercise 8

Give the character table (over \mathbf{C}) of the quaternion group Q_{8}. Justify your answer.

Exercise 9

Compute the character table of the dihedral group of order 8 and of order 10 .

Exercise 10

Let L_{1}, \ldots, L_{r} be all pairwise non-isomorphic complex irreducible representations of a group G of order 12. What are the possible values for their dimensions $n_{i}=\operatorname{dim}_{\mathbf{C}} L_{i}$? For each of the possible answers of the form $\left(n_{1}, \ldots, n_{r}\right)$ give an example of G which has such irreducible representations.

