Lecture 4: Networking and Deep Learning

CS 256: Systems and Machine Learning

Sangeetha Abdu Jyothi

Previous Lectures

Deep Learning Frameworks

Deep Learning Compilers

Hardware

Rapid Growth

Datasets and Models are rapidly growing in size

Distributed training is necessary

Distribution Patterns

Popular Modes of Network Aggregation

Parameter Server

Decentralized Aggregation

Parameter Server [OSDI'14]

- Goals
 - Scale to industry-scale problems
 - billions of samples and features
 - hundreds of machines
 - Enable efficient communication
 - Fault tolerance
 - Easy to use

Communication Operations

Communication Operations

Challenges in the vanilla model

Massive communication traffic

 Frequent access to the shared model

 Expensive global barriers between iterations

Issue with Parameter Server

Even with distributed PS architecture, there can be network congestion at the parameter servers

Solution: Decentralized Aggregation

Ring AllReduce - Decentralized Aggregation

Performance of Horovod (Ring AllReduce Implementation)

Performance

AllReduce advantages

• Better performance

More scalable

• Fits well with Torus topology

An issue with both PS and AllReduce

Compute under-utilization

Understanding Compute Underutilization

Training can be accelerated through better communication-computation overlap

Inception v3
Data-Parallel with Parameter Server
TensorFlow
Mustang: CPU

Cause: Random Order of Parameter Transfers

- In this example, the computation cannot start until parameter A is received
- B, C, or D may be transferred before A, thereby blocking the computation
- To make things worse, parameters that are updated last are consumed first

TicTac and P3 [MLSys'19] High-level idea

• Improve iteration time through better communication-computation overlap in Parameter Server based aggregation

Achieved through parameter transfer scheduling

Timing Independent Computation Scheduling

- Uses DAG structure only
- Assign priorities based on the number of communication operations dependent on a given transfer
- In the e.g, A has no other transfers dependent on it. Hence, it gets the highest priority
- B and C each have one dependency.
 Hence, the next priority
- D assigned lowest priority

Timing Aware Computation Scheduling

- Uses DAG structure and time taken by each operation
- Reduce blocking on the critical path
- A assigned highest priority
- C is the next smallest blocking transfer
- Followed by B, then D

DNN Training Acceleration

- Improving communication-computation overlap
 - Communication Scheduling: TicTac [MLSys'19], P3 [Jayarajan, MLSys'19], ByteScheduler [SOSP'19]
 - Computation scheduling: BytePS [OSDI'20], Caramel [arXiv'20]
 - Hybrid mode: PipeDream [SOSP'19]
- Increasing computation time
 - Increase batch size [landola et al., 2016]
 - Model-dependent solution [Goyal et al., 2017; Cho et al., 2017; You et al., 2017; Akiba et al., 2017]
- Decreasing Communication Time
 - Reduce Number of Messages [Alistarh et al., 2017; Wen et al., 2017; Zhang et al., 2017]
 - Decrease Message Size [Vanhoucke et al., 2011; Courbariaux et al., 2015; Gupta et al., 2015]

In-network Aggregation for Shared Machine Learning Clusters [MLSys'21]

Data-Parallel DNN Training Using Ring-AllReduce

In-network aggregation

Challenges for Wide Adoption of In-network Aggregation

• Efficient hardware support for innetwork aggregation at large-scale

 Fair and balanced use of network resources by aggregation and nonaggregation flows

PANAMA Switch

Short Flow Latency

Other Related Work

• Considering stragglers in compute during scheduling

• SmartNICs for AllReduce

Handling heterogeneity

Thanks!