Lecture 8: Scaling Reinforcement Learning and Gradient Boosting

CS 256: Systems and Machine Learning
Sangeetha Abdu Jyothi
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Parts of this lecture were adapted from talks on XGBoost and DeepRL course at Berkeley
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Today’s Lecture

e Distributed Reinforcement Learning

e XGBoost:A Scalable Tree Boosting System



Reinforcement Learning

state reward action
\ R, A

Rt+l
S.. | Environment

Not easy to parallelize



Policy-based Methods

* Parametrize policy with theta and update theta with gradient descent

REINFORCE algorithm:
<~ 1. sample {7'} from mg(as|s;) (run it on the robot)

2. VoJ(0) = Y, (X, Vo logme(ailsi)) (3, r(si, al))
S 3.0 0+ aVeJ(0)




Value Based Methods

* Don’t learn policy explicitly
e Learn Q-function

* Deep RL: Train neural network to
approximate Q-function

fit a model to
ﬁ estimate return

|
generate
samples (i.e.
run the policy)

‘ improve the

policy

Qs(s,a) « r(s,a) +ymaxy Qu(s’,a’)
)

a = arg max, Q4(s,a



DQN (2013/2015)

e Experience Replay

e Stores experiences including state transitions,
rewards and actions

DQN Loss

Gradient

* Reuses past transitions to avoid catastrophic wrtloss
forgetting

max_Q(s;a’; 0")

l Q(s,a; 6)

Copy ever Target
N updates Q Network

argmax_ Q(s,a; 0)

Environment hllEEEEEEEN O Network

e Target Network

e Unstable target function makes training difficult

e Target Network technique fixes parameters of
target function and replaces them with the
latest network periodically (e.g., every
thousands steps)

* Clipping Rewards

e Large rewards make training unstable



General Reinforcement Learning Architecture (GORILA) (2015)

* Asynchronous training of RL

agents in a distributed setting e
Parameter Server Learner
DQN L
wrt loss max_Q(s,a’; 6")

e Actor 1 Gradient Target Q

Sync Syn © BEtWom Network
* Replay memory - Prled. :
e |earner

 Updated parameters sent to
actors periodically



GORILLA performance

Atlantis
Breakout
Robotank
Boxing
Road_Runner
Krull
Demon_Attack
Double_Dunk*
Wizard_of_Wor*
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Time_Pilot
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Star_Gunner
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Kung_Fu_Master
Up_n_Down
Tutankham
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Space_Invaders
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below human-level
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Asynchronous Actor-Learners

Rather than separate machines coordinated by a parameter server...

Multiple CPU threads on single machine coordinated by OS

Removes communication costs

Actors walk through environment and send updates to learners

Learners use observations to compute gradients

Advantages
* Multiple actors running in parallel explores different parts of environment and decorrelates observations
e Different exploration policies in each actor-learner
* Can avoid instability due to data correlation w/o using replay buffer

 Reduction in training time roughly linear in the number of parallel actor-learners
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Variants

* Asynchronous |-step Q Learning
* Asynchronous |-step Sarsa
* Asynchronous n-step Q Learning

* Asynchronous Advantage Actor Critic (A3C)



Asynchronous Advantage Actor Critic (A3C) (2016)

Global Network

Policy rs) || | V(s)
# Fach worker:

while True: | J ’
sync weights from master () nput (s)

Sends gradients

K
// \\bac
for 1 1n range(5):

collect sample from env I i l i I i i

Worker 1 Worker 2 Worker 3 Worker n

! ! ! !

s s .

grad = compute grad(samples)
async _send grad to master ()

Each has different exploration -> more diverse samples!
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A3C Performance

Changes to GORILA:

1. Faster updates

2. Removes the
replay buffer

3. Moves to
Actor-Critic (from Q
learning)

Method Training Time Mean | Median
DQN 8 days on GPU 121.9% | 47.5%
Gorila 4 days, 100 machines | 215.2% | 71.3%
D-DQN 8 days on GPU 332.9% | 110.9%
Dueling D-DQN 8 days on GPU 343.8% | 117.1%
Prioritized DQN 8 days on GPU 463.6% | 127.6%
A3C, FF 1 day on CPU 344.1% | 68.2%
A3C, FF 4 days on CPU 496.8% | 116.6%
A3C, LSTM 4 days on CPU 623.0% | 112.6%

