Lecture /:Automated Machine Learning

CS 256: Systems and Machine Learning
Sangeetha Abdu Jyothi
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Parts of this lecture were adapted from talks from CSE 291D/234 at UCSD
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Automated Machine Learning or AutoML

AutoML: Automating end-to-end process of applying ML
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Why is Automated ML Necessary?

ML Operationalization
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AutoML Key Components

* Feature Engineering

e Algorithm/Architecture Selection

* Hyperparameter Tuning



Unpredictability of Model Selection

* The exact raises/drops in errors on given training task and sample are not predictable
* Need empirical comparisons of configurations on data

* Train-validation-test splits
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Feature Engineering Systems: Brief Overview

Feature Engineering: Converting raw data into a feature vector representation for ML training/inference
Automated Feature Engineering Systems are less popular than hyperparameter tuning and AS
Key issues addressed
e Usability: Higher level specification of feature engineering operations
e Efficiency: Automated systems-level optimization
Challenges
* Heterogeneity: Difficult to build a one-size-fits-all tool
* Turing-complete code: Difficult to automatically optimize

Some Tools: Featurelools, AutoFeat, TsFresh, Cognito, OneBM, ExploreKit, PyFeat



Feature Engineering Systems

Tools/Measures Support for type Feature Feature Open source Support for
of databases engineering selection implementation time series

Featuretools Relational Tables Yes Yes Yes Yes

AutoFeat Single Table Yes Yes Yes No

TSFresh Single Table Yes Yes Yes Yes

FeatureSelector Single Table No Yes Yes No

OneBM Relational Tables Yes Yes No Yes

Cognito Single Table Yes Yes No No



Hyperparameter Optimization

* Hyperparameters are parameters which define the model architecture

 Hyperparameter Optimization: Speed up the evaluation of different hyperparamter
combinations and choose the most optimal one
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Hyperparameter Optimization: High-Level Overview

Search Space Search Method Evaluation Method

Cheap

Continuous and Discrete Random and Grid Search Partial Training

Evolutionary Search Full Training
Bayesian Optimization

Gradient Based Optimization

10 Costly



Grid Search

e Search across a grid of configurations
e Specify the bounds and steps between values of the hyperparameters
e Start with a limited grid with relatively large steps between parameter values
 Extend or make the grid finer at the best configuration
 Continue searching on the new grid
e Costly approach

e Can be parallelized



Random Search

* Navigating the grid of hyperparameters randomly, one can obtain similar performance to
a full grid search [I]

e |f the close-to-optimal region of hyperparameters occupies at least 5% of the search
space, then a random search with a certain number of trials will be able to find that
region with high probability.

e Simple and effective

e Comparable performance to grid search with less number of trials

[I] Random Search for Hyper-Parameter Optimization, James Bergstra, Yoshua Bengio, J]MLR 2012
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Automated Hyperparameter Tuning

* |n Grid Search and Random Search, the next trial is independent to all the trials done before.

* Goal of automated hyperparameter tuning: minimize the number of trials while finding a
good optimum

e Use knowledge about the relation between the hyperparameter settings and model
performance in order to make a smarter choice for the next parameter settings

* An optimization problem

* Sequential and not easily parallelizable.
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Sequential Model-based Global Optimization(SMBO)

e Use a surrogate function to approximate the true blackbox function
* Use the surrogate model and an acquisition function to choose the next configuration to evaluate
e Several SMBO algorithms
* Bayesian Optimization
* (Gaussian Process to model the surrogate

* Sequential Model-based Algorithm Configuration (SMAC)

* Random forest of regression trees to model the objective function

* Tree-structured Parzen Estimator (TPE)

* An improved version of SMAC where two separated models are used to model the posterior

* Acquisition functions: Expected Improvement (El), probability of improvement, minimizing conditional entropy
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Successive Halving

Assumes that algorithm can be stopped
early and an approx. validation score
computed

