
Lecture 4: Deep Learning Compilers
CS 256: Systems and Machine Learning

Sangeetha Abdu Jyothi

Parts of this lecture were adapted from talks at the TVM conference



2

Previous lectures

Hardware

Deep Learning
Frameworks

High-level data flow graph

Kernel Libraries cuDNN NNPack MKL-DNN

?



Previous Approach: Engineer Optimized Tensor Operators

3



Previous Approach: Engineer Optimized Tensor Operators

4



Previous Approach: Engineer Optimized Tensor Operators

5



Previous Approach: Cannot Leverage Operator Fusion

6



Limitations in this stack

• Every high-level operation in the computational graph requires an optimized 
implementation in kernel libraries

• Engineering intensive

• Cannot leverage operator fusing

7



Deployment Challenges

8



Deployment Challenges

9

Fr
on

t 
En

d
Back End



Memory Layouts and Compute Primitives

10



11

Deep Learning Stack

Hardware

Deep Learning
Frameworks

Deep Learning
Compilers



Deep Learning Stack evolution

12



Intermediate Representation



Intermediate Representation (IR)

14



Example: XLA

15



TVM



Directly generate optimized program for new 
operator workloads and hardware

TVM: Learning Based Deep Learning Compiler

17



System Overview

18



Hardware Aware Search Space

19

Define search space of hardware aware mappings 
from expression to hardware program

Based on Halide’s compute/schedule separation



Halide Programming Model

20



Halide Programming Model

21



Matrix Multiply Example

22



Matrix Multiply Optimized Schedule

23



Matrix Multiply Optimized Schedule

24



Hardware Aware Search Space: CPUs

25



Hardware Aware Search Space: GPUs

26



Hardware Aware Search Space: TPUs

27



Tensorization Challenge: TPUs

28



Hardware Aware Search Space: TPUs

29



Hardware Aware Search Space

30



Learning Based Learning System

31



Program Optimizer Vanilla Approach

32



Cost-based Program Optimizer

33



Learning Based Program Optimizer

34



Program Aware Cost Modeling

35



Program Aware Cost Modeling

36



Program Aware Cost Modeling

37



Program Aware Cost Modeling

38



Effectiveness of ML Based Model

39



Transfer Learning Among Different Workloads

40



End to End Inference Performance

41



Performance Across Hardware Platforms

42



TVM: What problems does TVM address?

43



TVM Use Cases in Real-World: Portability

44



TVM Use Cases in Real-World: Efficiency

45

TVM improved performance more than 100X in this environment



Industry-wide Impact

46



What Next?

• Apache TVM is a fast-growing open-source community

• Efforts related to TVM:

• Support for more dynamism (e.g., dynamic graphs)

• Integrate with VTA (Open Hardware Accelerator)

• Software-Hardware Codesign

• Unified runtime for heterogeneous devices

47



Other Compilers

• NVCC (NVIDIA CUDA Compiler)

• works only with CUDA. Closed-source.

• XLA (Accelerated Linear Algebra, Google)

• originally intended to speed up TensorFlow models, but has been adopted by 
JAX. Open-source as part of the TensorFlow repository.

• PyTorch Glow (Facebook)

• PyTorch has adopted XLA to enable PyTorch on TPUs, but for other hardware, it 
relies on PyTorch Glow. Open-source as part of the PyTorch repository.

48



Thanks!


