1. EXERCISES FROM A SECRET SOURCE

Exercise 1 Let $n \geq 2$. Consider the standard representation V of S_n on \mathbb{C}^n , defined by $\sigma(e_i) = e_{\sigma(i)}$. Show that V is the sum of precisely 2 irreducible representations (hint: use Exercise 3; let S_n act on $\{1, 2, \ldots, n\}^2$; use Burnside's lemma).

2. Exercises from old qualifying exams

Exercise 2

Consider complex representations of the finite group G up to isomorphism.

(a) Show that if G is abelian, then every irreducible representation of G has degree 1.

(b) Show that the number of degree 1 representations of G is equal to #G/[G,G], where [G,G] denotes the commutator subgroup of G.

Exercise 3

Let G be a finite group acting on a finite set S. Let $\mathbf{C}[S]$ be the abstract vector space over \mathbf{C} with basis S. Let χ be the character of the corresponding representation of G on $\mathbf{C}[S]$.

(a) Show that for $\sigma \in G$, the value $\chi(\sigma)$ is the number of fixed points of σ in S. (b) Show that the inner product $\langle \chi, 1_G \rangle$ is the number of G-orbits in S, where the inner product is given by $\langle \chi_1, \chi_2 \rangle = \frac{1}{|G|} \sum_{\sigma \in G} \chi_1(\sigma) \chi_2(\sigma^{-1})$.

Exercise 4

Let χ be the character of a *d*-dimensional complex representation ρ of a finite group G. Prove that $|\chi(g)| \leq d$ for all $g \in G$, and that if $|\chi(g)| = d$, then $\rho(g) = \zeta I$ for some root of unity ζ depending on g.

Exercise 5

Let $V \subset \mathbf{C}[X, Y, Z]$ be the 6-dimensional vector space of homogeneous polynomialds of degree 2 over \mathbf{C} . (A polynomial is homogeneous of degree 2 if it is a linear combination of monomials each of which has total degree 2, such as XZ or Y^2 .). View V as a representation of S_3 , with S_3 acting by permuting the variables.

(a) Give the character table of S_3 (no proof required).

(b) What is the character of the representation of S_3 on V?

(c) Express the character of this representation as a sum of irreducible characters.

Exercise 6

Let $V = \mathbb{C}[S_3]$, the complex group ring of S_3 . View V as a representation of S_3 , with S_3 acting on V by conjugation (not by multiplication).

(a) Give the character table of S_3 (no proof required).

(b) What is the character of the representation of S_3 on V.

(c) Express the character of this representation as a sum of irreducible characters.

Exercise 7

Consider complex representations of the finite group S_4 up to isomorphism.

(a) Show that S_4 has exactly two one dimensional complex representations.

(b) Prove that its other pairwise non-isomorphic complex representations have dimension 2, 3, 3.

Exercise 8

Give the character table (over \mathbf{C}) of the quaternion group Q_8 . Justify your answer.

Exercise 9

Compute the character table of the dihedral group of order 8 and of order 10.

Exercise 10

Let L_1, \ldots, L_r be all pairwise non-isomorphic complex irreducible representations of a group G of order 12. What are the possible values for their dimensions $n_i = \dim_{\mathbf{C}} L_i$? For each of the possible answers of the form (n_1, \ldots, n_r) give an example of G which has such irreducible representations.