Randomly sample a number of
configurations in parallel and run for
short amount of time

At the end of the interval, keep only a
fraction of configurations with best
performance

Run remaining configurations longer

Repeat until max budget is reached

Loss
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Early Stopping
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Hyperband: Bandit Approach

* Hyperband solves the robustness issue with Successive Halving

* Evenly split resources between running Successive Halving with multiple values of
sensitive hyper hyberbarameters

 Many values between extremes of no culling (random search) and aggressive culling (large
#configs with multiple steps of culling) are tried

* Improves performance considerably, but still not most effective
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Hyperband Algorithm

Algorithm 1: HYPERBAND algorithm for hyperparameter optimization.
input : R, n (default n = 3)
initialization : syax = |log, (R)], B = (Smax + 1)R

1 for s € {Smax, Smax — 1,...,0} do

2 | n= [g(s’fl)l, r=Rn~°

// begin SUCCESSIVEHALVING with (n,r) inner loop

3 T =get hyperparameter _configuration(n)

4 | forie{0,...,s}do

5 n; = [nn~")

6 ri = rnt

7 L = {run_then return val loss(t,r;):t € T}

8 T =topk(T, L, [n;/n])

9 end

10 end

11 return Configuration with the smallest intermediate loss seen so far.
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Hyperband Performance
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Bayesian Optimization and Hyperband (BOHB, ICML’18)

e Start with vanilla Hyperband and store validation scores for all (config, budget) pair

* When sufficient amount of data is collected, fit a TPE surrogate model and use this for
future configuration selection using El

 Continue to sample random configurations with some small frequency for robustness
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BOHB performance
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Neural Architectural Search (NAS)

Search Space

Search Method

Evaluation Method

Continuous and Discrete

Cell block and
meta-architecture

Random and Grid Search

Evolutionary Search
Bayesian Optimization
Gradient Based Optimization

Reinforcement Learning
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NAS with RL: MetaQNN
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Network Topology
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NAS with Reinforcement Learning [Zoph, Le, ICLR17/]

e Uses a RNN to generate the model descriptions of neural networks

* Train the RNN with RL to maximize the expected accuracy of the generated
architectures on a validation set

e Computational Overhead is high

e 800 GPUs for 28 days on CIFAR dataset
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Efficient NAS via Parameter Sharing [ICML'18]

e All of the graphs which NAS ends up iterating over can be viewed as sub-graphs of a
larger graph

e Share parameters among all generated networks

* Each training stage is much shorter

e Much more efficient

e | GPU for 0.45 days (CIFAR)

* No Imagenet experiments

Figure 2. The graph represents the entire search space while the
red arrows define a model in the search space, which is decided
by a controller. Here, node 1 is the input to the model whereas
nodes 3 and 6 are the model’s outputs.
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Regularized Evolution [AAAI’19]

* Evolution has comparable or better performance than RL

* Assign “aged individuals” with a higher probability for elimination

* Works best when computational budget is limited
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ProxyLess NAS [ICLR’19]

* Learning weight parameters and binarized architectures simultaneously
* Specialized architectures for each platform
e Efficient

e | GPU for 8 days

e Reasonable performance

(1) Previous proxy-based approach (2) Our proxy-less approach

Architecture Architecture

(o) 4" Transfer

Learner -

Updates
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ProxyLess NAS [ICLR’19]

Model Top-1 (%) | GPU latency | CPU latency | Mobile latency
Proxyless (GPU) 75.1 5.1ms 204.9ms 124ms
Proxyless (CPU) 75.3 7.4ms 138.7ms 1 16ms
Proxyless (mobile) 74.6 7.2ms 164.1ms 78ms
(1) Previous proxy-based approach (2) Our proxy-less approach
Architecture Architecture
Learner
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Other Related Directions

e Discovery of architectures that are robust against adversarial attacks

 Considering sample efficiency

* Interpretability of hyperparameter tuning process
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Thanks!



