
Lecture 7: Automated Machine Learning
CS 256: Systems and Machine Learning

Sangeetha Abdu Jyothi

Parts of this lecture were adapted from talks from CSE 291D/234 at UCSD

Quick Recap

2

Automated Machine Learning or AutoML

AutoML: Automating end-to-end process of applying ML

3

Why is Automated ML Necessary?

4

Algorithm development is
only 3% of the total time!

Source: Cognylitica; Factordaily

AutoML Key Components

• Feature Engineering

• Algorithm/Architecture Selection

• Hyperparameter Tuning

5

Unpredictability of Model Selection

• The exact raises/drops in errors on given training task and sample are not predictable

• Need empirical comparisons of configurations on data

• Train-validation-test splits

6

Feature Engineering Systems: Brief Overview

• Feature Engineering: Converting raw data into a feature vector representation for ML training/inference

• Automated Feature Engineering Systems are less popular than hyperparameter tuning and AS

• Key issues addressed

• Usability: Higher level specification of feature engineering operations

• Efficiency: Automated systems-level optimization

• Challenges

• Heterogeneity: Difficult to build a one-size-fits-all tool

• Turing-complete code: Difficult to automatically optimize

• Some Tools: FeatureTools, AutoFeat, TsFresh, Cognito, OneBM, ExploreKit, PyFeat

7

Feature Engineering Systems

8

Hyperparameter Optimization

• Hyperparameters are parameters which define the model architecture

• Hyperparameter Optimization: Speed up the evaluation of different hyperparamter
combinations and choose the most optimal one

9

Hyperparameter Optimization: High-Level Overview

10

Search Space

Continuous and Discrete

Search Method

Random and Grid Search

Evolutionary Search

Bayesian Optimization

Gradient Based Optimization

Evaluation Method

Partial Training

Full Training

Cheap

Costly

Grid Search

• Search across a grid of configurations

• Specify the bounds and steps between values of the hyperparameters

• Start with a limited grid with relatively large steps between parameter values

• Extend or make the grid finer at the best configuration

• Continue searching on the new grid

• Costly approach

• Can be parallelized

11

Random Search

• Navigating the grid of hyperparameters randomly, one can obtain similar performance to
a full grid search [1]

• If the close-to-optimal region of hyperparameters occupies at least 5% of the search
space, then a random search with a certain number of trials will be able to find that
region with high probability.

• Simple and effective

• Comparable performance to grid search with less number of trials

12

[1] Random Search for Hyper-Parameter Optimization, James Bergstra, Yoshua Bengio, JMLR 2012

Automated Hyperparameter Tuning

• In Grid Search and Random Search, the next trial is independent to all the trials done before.

• Goal of automated hyperparameter tuning: minimize the number of trials while finding a
good optimum

• Use knowledge about the relation between the hyperparameter settings and model
performance in order to make a smarter choice for the next parameter settings

• An optimization problem

• Sequential and not easily parallelizable.

13

Sequential Model-based Global Optimization(SMBO)

• Use a surrogate function to approximate the true blackbox function

• Use the surrogate model and an acquisition function to choose the next configuration to evaluate

• Several SMBO algorithms

• Bayesian Optimization

• Gaussian Process to model the surrogate

• Sequential Model-based Algorithm Configuration (SMAC)

• Random forest of regression trees to model the objective function

• Tree-structured Parzen Estimator (TPE)

• An improved version of SMAC where two separated models are used to model the posterior

• Acquisition functions: Expected Improvement (EI), probability of improvement, minimizing conditional entropy

14

Successive Halving

• Assumes that algorithm can be stopped
early and an approx. validation score
computed

• Randomly sample a number of
configurations in parallel and run for
short amount of time

• At the end of the interval, keep only a
fraction of configurations with best
performance

• Run remaining configurations longer

• Repeat until max budget is reached

15

Early Stopping

16

Hyperband: Bandit Approach

• Hyperband solves the robustness issue with Successive Halving

• Evenly split resources between running Successive Halving with multiple values of
sensitive hyper hyperparameters

• Many values between extremes of no culling (random search) and aggressive culling (large
#configs with multiple steps of culling) are tried

• Improves performance considerably, but still not most effective

17

Hyperband Algorithm

18

Hyperband Performance

19

Bayesian Optimization and Hyperband (BOHB, ICML’18)

• Start with vanilla Hyperband and store validation scores for all (config, budget) pair

• When sufficient amount of data is collected, fit a TPE surrogate model and use this for
future configuration selection using EI

• Continue to sample random configurations with some small frequency for robustness

20

BOHB performance

21

Neural Architectural Search (NAS)

22

Search Space

Continuous and Discrete

Search Method

Random and Grid Search

Evolutionary Search

Bayesian Optimization

Gradient Based Optimization

Evaluation Method

Partial Training

Full TrainingCell block and
meta-architecture

Reinforcement Learning

Weight Sharing

Hypernetworks

Network morphisms

NAS with RL: MetaQNN

23

NAS with Reinforcement Learning [Zoph, Le, ICLR’17]

• Uses a RNN to generate the model descriptions of neural networks

• Train the RNN with RL to maximize the expected accuracy of the generated
architectures on a validation set

• Computational Overhead is high

• 800 GPUs for 28 days on CIFAR dataset

24

Efficient NAS via Parameter Sharing [ICML’18]

• All of the graphs which NAS ends up iterating over can be viewed as sub-graphs of a
larger graph

• Share parameters among all generated networks

• Each training stage is much shorter

• Much more efficient

• 1 GPU for 0.45 days (CIFAR)

• No Imagenet experiments

25

Regularized Evolution [AAAI’19]

• Evolution has comparable or better performance than RL

• Assign “aged individuals” with a higher probability for elimination

• Works best when computational budget is limited

26

ProxyLess NAS [ICLR’19]

• Learning weight parameters and binarized architectures simultaneously

• Specialized architectures for each platform

• Efficient

• 1 GPU for 8 days

• Reasonable performance

27

ProxyLess NAS [ICLR’19]

28

Other Related Directions

• Discovery of architectures that are robust against adversarial attacks

• Considering sample efficiency

• Interpretability of hyperparameter tuning process

29

Thanks!

