Lecture 8: Scaling Reinforcement Learning and Gradient Boosting

CS 256: Systems and Machine Learning
Sangeetha Abdu Jyothi

ALY O,
.0.’. Q,Q’e 7‘\2 'c\ .‘._‘
i g UM T
:.. . ‘II:; g .:
.". w = :..[\e ..'.
...' ..A o'...

Parts of this lecture were adapted from talks on XGBoost and DeepRL course at Berkeley

Previous Lectures

" A
? X§{>) SuPervised Learning
/ v

DNNs

Today’s Lecture

e Distributed Reinforcement Learning

e XGBoost:A Scalable Tree Boosting System

Reinforcement Learning

state reward action
\ R, A

Rt+l
S.. | Environment

Not easy to parallelize

Policy-based Methods

* Parametrize policy with theta and update theta with gradient descent

REINFORCE algorithm:
<~ 1. sample {7'} from mg(as|s;) (run it on the robot)

2. VoJ(0) = Y, (X, Vo logme(ailsi)) (3, r(si, al))
S 3.0 0+ aVeJ(0)

Value Based Methods

* Don’t learn policy explicitly
e Learn Q-function

* Deep RL: Train neural network to
approximate Q-function

fit a model to
ﬁ estimate return

|
generate
samples (i.e.
run the policy)

‘ improve the

policy

Qs(s,a) « r(s,a) +ymaxy Qu(s’,a’)
)

a = arg max, Q4(s,a

DQN (2013/2015)

e Experience Replay

e Stores experiences including state transitions,
rewards and actions

DQN Loss

Gradient

* Reuses past transitions to avoid catastrophic wrtloss
forgetting

max_Q(s;a’; 0")

l Q(s,a; 6)

Copy ever Target
N updates Q Network

argmax_ Q(s,a; 0)

Environment hllEEEEEEEN O Network

e Target Network

e Unstable target function makes training difficult

e Target Network technique fixes parameters of
target function and replaces them with the
latest network periodically (e.g., every
thousands steps)

* Clipping Rewards

e Large rewards make training unstable

General Reinforcement Learning Architecture (GORILA) (2015)

* Asynchronous training of RL

agents in a distributed setting e
Parameter Server Learner
DQN L
wrt loss max_Q(s,a’; 6")

e Actor 1 Gradient Target Q

Sync Syn © BEtWom Network
* Replay memory - Prled. :
e |earner

 Updated parameters sent to
actors periodically

GORILLA performance

Atlantis
Breakout
Robotank
Boxing
Road_Runner
Krull
Demon_Attack
Double_Dunk*
Wizard_of_Wor*
Crazy_Climber
Assault
Time_Pilot
Gopher

Al 4

Star_Gunner
Name_This_Game
Tennis
JamesBond
Pong
Fishing_Derby
Kung_Fu_Master
Up_n_Down
Tutankham
lce_Hockey
Space_Invaders
Zaxxon
Bank_Heist
QBert
Battle_Zone
Centipede
Kangaroo
Venture

at human-level or above

below human-level

Asterix*
Freeway
RiverRaid
Chopper_Command
Hero
Seaquest
Beam_Rider
Enduro
Bowling
Amidar
Alien
Gravitar*
Frostbite
Ms_Pacman
Private_Eye*

I L) L)

Asteroids”

—_—
—_
e

| |
0% 200% 400% 600% 800% 1.000% 5,000%

Human Score

Asynchronous Actor-Learners

Rather than separate machines coordinated by a parameter server...

Multiple CPU threads on single machine coordinated by OS

Removes communication costs

Actors walk through environment and send updates to learners

Learners use observations to compute gradients

Advantages
* Multiple actors running in parallel explores different parts of environment and decorrelates observations
e Different exploration policies in each actor-learner
* Can avoid instability due to data correlation w/o using replay buffer

 Reduction in training time roughly linear in the number of parallel actor-learners

|10

Variants

* Asynchronous |-step Q Learning
* Asynchronous |-step Sarsa
* Asynchronous n-step Q Learning

* Asynchronous Advantage Actor Critic (A3C)

Asynchronous Advantage Actor Critic (A3C) (2016)

Global Network

Policy rs) || | V(s)
Fach worker:

while True: | J ’
sync weights from master () nput (s)

Sends gradients

K
// \\bac
for 1 1n range(5):

collect sample from env I i l i I i i

Worker 1 Worker 2 Worker 3 Worker n

! ! ! !

s s .

grad = compute grad(samples)
async _send grad to master ()

Each has different exploration -> more diverse samples!

