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Need for Domain Specific Architectures

* Architecture goals
* Maximize performance
* Minimize cost

* Improve energy efficiency

 But Moore’s law and Dennard scaling are
ending

* Hence, we need Domain Specific
Architectures for performance
Improvement
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Deep Learning Workload

* Types of Workloads
* DNN training (Learning weights of a DNN model)
* Inference (Using the learned model to make predictions)
* Workload characteristics
e Compute intensive
e Large matrix multiplications, convolutions, etc.
e Memory intensive

e Several layers with millions to billions of parameters



Origin of TPU

e Observation at Google in 201 3:If 100 million people talked to Google phones 3 min a
day, Google will need to double their data center capacity

* New project: Custom hardware to reduce Total Cost of Ownership (TCO) of DNN
inference by 10X

* This led to TPUvI which was designed and deployed in production in just |5 months




High-Level architecture
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Floorplan of TPU die

e Datapath is 67%
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Systolic Execution

e Problem: During matrix multiplication, N\
multiple SRAM/register accesses which 1231, 2 2
30 31

leads to energy/time inefficiencies . _
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Systolic Execution
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Roofline Model
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Performance improvement

= GPU/CPU = TPU/CPU = TPU/GPU
~80X perf/Watt of Haswell CPU
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Can it be improved further?

= GPU/CPU = TPU/CPU = TPU/GPU = TPU/CPU = TPU/GPU

200
~200X perf/Watt of Haswell CPU @G[:T}

/70X perf/Watt of K80 GPU
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Simulated results with bigger MXU, faster clock, faster memory



Reasons for TPUv1 success

* | large 2D multiplier instead of several smaller | D multipliers

e 8-bit ints vs 32-bit FP => more efficient computation / memory

e Systolic array => fewer registers (less energy)

e TPUvI drops several CPU/GPU features => saves energy, reuse transistors for domain-
specific on-chip memory
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TPUvV2

e TPUvI: tailored for inference

e TPUv2:targets training workloads
Tensor Processing Unit v2

* Training is more difficult to handle

I
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Training Process

Update A
Update B

e |nitialize model with random
weights

Update C
e SGD to learn weights

Back Propagation

—»| Update D

e 2 steps:
* Forward pass

* Backpropagation

* Weights updated after
backpropagation
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e |nference ~= Forward Pass Alone

Input Data
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Distributed Training

« » Local updates to PS

Aggregated update to workers




Discussion

* How are requirements of training different from inference!?
e Compute!
e Memory!
* Network!?

* Other considerations? What would you build?
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Why is training more difficult?

* More compute

* More memory

* More programmable
* Bigger numerics

e Parallelization is harder
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ML Training trends

Two Eras of Compute Usage in Training Al Systems
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What to build?

e 2-16 months to train production DNNs on | chip

* Bigger machines + more data => bigger ML breakthroughs

* Build a NN supercomputer (TPUv2) instead of a NN coprocessor (TPUvI)
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ML Training Quality Determines Correctness

e ML Quality = Correctness: Fast but Incorrect Uninteresting
e |% quality loss to ML practitioners can be like getting wrong answer

* Aiming for intelligent app for a billion people, so lower quality can mean worse
experience for millions of people / loss of income

* For datacenter production apps, training has to be in floating point
 Researchers exploring fixed point for training but at cost in quality

* Production remains floating point (but FP32 sufficient, no need for FP64)
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bfloat16 (Brain Floating Point)

fp32: Single-precision |IEEE Floating Point Format Range: ~1e7® to ~3e*®

Exponent: 8 bits Mantissa (Significand): 23 bits
< >« ==
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fp16: Half-precision |IEEE Floating Point Format Range: ~5.96e-2 to 65504

Exponent: 5 bits Mantissa (Significand): 10 bits
<4 >< >
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bfloat16: Brain Floating Point Format Range: ~1e38 to ~3e38

Exponent: 8 bits Mantissa (Significand): 7 bits
< >4 >
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bfloat16

* Hardware: small mantissa reduces multiplier power, area

e float32:232=529
o floatlé6:102=100

o Dbfloatl6:72= 49

e Software: same dynamic range on number line

 same Inf/NaN behavior as float
* Numerics: Unlike IEEE fp | 6, bfloatl 6 trains without loss scaling [Micikevicius 201 7]
* System: bfloatl 6 as an implementation technique inside the matrix multiplier.

