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Last Class: Network Virtualization
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Conventional View of Networks
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Data delivery is the only functionality provided by such a network



Rise of Middleboxes

Data delivery is not the only required functionality!

— @ Cache @

Security (IDS, Firewall): identify and block unwanted traffic
Performance (Cache) : Load content faster
Performance (WanOpt): reduce bandwidth usage

Application support (SSL): protocol for legacy application.

Firewall




Middlebox Prevalence

One-third of all network devices in enterprises are middleboxes!

[Making middleboxes someone else's problem, SIGCOMM’[ 2]



Problems with Hardware Middleboxes

e Dedicated

* Fixed function with little/no programmability

e Specialized hardware/software

e Custom Management APIs



Evolution of Middleboxes: Network Function Virtualization
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Need for
Packets flexibility , | Packets '
H m
ASIC CPU

Middleboxes Network functions



From Hardware Middleboxes....




... to software Network Functions (NFs)

Primarily deployed in VMs



Network View
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Key Benefits of Software Network Functions

* Programmability
* ability to update and create new NFs

 Cost benefits of commodity solutions
» Efficiency of statistical multiplexing

* Ease of deployment, configuration, and management

F|rewal

Firewall
NF Service Chain
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Challenges with Network Function Virtualization

e Complex and costly state management

e Custom per-app management APls

 Unpredictable performance

* Performance degradation
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E2: A Framework for NFV Applications

* End-to-end management of Network Functions
* Provide general solutions for common tasks
* Benefits
* Frees NF developers to focus on NF-specific logic

 Automates/consolidates management for operators
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NF Placement Options

* Thread-Based

e Lightweight

* No resource isolation
* Virtual Machine-Based

* Additional overheads

e Resource Isolation

E2 is VM-based
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Design Overview

Global SDN controller
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Pipelets

* NFV jobs represented as ‘pipelets’

 a traffic class and a DAG that captures how this traffic class should be processed by
NFs
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E2 Dataplane

 Modular architecture based on SoftNIC
* Highly efficient (uses Intel DPDK)
* Why OVS is not suitable!?

e expressiveness and functionality are limited by the flow-table semantics

* performance optimizations that improve the efficiency of NFs more important in
this context
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E2 Control Plane

* Executing Pipelets
e Sizing: How many NF instances!?
* Placement:Where to place NF instances!
e Composition: How to steer traffic between NFs!?
* Dynamic scaling: Adapting to traffic changes

* Ensuring affinity constraints of NFs
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NF placement example

(c¢) iGraph with split NF A and B (d) Optimized 1Graph

Figure 4: Transformations of a pGraph (a) into an iGraph (b, c, d).
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Comments from students

* Move E2 to container-based implementation - multiple students
* Single point of failure - multiple students

* “There are certain hardware constraints that E2 takes into account. More work is
needed to figure out how to exploit richer resources like CPU cache, GPUs,
programmable switches, specialized accelerators, etc.” - Rakshit Mehra

* “The paper does not address consistency issues that arise when global or aggregate state
is spread across multiple NF instances, which could be a significant challenge for managing
cross-NF state in a dynamic scaling scenario.” - Sagar Krishna

* “Future work on the E2 framework should focus on exploring fault-tolerance and
energy-efficient management and monitoring to enhance its robustness and sustainability
in real-world deployments.” - Yurun Song
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High Performance NF Implementations
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FlowBlaze: Stateful Packet Processing in Hardware

3

ClickNP: Highly Flexible and High Performance
Network Processing with Reconfigurable Hardware
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NetBricks: Taking the V out of NFV

Aurojit Panda’ Sangjin Han" Keon Jang* Melvin Walls* Sylvia Ratnasamy Scott Shenker'*
f UC Berkeley ¥ Google * ICSI

