Lecture 4: Deep Learning Compilers

CS 256: Systems and Machine Learning Sangeetha Abdu Jyothi

Previous lectures

Deep Learning Frameworks

High-level data flow graph

Kernel Libraries

cuDNN

NNPack

MKL-DNN

Hardware

Previous Approach: Engineer Optimized Tensor Operators

Matmul: Operator Specification

Vanilla Code

```
for y in range(1024):
   for x in range(1024):
     C[y][x] = 0
   for k in range(1024):
     C[y][x] += A[k][y] * B[k][x]
```

Previous Approach: Engineer Optimized Tensor Operators

Matmul: Operator Specification

Loop Tiling for Locality

Previous Approach: Engineer Optimized Tensor Operators

Matmul: Operator Specification

Map to Accelerators

```
inp_buffer AL[8][8], BL[8][8]
acc_buffer CL[8][8]
for yo in range(128):
    for xo in range(128):
        vdla.fill_zero(CL)
        for ko in range(128):
        vdla.dma_copy2d(AL, A[ko*8:ko*8+8][yo*8:yo*8+8])
        vdla.dma_copy2d(BL, B[ko*8:ko*8+8][xo*8:xo*8+8])
        vdla.fused_gemm8x8_add(CL, AL, BL)
        vdla.dma_copy2d(C[yo*8:yo*8+8,xo*8:xo*8+8], CL)
```

Human exploration of optimized code

Previous Approach: Cannot Leverage Operator Fusion

Limitations in this stack

• Every high-level operation in the computational graph requires an optimized implementation in kernel libraries

Engineering intensive

Cannot leverage operator fusing

Deployment Challenges

Deployment Challenges

Front End

Back End

	(intel) Xeon' processor	PETT	RISC-V		RADESH		É			The state of the s
O PyTorch	?	?	?	?	?	?	?	?	?	?
Ö Caffe2	?	?	?	?	?	?	?	?	?	?
TensorFlow	?	?	?	?	?	?	?	?	?	?
mxnet	?	?	?	?	?	?	?	?	?	?
ONNX	?	?	?	?	?	?	?	?	?	?
TensorFlow Lite	?	?	?	?	?	?	?	?	?	?

Memory Layouts and Compute Primitives

Deep Learning Stack

Deep Learning Frameworks

Deep Learning Compilers

Hardware

Deep Learning Stack evolution

Intermediate Representation

Intermediate Representation (IR)

Example: XLA

TVM: Learning Based Deep Learning Compiler

System Overview

Hardware Aware Search Space

Define search space of hardware aware mappings from expression to hardware program

Based on Halide's compute/schedule separation

Halide Programming Model

Functional definition: what should this function do?

```
// The algorithm - no storage or order blur_x(x, y) = (input(x-1, y) + input(x, y) + input(x+1, y))/3;blur_y(x, y) = (blur_x(x, y-1) + blur_x(x, y) + blur_x(x, y+1))/3;
```

Halide Programming Model

Functional definition: what should this function do?

```
// The algorithm - no storage or order
blur_x(x, y) = (input(x-1, y) + input(x, y) + input(x+1, y))/3;
blur_y(x, y) = (blur_x(x, y-1) + blur_x(x, y) + blur_x(x, y+1))/3;
```

Schedule definitions: how should the function do it?

```
// The schedule - defines order, locality; implies storage
blur_y.tile(x, y, xi, yi, 256, 32)
          .vectorize(xi, 8).parallel(y);
blur_x.compute_at(blur_y, x).vectorize(x, 8);
```

Matrix Multiply Example

Tensor-Expression DSL defines the algorithm and the schedule

```
# Algorithm
k = te.reduce_axis((0, K), "k")
A = te.placeholder((M, K), name="A")
B = te.placeholder((K, N), name="B")
C = te.compute((M, N), lambda x, y: te.sum(A[x, k] * B[k, y], axis=k), name="C")
# Default schedule
s = te.create_schedule(C.op)
```

vanilla schedule

Matrix Multiply Optimized Schedule

vanilla schedule

compute tiling

split reduction axis

```
bn = 32
s = te.create_schedule(C.op)

# Blocking by loop tiling
xo, yo, xi, yi = s[C].tile(C.op.axis[0], C.op.axis[1], bn, bn)
(k,) = s[C].op.reduce_axis
ko, ki = s[C].split(k, factor=4)

# Hoist reduction domain outside the blocking loop
s[C].reorder(xo, yo, ko, ki, xi, yi)
```

Matrix Multiply Optimized Schedule

primfn(A_1: handle, B_1: handle, C_1: handle) -> ()

attr = {"global symbol": "main", "tir.noalias": True}

vanilla schedule

compute tiling

split reduction axis

```
bn = 32
s = te.create_schedule(C.op)

# Blocking by loop tiling
xo, yo, xi, yi = s[C].tile(C.op.axis[0], C.op.axis[1], bn, bn)
(k,) = s[C].op.reduce_axis
ko, ki = s[C].split(k, factor=4)

# Hoist reduction domain outside the blocking loop
s[C].reorder(xo, yo, ko, ki, xi, yi)
```

```
6 nested loops
```