 Can also expose it to save memory capacity and bandwidth, with more work
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TPUv2 Supercomputer Network Interconnect

* TPUv2 chips have 4 custom Inter-Core
Interconnect (ICl) Links

* 500 Gbps in both directions

e Allows direct wire connection between
TPUv2 chips

e Uses only 13% of the die

//\ LN LN N .
* On-device switch provides deadlock-free KO—O{}{} /’ \

routing in 2D Torus topology (<> O {}{))
* Inspired shift to ring AllReduce based o \ 4/
aggregation which can be mapped easily to Canl 4 S
2D Torus N \g}\_/ N .

Ring AllReduce
2D Torus (4-ary 2-cube)
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Supercomputer Node: How many cores?

* Global wires don’t scale with shrinking feature size, so relative delay increases

e 2 smaller TensorCores/chip prevented excessive latencies of a | full-chip core

e Easier to generate programs on 2 cores rather than several wimpier ones
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Cloud TPU (v2)
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Designed to be connected together into larger configurations
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TPUv2 Block Diagram

| 128*%128 systolic MXU

e bfloatlé6 multipliers
e float32 accumulate

Special hardware for Transpose
Reduction Permute (TRP)

Vector Processing Unit: 32 2D vector
registers + 2D Vector memory (16MiB)

Inter-core Interconnect

High Bandwidth Memory
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TPUvV3

Improvements on same technology

| .35X clock rate, ICl bandwidth, HBM bandwidth
2 MXUs/core

2.7X peak multiply performance per chip
|.6X more power

2X HBM memory capacity

Die size grew only 6%

4X bigger supercomputer (1024 vs 256 chips)
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TPUv2 vs TPUv3 clouds
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S e 11.5 petaflops

2-D toroidal mesh network
Training and inference
Alpha

> 100 petaflops!

32 TB HBM

Liquid cooled

New chip architecture + larger-scale system

TPU v3 Pod (2018)
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The Evolution..

TPU v1 92 teraops

(deployed 2015) Inference only
180 teraflops

Cloud TPUv2 64 GB HBM
Training and inference
Generally available (GA)
420 teraflops

Cloud TPUv3 128 GB HBM

Training and inference

29



TPU v4 (2021) vs. TPU v3 (20138)

Chip feature Cloud TPU v3 Cloud TPU v4

Peak compute per chip 123 teraflops (bf16) 275 teraflops (bf16 or int8)
HBM2 capacity and bandwidth 32 GiB, 900 GB/s 32 GiB, 1200 GB/s
Measured min/mean/max power 123/220/262 W 90/170/192 W

TPU pod size 1024 chips 4096 chips
Interconnect topology 2D torus 3D torus

Peak compute per pod 126 petaflops (bf16) 1.1 exaflops (bf16 or int8)
All-reduce bandwidth per pod 340 TB/s 1.1 PB/s
Bisection bandwidth per pod 6.4 TB/s 24 TB/s
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What next?

* DNNs are improving really fast
e LSTM (1997) = Transformer (2017) — BERT (2018) — GPT-3 (2020)
e Demand for ML accelerators growing

e Many more open problems in Domain Specific Architectures compared to general
purpose computing

o Efficiency will matter a lot for new designs

 Opportunities for hardware/software codesign
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Graphics Processing Unit (GPU) [Not a DSA!]

e SIMD (Single Instruction, Multiple Data) SiNNEE

. . | .
| . | .
* Large number of cores - - - -
| . | .
. . I I | |
* High memory bandwidth - - - -
: SRR NN SRR RR
* High throughput
Central Processing Unit Graphics Processing Unit
4-8 Cores 100s or 1000s of Cores
Low Latency High Throughput
Good for Serial Processing Good for Parallel Processing
Quickly Process Tasks That Breaks Jobs Into Separate Tasks

Require Interactivity To Process Simultaneously
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Related Information

e MLPerf/ ML Commons (https://mlcommons.org/en/)

e Consortium of companies and universities

* Benchmarking, datasets, and best practices information for ML practitioners

* Benchmarks on different hardware for both training and inference (e.g., https://
mlcommons.org/en/training-normal- | 1/)
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Thanks!



