
Lecture 2: Domain Specific Architectures
CS 256: Systems and Machine Learning

Sangeetha Abdu Jyothi

This lecture uses material adapted from David Patterson’s talks on DSA

• Architecture goals

• Maximize performance

• Minimize cost

• Improve energy efficiency

• But Moore’s law and Dennard scaling are
ending

• Hence, we need Domain Specific
Architectures for performance
improvement

2

Need for Domain Specific Architectures

Deep Learning Workload

• Types of Workloads

• DNN training (Learning weights of a DNN model)

• Inference (Using the learned model to make predictions)

• Workload characteristics

• Compute intensive

• Large matrix multiplications, convolutions, etc.

• Memory intensive

• Several layers with millions to billions of parameters

3

Origin of TPU

• Observation at Google in 2013: If 100 million people talked to Google phones 3 min a
day, Google will need to double their data center capacity

• New project: Custom hardware to reduce Total Cost of Ownership (TCO) of DNN
inference by 10X

• This led to TPUv1 which was designed and deployed in production in just 15 months

4

High-Level architecture

• Matrix Multiply Unit  
(65536 8-bit Multiple-Accumulate units)

• 25X MACs compared to GPUs at that time

• 700 MHz clock rate

• 92T operation/sec (65536 * 2 * 700M)

• 4 MiB on-chip accumulator memory

• 3.5X memory compared to GPUs

• Two 2133MHz DDR3 DRAM channels for
weights (8GiB)

5

Floorplan of TPU die

• Datapath is 67%

• I/O is 10%

• Control is 2%

6

Systolic Execution

• Problem: During matrix multiplication,
multiple SRAM/register accesses which
leads to energy/time inefficiencies

• Solved by systolic execution: pipelining of
control and data

• Intermediate results available at cells
exactly at the instance they are required

Systolic Execution

8

3 2 1

10

20

30

0

11

22

33

6 5 4 0

03 2

20

30

11

22

33

6 5 4

1*10

0

3

30 22

33

6 5

2*20 1*11

4*10

10

Roofline Model

9

Performance improvement

10

Can it be improved further?

Simulated results with bigger MXU, faster clock, faster memory

11

Reasons for TPUv1 success

• 1 large 2D multiplier instead of several smaller 1D multipliers

• 8-bit ints vs 32-bit FP => more efficient computation / memory

• Systolic array => fewer registers (less energy)

• TPUv1 drops several CPU/GPU features => saves energy, reuse transistors for domain-
specific on-chip memory

12

TPUv2

• TPUv1: tailored for inference

• TPUv2: targets training workloads

• Training is more difficult to handle

13

Training Process

• Initialize model with random
weights

• SGD to learn weights

• 2 steps:

• Forward pass

• Backpropagation

• Weights updated after
backpropagation

• Inference ~= Forward Pass Alone

14

op1

op2 op3

op4

Input Data

op4’

op2’ op3’

op1’

Read B

Read A

Read C

Read D

Update D

Update CUpdate B

Update A

Fo
rw

ar
d

Pa
ss

B
ac

k
Pr

op
ag

at
io

n

Distributed Training

15

W1 W2 W3 W4

PS
Local updates to PS

W1 W2 W3 W4

PS
Aggregated update to workers

Discussion

• How are requirements of training different from inference?

• Compute?

• Memory?

• Network?

• Other considerations? What would you build?

16

Why is training more difficult?

• More compute

• More memory

• More programmable

• Bigger numerics

• Parallelization is harder

17

ML Training trends

18

What to build?

• 2-16 months to train production DNNs on 1 chip

• Bigger machines + more data => bigger ML breakthroughs

• Build a NN supercomputer (TPUv2) instead of a NN coprocessor (TPUv1)

19

ML Training Quality Determines Correctness

• ML Quality ≈ Correctness: Fast but Incorrect Uninteresting

• 1% quality loss to ML practitioners can be like getting wrong answer

• Aiming for intelligent app for a billion people, so lower quality can mean worse
experience for millions of people / loss of income

• For datacenter production apps, training has to be in floating point

• Researchers exploring fixed point for training but at cost in quality

• Production remains floating point (but FP32 sufficient, no need for FP64)

20

bfloat16 (Brain Floating Point)

21

bfloat16

• Hardware: small mantissa reduces multiplier power, area

• float32: 232 = 529

• float16: 102 =100

• bfloat16: 72 = 49

• Software: same dynamic range on number line

• same Inf/NaN behavior as float

• Numerics: Unlike IEEE fp16, bfloat16 trains without loss scaling [Micikevicius 2017]

• System: bfloat16 as an implementation technique inside the matrix multiplier.

• Can also expose it to save memory capacity and bandwidth, with more work

22

TPUv2 Supercomputer Network Interconnect

• TPUv2 chips have 4 custom Inter-Core
Interconnect (ICI) Links

• 500 Gbps in both directions

• Allows direct wire connection between
TPUv2 chips

• Uses only 13% of the die

• On-device switch provides deadlock-free
routing in 2D Torus topology

• Inspired shift to ring AllReduce based
aggregation which can be mapped easily to
2D Torus

23

W1

W2

W3

W4

Ring AllReduce

Supercomputer Node: How many cores?

• Global wires don’t scale with shrinking feature size, so relative delay increases

• 2 smaller TensorCores/chip prevented excessive latencies of a 1 full-chip core

• Easier to generate programs on 2 cores rather than several wimpier ones

24

Cloud TPU (v2)

25

TPUv2 Block Diagram

• 1 128*128 systolic MXU

• bfloat16 multipliers

• float32 accumulate

• Special hardware for Transpose
Reduction Permute (TRP)

• Vector Processing Unit: 32 2D vector
registers + 2D Vector memory (16MiB)

• Inter-core Interconnect

• High Bandwidth Memory

26

TPUv3

• Improvements on same technology

• 1.35X clock rate, ICI bandwidth, HBM bandwidth

• 2 MXUs/core

• 2.7X peak multiply performance per chip

• 1.6X more power

• 2X HBM memory capacity

• Die size grew only 6%

• 4X bigger supercomputer (1024 vs 256 chips)

27

TPUv2 vs TPUv3 clouds

28

The Evolution..

29

TPU v4 (2021) vs. TPU v3 (2018)

30

What next?

• DNNs are improving really fast

• LSTM (1997) → Transformer (2017) → BERT (2018) → GPT-3 (2020)

• Demand for ML accelerators growing

• Many more open problems in Domain Specific Architectures compared to general
purpose computing

• Efficiency will matter a lot for new designs

• Opportunities for hardware/software codesign

31

Graphics Processing Unit (GPU) [Not a DSA!]

• SIMD (Single Instruction, Multiple Data)

• Large number of cores

• High memory bandwidth

• High throughput

32

Related Information

• MLPerf / ML Commons (https://mlcommons.org/en/)

• Consortium of companies and universities

• Benchmarking, datasets, and best practices information for ML practitioners

• Benchmarks on different hardware for both training and inference (e.g., https://
mlcommons.org/en/training-normal-11/)

33

https://mlcommons.org/en/
https://mlcommons.org/en/training-normal-11/
https://mlcommons.org/en/training-normal-11/
https://mlcommons.org/en/training-normal-11/
https://mlcommons.org/en/training-normal-11/

Thanks!

