Lecture 4: Data Center Transport

CS 234 / NetSys 210: Advanced Computer Networks
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Parts of this lecture uses material from Mohammad Alizadeh and Radhika Mittal



Last Class: DC Topology
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Today: Data Center Transport

100Kbps—100Mbps links . Transport
inside the DC

~100ms latency

INTERNET

Servers



Data Center Transport
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What'’s Different About DC Transport?

* Network characteristics
* Very high link speeds (Gb/s); very low latency (microseconds)
* Application characteristics
* Large-scale distributed computation
* Cheap switches
* Single-chip shared-memory devices; shallow buffers
* Challenging traffic patterns
* Diverse mix of mice & elephants

e |ncast



Data Center Traffic: Mice and Elephant Flows

Mice & Elephants

Short messages
(e.g., query, coordination)

Large flows
(e.g., data update, backup)




Data Center Traffic: Incast

request deadline=250ms

deadline=50ms

Aggregator Aggregator Aggregator

deadline=10ms

The partition/aggregate design pattern




Data Center Traffic: Incast

Worker 1 * Synchronized fan-in congestion
worker 2 Aggregator request Aggregator )deadline=250ms
u ST
é p - deadline=10ms
Worker 3 Figure 2: The partition/aggregate design pattern

RTO,_. =300 ms

Worker 4 @a=mm TCP timeout

<> Vasudevan et al. (SIGCOMM’09)



Incast in Bing

e Solutions
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DC Transport Requirements

* Low Latency

* Short messages, queries
* High Throughput

e Continuous data updates, backups
* High Burst Tolerance

e |ncast

The challenge is to achieve these together
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Review: TCP algorithm

\
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DCTCP Core Idea

» Extract multi-bit feedback from single-bit stream of ECN marks
— Reduce window size based on fraction of marked packets.

___ECNMarks TCP DCTCP
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Random Early Detection (RED)

Queue length
0 ) . <
Maximum buffer size 0 ming, maxe, ave
Typical Packet Drop Pattern Random Early Detection (RED)

Packet Drop Pattern

RED can mark packets instead of dropping
when used in conjunction with ECN
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DCTCP Algorithm

Switch side: B Mark®:n¢)ar::
— Mark packets when Queue Length > K. :-

|
Sender side:
— Maintain running average of fraction of packets marked (a).

# of marked ACKs
ach RTT : F = = a< (1-92) ;
© Total # of ACKs 1-8)

» Adaptive window decreases: W <« (1- g)W

— Note: decrease factor between 1 and 2.
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DCTCP vs. TCP
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Figure 1: Queue length measured on a Broadcom Triumph
switch. Two long flows are launched from distinct 1Gbps ports
to a common 1Gbps port. Switch has dynamic memory man-
agement enabled, allowing flows to a common receiver to dy-
namically grab up to 700KB of buffer.
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DCTCP Performance
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Why Does DCTCP Work?

* Low Latency

* Small buffer occupancies = low queuing delay
* High Throughput

e ECN averaging = smooth rate adjustments, low variance
* High Burst Tolerance

* Large buffer headroom — bursts fit

* Aggressive marking = sources react before packets are dropped
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TIMELY [SIGCOMM’15]

e Core ldea

* Packet delay, measured as round-trip times at hosts, is an effective congestion signal
e Qualities of RTT

* Fine-grained and informative

* Quick response time

* No switch support needed

e End-to-end metric
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Key Challenge with RTT Measurement

Time measurements can be noisy!
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Impact of RTT noise
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Throughput degrades with increasing noise In RT 1.
Precise RT T measurement Is crucial.
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Hardware vs. Software Timestamps
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Kernel Timestamps introduce significant noise in RT T
measurements compared to HW Timestamps.

TIMELY Key ldea 1: Relies on NICs that provide hardware
support for high-quality timestamping of packet events
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TIMELY Key ldea 2: RTT Gradient
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TIMELY Overview
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TIMELY vs. DCTCP
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| Tested on different stacks
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Swift [SIGCOMM?20]

e Swift: Delay is Simple and Effective for Congestion Control in the Datacenter
[SIGCOMM’20]

* Low latency, high utilization, near-zero loss
* 50 microseconds tail latency for short flows

* Near 100% utilization at 100 Gbps line rate
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Swift Key ldea

End-to-end delay decomposition of a Packet and its ACK

2. Forward Fabric Delay
Switch Queue ——>
1. Local NIC Tx Delay | [T |

3. Remote NIC Rx Delay
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Which delays to respond to depends on the detalls of the stack

6. Reverse Fabric Delay

Swift maintains two congestion-windows - one based on fabric-delay and one based on

endpoint-delay with their respective cwnd. Effective cwnd is the minimum of the two ~ ©°°9°
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Fabric vs. Endpoint Delays
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Figure 14: CDF of end-to-end packet RTT and NIC-Rx-queuing delay for the
throughput-intensive cluster (left) and IOPS-intensive cluster (right).

27



Reminder

Title and Plan due TODAY!!
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Thanks!