Hardware Aware Search Space: CPUs

CPUs

Compute Primitives

vector

Memory Subsystem

Loop Transformations Cache Locality

Vectorization

Hardware Aware Search Space: GPUs

GPUs

Compute Primitives

Memory Subsystem

Use of Shared Memory

Thread Cooperation

Hardware Aware Search Space: TPUs

TPU-like Specialized Accelerators

Tensorization Challenge: TPUs

Hardware designer: declare tensor instruction interface with Tensor Expression

```
w, x = t.placeholder((8, 8)), t.placeholder((8, 8))
                                                     declare behavior
k = t.reduce_axis((0, 8))
y = t.compute((8, 8), lambda i, j:
               t.sum(w[i, k] * x[j, k], axis=k))
                                                  lowering rule to generate
def gemm_intrin_lower(inputs, outputs):
                                                  hardware intrinsics to carry
   ww_ptr = inputs[0].access_ptr("r")
   xx_ptr = inputs[1].access_ptr("r")
                                                  out the computation
   zz_ptr = outputs[0].access_ptr("w")
   compute = t.hardware_intrin("gemm8x8", ww_ptr, xx_ptr, zz_ptr)
   reset = t.hardware_intrin("fill_zero", zz_ptr)
   update = t.hardware_intrin("fuse_gemm8x8_add", ww_ptr, xx_ptr, zz_ptr)
   return compute, reset, update
gemm8x8 = t.decl_tensor_intrin(y.op, gemm_intrin_lower)
```

Tensorize: transform program to use tensor instructions

Hardware Aware Search Space: TPUs

TPU-like Specialized Accelerators

Compute Primitives

Hardware Aware Search Space

Primitives in prior work: Halide, Loopy

New primitives for GPUs, and enable TPU-like Accelerators

Loop Transformations Thread Bindings

Cache Locality

Thread Cooperation

Tensorization

Latency Hiding

Hardware

Learning Based Learning System

Program Optimizer Vanilla Approach

Runtime Measurements

Cost-based Program Optimizer

Learning Based Program Optimizer

Program Aware Cost Modeling

High-Level Configuration

Program Aware Cost Modeling

High-Level Configuration


```
for y in range(8):
    for x in range(8):
        C[y][x]=0
        for k in range(8):
        C[y][x]+=A[k][y]*B[k][x]
```

Low-level Abstract Syntax Tree (shared between tasks)

Program Aware Cost Modeling

High-Level Configuration


```
for y in range(8):
    for x in range(8):
        C[y][x]=0
        for k in range(8):
        C[y][x]+=A[k][y]*B[k][x]
```


statistical features

Low-level Abstract Syntax Tree (shared between tasks)

Program Aware Cost Modeling

High-Level Configuration


```
for y in range(8):
   for x in range(8):
        C[y][x]=0
        for k in range(8):
        C[y][x]+=A[k][y]*B[k][x]
```


statistical features

Low-level Abstract Syntax Tree (shared between tasks)

Effectiveness of ML Based Model

Transfer Learning Among Different Workloads

End to End Inference Performance

Performance Across Hardware Platforms

ARM CPU(A53)

ARM GPU(MALI)

TVM: What problems does TVM address?

Portability:

When there are limited hardware options to deploy your model

Efficiency:

When you need to squeeze as much efficiency out of your target platform

Software support:

When you need to build a software stack for your hardware system

TVM Use Cases in Real-World: Portability

TVM Use Cases in Real-World: Efficiency

Workload: WaveRNN style model architecture

- Compute dominated by GRU and FC layers
- 24kHz sampling frequency requires 40us inference net runtime
- Initial model runs in PT with 3,400us inference net runtime
- 85x slower than target

TVM improved performance more than 100X in this environment

Image from LPCNet

TVM @ Facebook, Tulloch et al., TVM Conf 2019

Industry-wide Impact

Every "Alexa" wake-up today across all devices uses a model optimized with TVM

"[TVM enabled] real-time on mobile CPUs for free...We are excited about the performance TVM achieves." More than 85x speed-up for speech recognition model.

Bing query understanding: 112ms (Tensorflow) -> 34ms (TVM). QnA bot: 73ms->28ms (CPU), 10.1ms->5.5ms (GPU)

"TVM is key to ML Access on Hexagon"

What Next?

- Apache TVM is a fast-growing open-source community
- Efforts related to TVM:
 - Support for more dynamism (e.g., dynamic graphs)
 - Integrate with VTA (Open Hardware Accelerator)
 - Software-Hardware Codesign
 - Unified runtime for heterogeneous devices

Other Compilers

- NVCC (NVIDIA CUDA Compiler)
 - works only with CUDA. Closed-source.
- XLA (Accelerated Linear Algebra, Google)
 - originally intended to speed up TensorFlow models, but has been adopted by JAX. Open-source as part of the TensorFlow repository.
- PyTorch Glow (Facebook)
 - PyTorch has adopted XLA to enable PyTorch on TPUs, but for other hardware, it relies on PyTorch Glow. Open-source as part of the PyTorch repository.

Thanks!