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Last Class: Hardware for Deep Learning



• Can be viewed as the scaffolding of the Machine Learning Revolution

• Enable easy design, training, and validation of deep neural networks

• High level programming interface makes ML accessible to non-experts

Deep Learning Frameworks
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Deep Learning Frameworks
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Deep Learning Software Evolution - Early 2000s

• Early tools to describe and develop neural networks

• Frameworks: MATLAB, Torch, OpenNN

• Limited functionality

• Complex APIs

• Some didn’t support GPUs
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Deep Learning Software Evolution - Early 2010s

• Early deep learning frameworks - Caffe, Chainer, Theano, etc.

• Easy to build complex neural networks 

• Multi-GPU training support
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Deep Learning Software Evolution - Late 2010s

• More deep learning frameworks - TensorFlow, Caffe2, PyTorch, CNTK, MXNet, Keras, etc.

• Well-defined user APIs 

• Optimizations for multi-GPU training and distributed training

• Several model zoos and toolkits
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Deeper dive into the internals

• Common Features of ML frameworks 

• Overview of framework design (TensorFlow and PyTorch)

8



Common Features of ML Frameworks



• Multi-dimensional array

• E.g., CIFAR10 dataset consists of 60000 32x32 color images

• Gradients for deep learning can also be tensors

• During deep learning, we are performing various mathematical operations on these 
tensors: Elementwise operations, matrix multiply-like operations, etc.

TCIFAR−10 ∈ ℝ32*32*3*60000

G ∈ ℝ100*100*32

Tensors
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Computational Graphs
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• Deep learning process represented using 
computational graphs 

• Computational graphs are DAGs (Directed 
Acyclic Graphs)

• Nodes are operations and variables

• Edges are dependencies (direction of data flow)



Real-world Computational Graphs are Complex
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AlexNet Model



Need for Automatic Differentiation

• Gradient computation in back propagation is a tedious process

• We need a mechanism to automate this process

• Write the forward pass and have the backward pass implementation automated

• Solution: Automatic Differentiation [Automatic Differentiation in PyTorch, NeurIPS 2017]

• Apply chain rule directly to operations in a program

• Allows computing exact solutions

• Cheaper to compute than symbolic differentiation

• No round-off errors like numerical differentiation
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https://openreview.net/pdf?id=BJJsrmfCZ


Need for high-level API

• Several low-level libraries: CUDA, cuDNN, cuBLAS, etc.

• Programming in low-level libraries is cumbersome

• We want to run efficiently on heterogenous hardware, but write program using high-level 
APIs 
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Goal of Deep Learning Frameworks

• Run and build complex computational graphs easily

• Compute gradients in computational graphs easily

• Run efficiently on heterogenous hardware
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TensorFlow



TensorFlow

• Originated from DistBelief

• PS architecture 

• Stateless worker processes for computation

• Stateful Parameter Server processes for maintaining latest version of parameters

• Layers are C++ classes

• Experimentation (e.g., adding new optimization methods) was difficult

• TensorFlow used static dataflow graphs to represent computations and shared states  
(static in TF 1.x only)

• Allows applications to be easily deployed in any settings: distributed clusters, local 
workstations, mobile devices, etc.
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Design Principles

• TensorFlow differs from batch dataflow systems

• Multiple concurrent executions on overlapping 
subgraphs of the overall graph

• Deferred execution

• First define symbolic dataflow graph

• Then execute optimized version of the program

• Common abstraction for heterogenous accelerators 

• Tensors are dense at the lowest level for efficient 
memory allocation
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Example on TensorFlow
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Create forward pass



Example on TensorFlow
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Ask TF to create gradients



Example on TensorFlow
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Run the graph

Define a computational 
graph



Distributed Execution

• Each operation resides on a particular device (such as GPU or CPU)

• A per-device subgraph contains all operations assigned to that device

• Send and Recv operations replace edges across device boundaries
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TensorFlow 2.0

• Dynamic graphs as default, static graphs are optional

• Standardized on Keras

• High-level object-oriented API

• Build the model as a stack of layers

• Distribution Strategy API to distribute training across multiple GPUs, multiple machines 
or TPUs

• A direct path to production for models: TensorFlow Serving,  TensorFlow Lite, 
TensorFlow.js
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TensorFlow 2.0
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PyTorch



PyTorch

• Imperative Style

• High-Performance 
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Pythonic

• Interfaces are simple and consistent

• Integrates naturally with standard plotting, debugging, and data processing tools

• Layers are Python classes
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Imperative Programming Model

• Execute the computational graph while 
constructing it

• Easy to debug 

• e.g., printing intermediate tensors

• Mutable tensors 

• Update the value of the tensor in place (e.g. 
update the weights during backpropagation)

• Flexible Control Flow

• Can use a mix of Python control flow and 
Pytorch Ops to construct the graph
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• Simplicity and ease of use are primary goals, but also provide compelling performance

• Efficient C++ core

• Python as a host language 

• Data structures and ops are implemented in C++ and CUDA

• Separate control and data flow

• Multiprocessing

• Extend Python multiprocessing to torch.multiprocessing

• Custom caching tensor allocator

High Performance
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PyTorch Features

• Imperative programming and Dynamic Eager Execution

• Dynamic computational graph generation

• Easy debugging

• Interoperability with Python libraries

• Reverse-mode automatic differentiation

• Script mode for production use
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Performance Comparison
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PyTorch moving to Linux Foundation
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What’s next?

• PyTorch and TensorFlow have become the two dominant players

• Future

• Compiler-based operator optimization

• Unified API standards

• e.g., JAX with numpy compatible API

• Data movement as a first-class citizen
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Thanks!


