Lecture 8: Scaling Reinforcement Learning and Gradient Boosting

CS 256: Systems and Machine Learning Sangeetha Abdu Jyothi

Previous Lectures

Supervised Learning

DNNs

Today's Lecture

Distributed Reinforcement Learning

XGBoost: A Scalable Tree Boosting System

Reinforcement Learning

Not easy to parallelize

Policy-based Methods

Parametrize policy with theta and update theta with gradient descent

REINFORCE algorithm:

- 1. sample $\{\tau^i\}$ from $\pi_{\theta}(\mathbf{a}_t|\mathbf{s}_t)$ (run it on the robot) 2. $\nabla_{\theta}J(\theta) \approx \sum_i \left(\sum_t \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_t^i|\mathbf{s}_t^i)\right) \left(\sum_t r(\mathbf{s}_t^i, \mathbf{a}_t^i)\right)$ 3. $\theta \leftarrow \theta + \alpha \nabla_{\theta}J(\theta)$

Value Based Methods

- Don't learn policy explicitly
- Learn Q-function
 - Deep RL: Train neural network to approximate Q-function

DQN (2013/2015)

- Experience Replay
 - Stores experiences including state transitions, rewards and actions
 - Reuses past transitions to avoid catastrophic forgetting
- Target Network
 - Unstable target function makes training difficult
 - Target Network technique fixes parameters of target function and replaces them with the latest network periodically (e.g., every thousands steps)
- Clipping Rewards
 - Large rewards make training unstable

General Reinforcement Learning Architecture (GORILA) (2015)

- Asynchronous training of RL agents in a distributed setting
- Components
 - Actor
 - Replay memory
 - Learner
- Updated parameters sent to actors periodically

GORILLA performance

Asynchronous Actor-Learners

- Rather than separate machines coordinated by a parameter server...
- Multiple CPU threads on single machine coordinated by OS
- Removes communication costs
- Actors walk through environment and send updates to learners
- Learners use observations to compute gradients
- Advantages
 - Multiple actors running in parallel explores different parts of environment and decorrelates observations
 - Different exploration policies in each actor-learner
 - Can avoid instability due to data correlation w/o using replay buffer
 - Reduction in training time roughly linear in the number of parallel actor-learners

Variants

- Asynchronous I-step Q Learning
- Asynchronous I-step Sarsa
- Asynchronous n-step Q Learning
- Asynchronous Advantage Actor Critic (A3C)

Asynchronous Advantage Actor Critic (A3C) (2016)

```
# Each worker:
while True:
    sync_weights_from_master()

for i in range(5):
    collect sample from env

grad = compute_grad(samples)
    async_send_grad_to_master()
```


Each has different exploration -> more diverse samples!

A3C Performance

Changes to GORILA:

- 1. Faster updates
- 2. **Removes** the replay buffer
- 3. Moves to
 Actor-Critic (from Q learning)

Method	Training Time	Mean	Median
DQN	8 days on GPU	121.9%	47.5%
Gorila	4 days, 100 machines	215.2%	71.3%
D-DQN	8 days on GPU	332.9%	110.9%
Dueling D-DQN	8 days on GPU	343.8%	117.1%
Prioritized DQN	8 days on GPU	463.6%	127.6%
A3C, FF	1 day on CPU	344.1%	68.2%
A3C, FF	4 days on CPU	496.8%	116.6%
A3C, LSTM	4 days on CPU	623.0%	112.6%

Table 1. Mean and median human-normalized scores on 57 Atari games using the human starts evaluation metric. Supplementary

Distributed Prioritized Experience Replay (Ape-X) (2018)

A3C doesn't scale very well...

Ape-X:

- Distributed DQN/DDPG
- 2. Reintroduces replay
- 3. **Distributed Prioritization**

APEX performance

Figure 2: Left: Atari results aggregated across 57 games, evaluated from random no-op starts. Right: Atari training curves for selected games, against baselines. Blue: Ape-X DQN with 360 actors; Orange: A3C; Purple: Rainbow; Green: DQN. See appendix for longer runs over all games.

Ray RLlib

Ray is an open-source unified compute framework that makes it easy to scale Al and Python workloads

RLlib algorithms

RLlib Algorithms

- High-throughput architectures
 - O The Distributed Prioritized Experience Replay (Ape-X)

 - O Decentralized Distributed Proximal Policy Optimization (DD-PPO)
- Gradient-based

 - O The Deep Deterministic Policy Gradients (DDPG, TD3)
 - O The Deep Q Networks (DQN, Rainbow, Parametric DQN)
 - ⋄ ★ Policy Gradients
 - O The Proximal Policy Optimization (PPO)
 - ⋄ ★ Soft Actor Critic (SAC)
 - Slate Q-Learning (SlateQ)
- Derivative-free
 - ↑ Augmented Random Search (ARS)
 - () ↑ Evolution Strategies

- Model-based / Meta-learning / Offline
 - Single-Player AlphaZero (contrib/AlphaZero)

 - Model-Based Meta-Policy-Optimization (MBMPO)
 - O Dreamer (DREAMER)
 - Conservative Q-Learning (CQL)
- Multi-agent
 - OMIX Monotonic Value Factorisation (QMIX, VDN, IQN)
 - Multi-Agent Deep Deterministic Policy Gradient (contrib/MADDPG)
- Offline
- Contextual bandits
 - Linear Upper Confidence Bound (contrib/LinUCB)
 - Linear Thompson Sampling (contrib/LinTS)
- Exploration-based plug-ins (can be combined with any algo)
 - Curiosity (ICM: Intrinsic Curiosity Module)

XGBoost

Regression Tree (CART)

Tree Ensembles

Algorithms to learn Tree Ensembles

• Random Forest (Breiman 1997)

• Gradient Tree Boosting (Friedman 1999)

• Gradient Tree Boosting with Regularization (variant of original GBM)

Learning Trees: Advantages and Challenges

- Advantages of tree-based methods
 - Highly accurate: several data science challenges are won by tree based methods
 - Easy to use: invariant to input scale, get good performance with little tuning
 - Easy to interpret and control
- Challenges on learning tree(ensembles)
 - Control over-fitting
 - Improve training speed and scale up to larger dataset

XGBoost

- eXtreme Gradient Boosted trees
- Model improvement
 - Regularized objective for better model
- Systems optimizations
 - Out of core computing
 - Parallelization
 - Cache optimization
 - Distributed computing
- Algorithm improvements
 - Sparse aware algorithm
 - Weighted approximate quantile sketch

How can we learn tree ensembles?

$$Obj = \sum_{i=1}^{n} l(y_i, \hat{y}_i) + \sum_{k=1}^{K} \Omega(f_k)$$

- We cannot use methods like SGD
- Solution: Additive Training (Boosting)
 - Start from constant prediction, add a new function each time

Performance

(a) End-to-end time cost include data loading

(b) Per iteration cost exclude data loading

Thanks!