
Lecture 3: Deep Learning Frameworks
CS 256: Systems and Machine Learning

Sangeetha Abdu Jyothi

Parts of this lecture were adapted from CS 231 at Stanford, CS 6787 at Cornell and CS 15-849 at CMU

2

Last Class: Hardware for Deep Learning

• Can be viewed as the scaffolding of the Machine Learning Revolution

• Enable easy design, training, and validation of deep neural networks

• High level programming interface makes ML accessible to non-experts

Deep Learning Frameworks

3

Deep Learning Frameworks

4

Deep Learning Software Evolution - Early 2000s

• Early tools to describe and develop neural networks

• Frameworks: MATLAB, Torch, OpenNN

• Limited functionality

• Complex APIs

• Some didn’t support GPUs

5

Deep Learning Software Evolution - Early 2010s

• Early deep learning frameworks - Caffe, Chainer, Theano, etc.

• Easy to build complex neural networks

• Multi-GPU training support

6

Deep Learning Software Evolution - Late 2010s

• More deep learning frameworks - TensorFlow, Caffe2, PyTorch, CNTK, MXNet, Keras, etc.

• Well-defined user APIs

• Optimizations for multi-GPU training and distributed training

• Several model zoos and toolkits

7

Deeper dive into the internals

• Common Features of ML frameworks

• Overview of framework design (TensorFlow and PyTorch)

8

Common Features of ML Frameworks

• Multi-dimensional array

• E.g., CIFAR10 dataset consists of 60000 32x32 color images

• Gradients for deep learning can also be tensors

• During deep learning, we are performing various mathematical operations on these
tensors: Elementwise operations, matrix multiply-like operations, etc.

TCIFAR−10 ∈ ℝ32*32*3*60000

G ∈ ℝ100*100*32

Tensors

10

Computational Graphs

11

• Deep learning process represented using
computational graphs

• Computational graphs are DAGs (Directed
Acyclic Graphs)

• Nodes are operations and variables

• Edges are dependencies (direction of data flow)

Real-world Computational Graphs are Complex

12

AlexNet Model

Need for Automatic Differentiation

• Gradient computation in back propagation is a tedious process

• We need a mechanism to automate this process

• Write the forward pass and have the backward pass implementation automated

• Solution: Automatic Differentiation [Automatic Differentiation in PyTorch, NeurIPS 2017]

• Apply chain rule directly to operations in a program

• Allows computing exact solutions

• Cheaper to compute than symbolic differentiation

• No round-off errors like numerical differentiation

13

https://openreview.net/pdf?id=BJJsrmfCZ

Need for high-level API

• Several low-level libraries: CUDA, cuDNN, cuBLAS, etc.

• Programming in low-level libraries is cumbersome

• We want to run efficiently on heterogenous hardware, but write program using high-level
APIs

14

Goal of Deep Learning Frameworks

• Run and build complex computational graphs easily

• Compute gradients in computational graphs easily

• Run efficiently on heterogenous hardware

15

TensorFlow

TensorFlow

• Originated from DistBelief

• PS architecture

• Stateless worker processes for computation

• Stateful Parameter Server processes for maintaining latest version of parameters

• Layers are C++ classes

• Experimentation (e.g., adding new optimization methods) was difficult

• TensorFlow used static dataflow graphs to represent computations and shared states
(static in TF 1.x only)

• Allows applications to be easily deployed in any settings: distributed clusters, local
workstations, mobile devices, etc.

17

Design Principles

• TensorFlow differs from batch dataflow systems

• Multiple concurrent executions on overlapping
subgraphs of the overall graph

• Deferred execution

• First define symbolic dataflow graph

• Then execute optimized version of the program

• Common abstraction for heterogenous accelerators

• Tensors are dense at the lowest level for efficient
memory allocation

18

Example on TensorFlow

19

Create forward pass

Example on TensorFlow

20

Ask TF to create gradients

Example on TensorFlow

21

Run the graph

Define a computational
graph

Distributed Execution

• Each operation resides on a particular device (such as GPU or CPU)

• A per-device subgraph contains all operations assigned to that device

• Send and Recv operations replace edges across device boundaries

22

TensorFlow 2.0

• Dynamic graphs as default, static graphs are optional

• Standardized on Keras

• High-level object-oriented API

• Build the model as a stack of layers

• Distribution Strategy API to distribute training across multiple GPUs, multiple machines
or TPUs

• A direct path to production for models: TensorFlow Serving, TensorFlow Lite,
TensorFlow.js

23

TensorFlow 2.0

24

PyTorch

PyTorch

• Imperative Style

• High-Performance

26

Pythonic

• Interfaces are simple and consistent

• Integrates naturally with standard plotting, debugging, and data processing tools

• Layers are Python classes

27

Imperative Programming Model

• Execute the computational graph while
constructing it

• Easy to debug

• e.g., printing intermediate tensors

• Mutable tensors

• Update the value of the tensor in place (e.g.
update the weights during backpropagation)

• Flexible Control Flow

• Can use a mix of Python control flow and
Pytorch Ops to construct the graph

28

• Simplicity and ease of use are primary goals, but also provide compelling performance

• Efficient C++ core

• Python as a host language

• Data structures and ops are implemented in C++ and CUDA

• Separate control and data flow

• Multiprocessing

• Extend Python multiprocessing to torch.multiprocessing

• Custom caching tensor allocator

High Performance

29

PyTorch Features

• Imperative programming and Dynamic Eager Execution

• Dynamic computational graph generation

• Easy debugging

• Interoperability with Python libraries

• Reverse-mode automatic differentiation

• Script mode for production use

30

Performance Comparison

31

PyTorch moving to Linux Foundation

32

What’s next?

• PyTorch and TensorFlow have become the two dominant players

• Future

• Compiler-based operator optimization

• Unified API standards

• e.g., JAX with numpy compatible API

• Data movement as a first-class citizen

33

Thanks!