12

A3C Performance

Changes to GORILA:

1. Faster updates

2. Removes the
replay buffer

3. Moves to
Actor-Critic (from Q
learning)

Method Training Time Mean | Median
DQN 8 days on GPU 121.9% | 47.5%
Gorila 4 days, 100 machines | 215.2% | 71.3%
D-DQN 8 days on GPU 332.9% | 110.9%
Dueling D-DQN 8 days on GPU 343.8% | 117.1%
Prioritized DQN 8 days on GPU 463.6% | 127.6%
A3C, FF 1 day on CPU 344.1% | 68.2%
A3C, FF 4 days on CPU 496.8% | 116.6%
A3C, LSTM 4 days on CPU 623.0% | 112.6%

Table 1. Mean and median human-normalized scores on 57 Atari
games using the human starts evaluation metric. Supplementary

13

Distributed Prioritized Experience Replay (Ape-X) (2018)

A3C doesn’t scale very well... |
Sampled experience

Updated priorities

Ape-X:
1. Distributed DQN/DDPG

2. Reintroduces replay

3. Distributed
Prioritization

Initial priorities

| Network parameters

Generated experience

14

APEX performance

450%

400%

350%

b X,
3% S
S S
X X

Human-normalized Score
[o)
)
-
¢

(Median Over 57 Games)

150%

100%

50%
0

@
Ape-X DQN (120hrs)

1)
Ape-X DQN (70hrs)

o
Ape-X DQN (20hrs)

&
Rainbow

o® C51
Prioritized DQN

Gorila ~

DQN

50 100 150 200 250 300
Training Time (Hours)

Episode Return
(Mean)

Episode Return
(Mean)

Episode Return
(Mean)
-

Beam Rider

10

-10

'
B
o

0 2 4 6 8 10
Training Time (Hours)

1K Breakout

800
600
400
200

40K Qbert

32K
24K
16K
8K
0

Space Invaders

30K
24K
18K
12K

6K

0
0 2 4 6 8 10
Training Time (Hours)

Figure 2: Left: Atari results aggregated across 57 games, evaluated from random no-op starts. Right: Atari
training curves for selected games, against baselines. Blue: Ape-X DQN with 360 actors; Orange: A3C;
Purple: Rainbow; Green: DQN. See appendix for longer runs over all games.

|5

Ray RLLib

Ray is an open-source unified compute framework that makes it easy to scale Al and Python workloads

Distributed
applications

=:- MODIN

General-purpose distributed computing
framework for Python (and Java)

|6

RLlib algorithms

RLIib Algorithms N\

Model-based [Meta-learning / Offline

e High-throughput architectures

o () 1 Distributed Prioritized Experience Replay (Ape-X) o () Single-Player AlphaZero (contrib/AlphaZero)
o () 1 Importance Weighted Actor-Learner Architecture (IMPALA) o O M Model-Agnostic Meta-Learning (MAML)
o () T Asynchronous Proximal Policy Optimization (APPO) ° (O Model-Based Meta-Policy-Optimization (MBMPO)
o () Decentralized Distributed Proximal Policy Optimization (DD-PPO) o () Dreamer (DREAMER)
e Gradient-based o () Conservative Q-Learning (CQL)

o () 1F Advantage Actor-Critic (A2C, A3C)

o () T Deep Deterministic Policy Gradients (DDPG, TD3)

o (O 1 Deep Q Networks (DQN, Rainbow, Parametric DQN)
o () 1 Policy Gradients

o () 1 Proximal Policy Optimization (PPO)

o (H M Soft Actor Critic (SAC)

Multi-agent
o () QMIX Monotonic Value Factorisation (QMIX, VDN, IQN)
o 1F Multi-Agent Deep Deterministic Policy Gradient (contrio/MADDPG)
Offline
o () 1 Advantage Re-Weighted Imitation Learning (MARWIL)
Contextual bandits
o (Slate Q-Learning (SlateQ) o (y Linear Upper Confidence Bound (contrib/LinUCB)
e Derivative-free o () Linear Thompson Sampling (contrib/LinTS)
o O 1 Augmented Random Search (ARS) Exploration-based plug-ins (can be combined with any algo)
o () 1F Evolution Strategies o () Curiosity (ICM: Intrinsic Curiosity Module)

|7

Regression Tree (CART)

Input: age, gender, occupation, ... Does the person like computer games

prediction score in each leaf —— +2 +0.1 1

19

Tree Ensembles

Use Computer

20

Algorithms to learn Tree Ensembles

e Random Forest (Breiman 1997)

* Gradient Tree Boosting (Friedman 1999)

* Gradient Tree Boosting with Regularization (variant of original GBM)

21

Learning Trees : Advantages and Challenges

* Advantages of tree-based methods
* Highly accurate: several data science challenges are won by tree based methods
e Easy to use:invariant to input scale, get good performance with little tuning
e Easy to interpret and control
* Challenges on learning tree(ensembles)
e Control over-fitting

* Improve training speed and scale up to larger dataset

22

XGBoost

e eXtreme Gradient Boosted trees
* Model improvement
* Regularized objective for better model
* Systems optimizations
* Out of core computing
* Parallelization
* Cache optimization
e Distributed computing
* Algorithm improvements
* Sparse aware algorithm

* Weighted approximate quantile sketch

23

How can we learn tree ensembles?

Obj = S0 1ys, 1) + Sy Q(fr)

e We cannot use methods like SGD
e Solution:Additive Training (Boosting)

e Start from constant prediction, add a new function each time

24

Performance

ao7ea 4096
2048}
16384 1 H20_ =~ _
= 1024}
__ 8192} - —~
g 8 512
o 4096t c
S S 2561
£ 2048 Spark MLLib o Spark MLLib
c = 128}
S 8
€ 1024} £ 64
©
© i H20
512}
XGB : l |
" * - XGBoost
) 0S
256} 16}
12? - A 4 ? A s .
28 256 512 1024 2048 28 256 512 1024 2048
Number of Training Examples (million) Number of Training Examples (million)
(a) End-to-end time cost include data loading (b) Per iteration cost exclude data loading

25

Thanks!