Table 1. Mean and median human-normalized scores on 57 Atari
games using the human starts evaluation metric. Supplementary
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Distributed Prioritized Experience Replay (Ape-X) (2018)

A3C doesn’t scale very well... |
Sampled experience

Updated priorities

Ape-X:
1. Distributed DQN/DDPG

2. Reintroduces replay

3. Distributed
Prioritization

Initial priorities

| Network parameters

Generated experience
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APEX performance
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Figure 2: Left: Atari results aggregated across 57 games, evaluated from random no-op starts. Right: Atari
training curves for selected games, against baselines. Blue: Ape-X DQN with 360 actors; Orange: A3C;
Purple: Rainbow; Green: DQN. See appendix for longer runs over all games.
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Ray RLLib

Ray is an open-source unified compute framework that makes it easy to scale Al and Python workloads

Distributed
applications

=:- MODIN

General-purpose distributed computing
framework for Python (and Java)
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RLlib algorithms

RLIib Algorithms N\

Model-based [ Meta-learning / Offline

e High-throughput architectures

o () 1 Distributed Prioritized Experience Replay (Ape-X) o () Single-Player AlphaZero (contrib/AlphaZero)
o () 1 Importance Weighted Actor-Learner Architecture (IMPALA) o O M Model-Agnostic Meta-Learning (MAML)
o () T Asynchronous Proximal Policy Optimization (APPO) ° (O Model-Based Meta-Policy-Optimization (MBMPO)
o () Decentralized Distributed Proximal Policy Optimization (DD-PPO) o () Dreamer (DREAMER)
e Gradient-based o () Conservative Q-Learning (CQL)

o () 1F Advantage Actor-Critic (A2C, A3C)

o () T Deep Deterministic Policy Gradients (DDPG, TD3)

o (O 1 Deep Q Networks (DQN, Rainbow, Parametric DQN)
o () 1 Policy Gradients

o () 1 Proximal Policy Optimization (PPO)

o (H M Soft Actor Critic (SAC)

Multi-agent
o () QMIX Monotonic Value Factorisation (QMIX, VDN, IQN)
o 1F Multi-Agent Deep Deterministic Policy Gradient (contrio/MADDPG)
Offline
o () 1 Advantage Re-Weighted Imitation Learning (MARWIL)
Contextual bandits
o ( Slate Q-Learning (SlateQ) o (y Linear Upper Confidence Bound (contrib/LinUCB)
e Derivative-free o () Linear Thompson Sampling (contrib/LinTS)
o O 1 Augmented Random Search (ARS) Exploration-based plug-ins (can be combined with any algo)
o () 1F Evolution Strategies o () Curiosity (ICM: Intrinsic Curiosity Module)
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Regression Tree (CART)

Input: age, gender, occupation, ... Does the person like computer games

prediction score in each leaf ——  +2 +0.1 1
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Tree Ensembles

Use Computer
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Algorithms to learn Tree Ensembles

e Random Forest (Breiman 1997)

* Gradient Tree Boosting (Friedman 1999)

* Gradient Tree Boosting with Regularization (variant of original GBM)
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Learning Trees : Advantages and Challenges

* Advantages of tree-based methods
* Highly accurate: several data science challenges are won by tree based methods
e Easy to use:invariant to input scale, get good performance with little tuning
e Easy to interpret and control
* Challenges on learning tree(ensembles)
e Control over-fitting

* Improve training speed and scale up to larger dataset
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XGBoost

e eXtreme Gradient Boosted trees
* Model improvement
* Regularized objective for better model
* Systems optimizations
* Out of core computing
* Parallelization
* Cache optimization
e Distributed computing
* Algorithm improvements
* Sparse aware algorithm

* Weighted approximate quantile sketch
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How can we learn tree ensembles?

Obj = S0 1ys, 1) + Sy Q(fr)

e We cannot use methods like SGD
e Solution:Additive Training (Boosting)

e Start from constant prediction, add a new function each time
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Performance
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Thanks!



