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Parts of this lecture were adapted from talks on Parameter Server, Horovod, and TicTac
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Rapid Growth
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Datasets and Models are rapidly growing in size   ➡   Distributed training is necessary



Training Recap
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Distribution Patterns
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Popular Modes of Network Aggregation
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Parameter Server [OSDI’14]

• Goals

• Scale to industry-scale problems 

• billions of samples and features

• hundreds of machines

• Enable efficient communication

• Fault tolerance

• Easy to use
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Data and Model Partitioning
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Data and Model Partitioning
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Data and Model Partitioning
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Data and Model Partitioning
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Communication Operations
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Communication Operations
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Challenges in the vanilla model

• Massive communication traffic

• Frequent access to the 
shared model

• Expensive global barriers 
between iterations
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Issue with Parameter Server

Even with distributed PS architecture, 

there can be network congestion at the parameter servers

Solution: Decentralized Aggregation
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Ring AllReduce - Decentralized Aggregation
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Ring AllReduce
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Ring AllReduce
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Ring AllReduce
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Ring AllReduce
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Ring AllReduce
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Performance of Horovod (Ring AllReduce Implementation)
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Performance
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AllReduce advantages

• Better performance

• More scalable

• Fits well with Torus topology 
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An issue with both PS and AllReduce

Compute under-utilization
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Understanding Compute Underutilization
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Blocked Computation
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Training can be accelerated through better communication-computation overlap
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Cause: Random Order of Parameter Transfers
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• B, C, or D may be transferred before A, 
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• To make things worse, parameters that 
are updated last are consumed first



TicTac and P3 [MLSys’19] High-level idea

• Improve iteration time through better communication-computation overlap in 
Parameter Server based aggregation

• Achieved through parameter transfer scheduling
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Timing Independent Computation Scheduling
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• Uses DAG structure only

• Assign priorities based on the number 
of communication operations dependent 
on a given transfer

• In the e.g,  A has no other transfers 
dependent on it. Hence, it gets the 
highest priority

• B and C each have one dependency. 
Hence, the next priority

• D assigned lowest priority



Timing Aware Computation Scheduling
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• Uses DAG structure and time taken by each 
operation

• Reduce blocking on the critical path

• A assigned highest priority

• C is the next smallest blocking transfer

• Followed by B, then D



DNN Training Acceleration

• Improving communication-computation overlap

• Communication Scheduling: TicTac [MLSys’19], P3 [Jayarajan, MLSys’19], ByteScheduler [SOSP’19]

• Computation scheduling: BytePS [OSDI’20], Caramel [arXiv’20]

• Hybrid mode: PipeDream [SOSP’19]

• Increasing computation time

• Increase batch size [Iandola et al., 2016]

• Model-dependent solution [Goyal et al., 2017; Cho et al., 2017; You et al., 2017; Akiba et al., 2017]

• Decreasing Communication Time

• Reduce Number of Messages [Alistarh et al., 2017; Wen et al., 2017; Zhang et al., 2017]

• Decrease Message Size [Vanhoucke et al., 2011; Courbariaux et al., 2015; Gupta et al., 2015]

31



In-network Aggregation for Shared Machine Learning Clusters [MLSys’21]
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Data-Parallel DNN Training Using Ring-AllReduce 



In-network aggregation
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Challenges for Wide Adoption of In-network Aggregation 

• Efficient hardware support for in-
network aggregation at large-scale 

• Fair and balanced use of network 
resources by aggregation and non-
aggregation flows 
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PANAMA Switch 
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Short Flow Latency
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Other Related Work

• Considering stragglers in compute during scheduling

• SmartNICs for AllReduce

• Handling heterogeneity
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Thanks!


