
Lecture 7: Automated Machine Learning
CS 256: Systems and Machine Learning

Sangeetha Abdu Jyothi

Parts of this lecture were adapted from talks from CSE 291D/234 at UCSD



Quick Recap

2



Automated Machine Learning or AutoML

AutoML:  Automating end-to-end process of applying ML 
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Why is Automated ML Necessary?
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Algorithm development is 
only 3% of the total time!

Source: Cognylitica; Factordaily



AutoML Key Components

• Feature Engineering

• Algorithm/Architecture Selection

• Hyperparameter Tuning
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Unpredictability of Model Selection

• The exact raises/drops in errors on given training task and sample are not predictable

• Need empirical comparisons of configurations on data 

• Train-validation-test splits
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Feature Engineering Systems: Brief Overview

• Feature Engineering: Converting raw data into a feature vector representation for ML training/inference

• Automated Feature Engineering Systems are less popular than hyperparameter tuning and AS

• Key issues addressed

• Usability: Higher level specification of feature engineering operations

• Efficiency: Automated systems-level optimization

• Challenges

• Heterogeneity: Difficult to build a one-size-fits-all tool

• Turing-complete code: Difficult to automatically optimize

• Some Tools:  FeatureTools,  AutoFeat, TsFresh, Cognito, OneBM, ExploreKit, PyFeat
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Feature Engineering Systems
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Hyperparameter Optimization

• Hyperparameters are parameters which define the model architecture

• Hyperparameter Optimization: Speed up the evaluation of different hyperparamter 
combinations and choose the most optimal one
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Hyperparameter Optimization: High-Level Overview
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Grid Search

• Search across a grid of configurations

• Specify the bounds and steps between values of the hyperparameters

• Start with a limited grid with relatively large steps between parameter values

• Extend or make the grid finer at the best configuration

• Continue searching on the new grid

• Costly approach

• Can be parallelized
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Random Search

• Navigating the grid of hyperparameters randomly, one can obtain similar performance to 
a full grid search [1]

• If the close-to-optimal region of hyperparameters occupies at least 5% of the search 
space, then a random search with a certain number of trials will be able to find that 
region with high probability.

• Simple and effective

• Comparable performance to grid search with less number of trials
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[1] Random Search for Hyper-Parameter Optimization, James Bergstra, Yoshua Bengio, JMLR 2012 



Automated Hyperparameter Tuning

• In Grid Search and Random Search, the next trial is independent to all the trials done before.  

• Goal of automated hyperparameter tuning: minimize the number of trials while finding a 
good optimum

• Use knowledge about the relation between the hyperparameter settings and model 
performance in order to make a smarter choice for the next parameter settings

• An optimization problem

• Sequential and not easily parallelizable.
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Sequential Model-based Global Optimization(SMBO)

• Use a surrogate function to approximate the true blackbox function

• Use the surrogate model and an acquisition function to choose the next configuration to evaluate

• Several SMBO algorithms

• Bayesian Optimization

• Gaussian Process to model the surrogate

• Sequential Model-based Algorithm Configuration (SMAC)

• Random forest of regression trees to model the objective function

• Tree-structured Parzen Estimator (TPE)

• An improved version of SMAC where two separated models are used to model the posterior

• Acquisition functions: Expected Improvement (EI), probability of improvement, minimizing conditional entropy
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Successive Halving

• Assumes that algorithm can be stopped 
early and an approx. validation score 
computed

• Randomly sample a number of 
configurations in parallel and run for 
short amount of time

• At the end of the interval, keep only a 
fraction of configurations with best 
performance

• Run remaining configurations longer

• Repeat until max budget is reached
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Early Stopping
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Hyperband: Bandit Approach

• Hyperband solves the robustness issue with Successive Halving

• Evenly split resources between running Successive Halving with multiple values of 
sensitive hyper hyperparameters

• Many values between extremes of no culling (random search) and aggressive culling (large 
#configs with multiple steps of culling) are tried

• Improves performance considerably, but still not most effective
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Hyperband Algorithm
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Hyperband Performance
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Bayesian Optimization and Hyperband (BOHB, ICML’18)

• Start with vanilla Hyperband and store validation scores for all (config, budget) pair

• When sufficient amount of data is collected, fit a TPE surrogate model and use this for 
future configuration selection using EI

• Continue to sample random configurations with some small frequency for robustness
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BOHB performance
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Neural Architectural Search (NAS)
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NAS with RL: MetaQNN

23



NAS with Reinforcement Learning [Zoph, Le, ICLR’17]

• Uses a RNN to generate the model descriptions of neural networks

• Train the RNN with RL to maximize the expected accuracy of the generated 
architectures on a validation set

• Computational Overhead is high

• 800 GPUs for 28 days on CIFAR dataset 
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Efficient NAS via Parameter Sharing [ICML’18]

• All of the graphs which NAS ends up iterating over can be viewed as sub-graphs of a 
larger graph

• Share parameters among all generated networks

• Each training stage is much shorter

• Much more efficient

• 1 GPU for 0.45 days (CIFAR)

• No Imagenet experiments
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Regularized Evolution [AAAI’19]

• Evolution has comparable or better performance than RL

• Assign “aged individuals” with a higher probability for elimination

• Works best when computational budget is limited
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ProxyLess NAS [ICLR’19]

• Learning weight parameters and binarized architectures simultaneously

• Specialized architectures for each platform

• Efficient

• 1 GPU for 8 days

• Reasonable performance
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ProxyLess NAS [ICLR’19]
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Other Related Directions

• Discovery of architectures that are robust against adversarial attacks

• Considering sample efficiency

• Interpretability of hyperparameter tuning process
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Thanks!


