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Parts of this lecture were adapted from talks at the TVM conference
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Previous Approach: Engineer Optimized Tensor Operators
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Previous Approach: Engineer Optimized Tensor Operators
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Previous Approach: Engineer Optimized Tensor Operators
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Previous Approach: Cannot Leverage Operator Fusion
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Limitations in this stack

• Every high-level operation in the computational graph requires an optimized 
implementation in kernel libraries

• Engineering intensive

• Cannot leverage operator fusing
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Deployment Challenges
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Deployment Challenges
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Memory Layouts and Compute Primitives
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Deep Learning Stack
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Deep Learning Stack evolution
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Intermediate Representation



Intermediate Representation (IR)
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Example: XLA
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TVM



Directly generate optimized program for new 
operator workloads and hardware

TVM: Learning Based Deep Learning Compiler
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System Overview
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Hardware Aware Search Space
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Define search space of hardware aware mappings 
from expression to hardware program

Based on Halide’s compute/schedule separation



Halide Programming Model
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Halide Programming Model
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Matrix Multiply Example
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Matrix Multiply Optimized Schedule
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Matrix Multiply Optimized Schedule
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Hardware Aware Search Space: CPUs
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Hardware Aware Search Space: GPUs
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Hardware Aware Search Space: TPUs
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Tensorization Challenge: TPUs
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Hardware Aware Search Space: TPUs
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Hardware Aware Search Space
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Learning Based Learning System
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Program Optimizer Vanilla Approach
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Cost-based Program Optimizer
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Learning Based Program Optimizer
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Program Aware Cost Modeling
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Program Aware Cost Modeling
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Program Aware Cost Modeling
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Program Aware Cost Modeling
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Effectiveness of ML Based Model
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Transfer Learning Among Different Workloads
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End to End Inference Performance
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Performance Across Hardware Platforms
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TVM: What problems does TVM address?
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TVM Use Cases in Real-World: Portability
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TVM Use Cases in Real-World: Efficiency
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TVM improved performance more than 100X in this environment



Industry-wide Impact
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What Next?

• Apache TVM is a fast-growing open-source community

• Efforts related to TVM:

• Support for more dynamism (e.g., dynamic graphs)

• Integrate with VTA (Open Hardware Accelerator)

• Software-Hardware Codesign

• Unified runtime for heterogeneous devices
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Other Compilers

• NVCC (NVIDIA CUDA Compiler)

• works only with CUDA. Closed-source.

• XLA (Accelerated Linear Algebra, Google)

• originally intended to speed up TensorFlow models, but has been adopted by 
JAX. Open-source as part of the TensorFlow repository.

• PyTorch Glow (Facebook)

• PyTorch has adopted XLA to enable PyTorch on TPUs, but for other hardware, it 
relies on PyTorch Glow. Open-source as part of the PyTorch repository.
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Thanks!


