| ecture 6: DL Cluster Schedulers

CS 256: Systems and Machine Learning
Sangeetha Abdu Jyothi
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Parts of this lecture were adapted from talks on Gandiva, Tiresias, Gavel



Last Lecture: Network aggregation
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Heterogeneous Cluster

Diverse set of DL jobs
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Issues with Naive Approach?

High latency due to head of line blocking

Low efficiency due to fixed decisions at job-placement time

Unknown execution time of DL training jobs
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Cluster Scheduler Goals

Multiplex access to shared GPU cluster for
contending DL apps
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Gandiva [OSDI’ 18]

* Key characteristics
* Time-slicing
 Migration

e Application-aware profiling



Gandiva: Time-slicing

 Over-subscription as a first-class feature (similar to OS)
* Time quantum of ~I min (~100 mini-batches)

e Better than queueing: Faster time-to-early feedback

Suspend Job
5 E | Wait for mini-batch completion | | ..¢u1 work
3 | | Copy state from GPUto CPU -
;fl  Suspenddone '% | Suspend job in CPU - 50-250ms




Gandiva: Migration / Packing

* Move jobs across GPUs to improve efficiency
* Generic distributed process migration is unreliable / slow

e Solution: Integration with toolkit checkpointing makes it fast/robust
* Scenarios where it helps

* De-fragment multi-GPU jobs

* Exploit heterogeneity

* Pack multiple jobs onto the same GPU



Gandiva: Application-aware profiling

* Two possibilities in utilization change AILL

Job | ;; GPSLi);)tlI.:
* 30% more useful work done TEEK
 Overhead due to interference (could be net loss) .
Job | EE GPU util.:
* Solution: Measure useful work directly Job2 L 80%

* |ob runtime exports “‘time-per-minibatch”
* Allows simple “introspection” policy

* Try migration/packing, measure benefit, revert if
negative
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Gandiva: Performance

Comparison of average GPU utilization Cluster of 180 GPUs
70 - - 350

Synthetic DLT jobs
modelled from a
production trace
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Gandiva Shortcomings

 Time-Sharing based design

* Works well for fairness, but does not optimize for job completion time

* Job placement
* Works well when complete information of job is available

* |f no affinities specified, placement is based on trial and error
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Tiresias [NSDI’19]

* Key characteristics
* Age-based scheduler

 Minimize Job Completion Time (JCT) without complete knowledge about the
job

* Model Profile-based Placement
* Place jobs without additional information from users

 Relies on a model profiler
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Tiresias Motivation

* Variations in temporal and spatial aspects of DL training jobs
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Tiresias: Age-Based Scheduling Background

Age (executed time)

0 | 2 3 4 5 6 7 8 9 10 Il Time

e |[east-Attained Service (LAS)

* Prioritize job that has the shortest executed time
* Gittins Index policy
* Need the distribution of job execution time

* Prioritize job that has the highest probability to complete in the near future
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Tiresias: Two-Dimensional Age-Based Scheduler (2DAS)

e Age calculated by two-dimensional attained service

* j.e,ajob’s total executed GPU time (# of GPUs X executed time)
* No prior information

e 2D-LAS
* With partial information: distribution of job GPU time

e 2D-Gittins Index
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Tiresias: Model Profile-Based Placement Motivation

e Skewed distribution of tensors
in DL models

* Large tensors cause network
imbalance and contention

* Consolidated placement is
needed when the model is
highly skewed in its tensor size
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Model Profile-Based Placement

ResNetl0| Inception4 ResNet|52
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Tiresias System Model

Central Master

I
O wmmp| | Discretized-2DAS

DL Job |

(model, resource)

Model profiler I

Placement scheme

PlacementnPreemptnor

GPU Cluster
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Tiresias: Evaluation
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Tiresias Summary

e Takes into account both spatial and temporal aspect

 Can optimize job completion time with no or partial job information

 Cannot handle diverse objectives (e.g., some parts of the cluster need fairness, others
care about completion time)
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Gavel [OSDI’20}

* Key characteristics
* Generalizes a wide range of existing scheduling policies
* Heterogeneity-aware Policies

* Round-based Scheduling Mechanism
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Gavel: Motivation

e Heterogeneous Performance amm KS0 Emm P10 EEE V100

. . 10+
* Models and operators (e.g., convolution, attention) 5= 2
perform differently across hardware architectures £Q ¢
St
 Disregarding heterogeneity can lead to unfair = 2
allocations O-Transformer A3C  CycleGAN ResNet-18 ResNet-50
* Diverse scheduling objectives
. . . o €6 o . 99 i O i ti
e Single-job objectives: “maximize throughput” or Weighted s
TR ' fairness Wi 2
minimize cost
Product Team Research Team
e Multi-job objectives: fairness or more complicated Fa""eVl\A N'Fo
hierarchical policies Job1 Job2 Job3  Job4 Job5s

Hierarchical policy: Weighted fairness
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Gavel: Heterogeneity-Aware Scheduling Policies

 FIFO:First in, first out

e Shortest Job First: Minimize time taken by shortest job

* Minimize Makespan: Minimize time taken by batch of jobs

* Minimize cost (w/ SLOs): Minimize total cost in public cloud (subject to SLOs)
* LAS: Max-min fairness by total compute time

e LAS w/ weights: Max-min fairness by total compute time with weights

* Finish Time Fairness: Maximize minimum job speedup

* Hierarchical: Multi-level policy with fairness as top-level policy, and FIFO or fairness as lower-
level policies. Per-job weights can be specified
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Gavel: Heterogeneity Aware Cluster Scheduler

* Generalizes a wide range of existing scheduling policies by expressing
policies as optimization problems over the allocation

* Provides abstraction to incorporate performance heterogeneity
* Round-based scheduling mechanism ensures jobs receive optimal allocation
* |Improves objectives such as average job completion time by 3.5

If measurements provided by user Objective & & - V100
O PyTorch
v Scheduling
T Throughput Allocation "| Mechanism | Perround i ’ il
TensorFlow tensor placement

Training jobs written in
existing frameworks
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Gavel: Policies as Optimization Problems

* In a homogeneous cluster, policy objectives are functions of throughput (e.g., duration = training
steps / throughput) and allocation

* On a homogeneous cluster, Least Attained Service policy is a max-min fairness policy that
equalizes the total compute time each job receives

* Jobs can see unequal throughput reductions on heterogeneous clusters

* To make policies heterogeneity-aware, policy objectives are expressed in terms of effective
throughput

e Optimal allocations computed using linear programs
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Gavel: Round-Robin Based Scheduling Mechanism

* Ensures jobs receive time on accelerator types according to the computed optimal
allocation

* Priority score for every (job, accelerator) combination

* Jobs placed on resources where they have priority

If measurements provided by user Objective
O PyTorch
v Scheduling
1F Throughput Allocation Mechanism § Per-round i ’ 0
TensorFlow tensor blacemen

Training jobs written in
existing frameworks
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Gavel: Evaluation

3.5 better
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Gavel: Evaluation

3.5 better
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Thanks!



