
Lecture 4: Networking and Deep Learning
CS 256: Systems and Machine Learning

Sangeetha Abdu Jyothi

Parts of this lecture were adapted from talks on Parameter Server, Horovod, and TicTac

2

Previous Lectures

Hardware

Deep Learning
Frameworks

Deep Learning
Compilers

Rapid Growth

3

Datasets and Models are rapidly growing in size ➡ Distributed training is necessary

Training Recap

4

op1

op2 op3

op4

Input Data

op4’

op2’ op3’

op1’

Read B

Read A

Read C

Read D

Update D

Update CUpdate B

Update A

Fo
rw

ar
d

Pa
ss

Ba
ck

pr
op

ag
at

io
n

Distribution Patterns

5

Data Parallel /
Model Replica

W3

W2

W1

W4

Model Parallel Hybrid

Popular Modes of Network Aggregation

6

W1 W2 W3 W4

PS

Parameter Server

W1

W2

W3

W4

Decentralized Aggregation

Parameter Server [OSDI’14]

• Goals

• Scale to industry-scale problems

• billions of samples and features

• hundreds of machines

• Enable efficient communication

• Fault tolerance

• Easy to use

7

Data and Model Partitioning

8

Data and Model Partitioning

9

Data and Model Partitioning

10

Data and Model Partitioning

11

Communication Operations

12

Communication Operations

13

Challenges in the vanilla model

• Massive communication traffic

• Frequent access to the
shared model

• Expensive global barriers
between iterations

14

Issue with Parameter Server

Even with distributed PS architecture,

there can be network congestion at the parameter servers

Solution: Decentralized Aggregation

15

Ring AllReduce - Decentralized Aggregation

16

a0 a1 a2 a3

b0 b1 b2 b3

c0 c1 c2 c3

d0 d1 d2 d3

W1

W2

W3

W4

Ring AllReduce

17

a0 a1 a2 a3

b0 b1 b2 b3

c0 c1 c2 c3

d0 d1 d2 d3

W1

W2

W3

W4

a0

b1c2

d3

Ring AllReduce

18

a0 a1 a2 d3 + a3

a0 + b0 b1 b2

c0 b1 + c1 c2 c3

d0 d1 c2 + d2 d3

W1

W2

W3

W4 b3

Ring AllReduce

19

a0 a1 a2 a3 + d3

a0 + b0 b1

c0 b1 + c1 c2 c3

d0 d1 c2 + d2 d3

W1

W2

W3

W4

a3 + d3

a0 + b0b1 + c1

c2 + d2

b2 b3

Ring AllReduce

20

a0 a1 a2 + c2 + d2 a3 + d3

a0 + b0 b1

a0 + b0 + c0 b1 + c1 c2 c3

d0 b1 + c1 + d1 c2 + d2 d3

W1

W2

W3

W4 b2 a3 + b3 + d3

Ring AllReduce

21

a0 + b0 + c0 + d0 a1 + b1 + c1 + d1 a2 + b2 + c2 + d2 a3 + b3 + c3 + d3

W1

W2

W3

W4 a0 + b0 + c0 + d0 a1 + b1 + c1 + d1 a2 + b2 + c2 + d2 a3 + b3 + c3 + d3

a0 + b0 + c0 + d0 a1 + b1 + c1 + d1 a2 + b2 + c2 + d2 a3 + b3 + c3 + d3

a0 + b0 + c0 + d0 a1 + b1 + c1 + d1 a2 + b2 + c2 + d2 a3 + b3 + c3 + d3

Performance of Horovod (Ring AllReduce Implementation)

22

Performance

23

AllReduce advantages

• Better performance

• More scalable

• Fits well with Torus topology

24

An issue with both PS and AllReduce

Compute under-utilization

25

Understanding Compute Underutilization

26

W
or

ke
r 1

W
or

ke
r 2

W
or

ke
r 3

W
or

ke
r 4

Network

Compute

Network

Compute

Network

Compute

Network

Compute

Inception v3
Data-Parallel with Parameter Server
TensorFlow
Mustang: CPU

Blocked Computation

Waiting for Stragglers

Training can be accelerated through better communication-computation overlap

26

Cause: Random Order of Parameter Transfers

27

op1

op2 op3

op4

Input Data

Read B

Read A

op4’

op2’ op3’

op1’

Read C

Read D

Update D

Update CUpdate B

Update A• In this example, the computation cannot
start until parameter A is received

• B, C, or D may be transferred before A,
thereby blocking the computation

• To make things worse, parameters that
are updated last are consumed first

TicTac and P3 [MLSys’19] High-level idea

• Improve iteration time through better communication-computation overlap in
Parameter Server based aggregation

• Achieved through parameter transfer scheduling

28

Timing Independent Computation Scheduling

29

op1

op2 op3

op4

Input Data

Read B

Read A

Read C

Read D

1

2 2

3

• Uses DAG structure only

• Assign priorities based on the number
of communication operations dependent
on a given transfer

• In the e.g, A has no other transfers
dependent on it. Hence, it gets the
highest priority

• B and C each have one dependency.
Hence, the next priority

• D assigned lowest priority

Timing Aware Computation Scheduling

30

op1

op2 op3

op4

Input Data

Read B

Read A

Read C

Read D

tA = 1ms

tB = 2ms tC = 1ms

tD = 1ms

1

23

• Uses DAG structure and time taken by each
operation

• Reduce blocking on the critical path

• A assigned highest priority

• C is the next smallest blocking transfer

• Followed by B, then D

DNN Training Acceleration

• Improving communication-computation overlap

• Communication Scheduling: TicTac [MLSys’19], P3 [Jayarajan, MLSys’19], ByteScheduler [SOSP’19]

• Computation scheduling: BytePS [OSDI’20], Caramel [arXiv’20]

• Hybrid mode: PipeDream [SOSP’19]

• Increasing computation time

• Increase batch size [Iandola et al., 2016]

• Model-dependent solution [Goyal et al., 2017; Cho et al., 2017; You et al., 2017; Akiba et al., 2017]

• Decreasing Communication Time

• Reduce Number of Messages [Alistarh et al., 2017; Wen et al., 2017; Zhang et al., 2017]

• Decrease Message Size [Vanhoucke et al., 2011; Courbariaux et al., 2015; Gupta et al., 2015]

31

In-network Aggregation for Shared Machine Learning Clusters [MLSys’21]

32

Data-Parallel DNN Training Using Ring-AllReduce

In-network aggregation

33

Challenges for Wide Adoption of In-network Aggregation

• Efficient hardware support for in-
network aggregation at large-scale

• Fair and balanced use of network
resources by aggregation and non-
aggregation flows

34

PANAMA Switch

35

Short Flow Latency

36

Other Related Work

• Considering stragglers in compute during scheduling

• SmartNICs for AllReduce

• Handling heterogeneity

37

Thanks!