Abstract

The move from hardware middleboxes to software network
functions, as advocated by NFV, has proven more challeng-
ing than expected. Developing new NFs remains a tedious
process, requiring that developers repeatedly rediscover
and reapply the same set of optimizations, while current
techniques for providing isolation between NFs (using
VMs or containers) incur high performance overheads. In
this paper we describe NetBricks, a new NFV framework
that tackles both these problems. For building NFs we take
inspiration from modern data analytics frameworks (e.g.,
Spark and Dryad) and build a small set of customizable net-
work processing elements. We also embrace type checking
and safe runtimes to provide isolation in software, rather
than rely on hardware isolation. NetBricks provides the
same memory isolation as containers and VMs, without

standard tools for managing VMs; (c) faster development,
which now requires writing software that runs on com-
modity hardware; and (d) reduced costs by consolidating
several NFs on a single machine. However, despite these
promised advances, there has been little progress towards
large-scale NF deployments. Our discussions with three
major carriers revealed that they are only just beginning
small scale test deployments (with 10-100s of customers)
using simple NFs e.g., firewalls and NATs.

The move from hardware middleboxes to software NFs
was supposed to speed innovation, so why has progress
been so slow? We believe this delay is because traditional
approaches for both building and running NFs are a poor
match for carrier networks, which have the following re-
quirements: performance, NF deployments should be able
to provide per-packet latencies on the order of 10s of ps,

and throughput on the order of 10 of Gbps: efficiency

lexible software network functions (NFs) are cru-
ponents to enable multi-tenancy in the clouds. How-
tware packet processing on a commodity server has
fapacity and induces high latency. While software
Id scale out using more servers, doing so adds sig-
cost. This paper focuses on accelerating NFs with
mable hardware, i.e., FPGA, which is now a ma-
Inology and inexpensive for datacenters. However,
b predominately programmed using low-level hard-
cription languages (HDLs), which are hard to code
cult to debug. More importantly, HDLs are almost
lible for most software programmers. This paper presents
. a FPGA-accelerated platform for highly flexible
-performance NFs with commodity servers. ClickNP
) flexible as it is completely programmable using
b1 C-like languages, and exposes a modular program-
ftraction that resembles Click Modular Router. ClickNP
jgh performance. Our prototype NFs show that they
less traffic at up to 200 million packets per second
fa-low latency (< 2us). Compared to existing soft-
pnterparts, with FPGA, ClickNP improves through-
0x, while reducing latency by 10x. To the best of
vledge, ClickNP is the first FPGA-accelerated plat-
NFs, written completely in high-level language and
f2 40 Gbps line rate at any packet size.

Bojie Liff  KunTan®  Layong (Larry) Luo*  Yanqging Peng®®  Rengian Luo$t
Ningyi Xu' Yonggiang Xiong' Peng Cheng' Enhong Chen®
Microsoft Research  SUSTC  *Microsoft *SJTU

RACT 1. INTRODUCTION

Modern multi-tenant datacenters provide shared infrastruc-
ture for hosting many different types of services from differ-
ent customers (i.e., tenants) at a low cost. To ensure secu-
rity and performance isolation, each tenant is deployed in
a virtualized network environment. Flexible network func-
tions (NFs) are required for datacenter operators to enforce
isolation while simultaneously guaranteeing Service Level
Agreements (SLAS).

Conventional hardware-based network appliances are not
flexible, and almost all existing cloud providers, e.g., Mi-
crosoft, Amazon and VMWare, have been deploying software-
based NFs on servers to maximize the flexibility [23, 30].
However, software NFs have two fundamental limitations —
both stem from the nature of software packet processing.
First, processing packets in software has limited capacity.
Existing software NFs usually require multiple cores to achieve
10 Gbps rate [33,43]. But the latest network links have
scaled up to 40~100 Gbps [11]. Although one could add
more cores in a server, doing so adds significant cost, not
only in terms of capital expense, but also more operational
expense as they are burning significantly more energy. Sec-
ond, processing packets in software incurs large, and highly
variable latency. This latency may range from tens of mi-
crosecond to milliseconds [22,33,39]. For many low latency
applications (e.g., stock trading), this inflated latency is un-
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Providing Guarantees about NF Behavior

A Formally Verified NAT
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There exists 2 lot of prior work
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are dataplanes are emerging as an alternative to tra-
ditional hardware switches and routers, promising pro-
grammability and short time 10 market. These advan-

with bugs, unpredictable performance, Of security vul-
nerabilities. We explore the feasibility of verifying soft-
ware dataplanes to ensure smooth network operation.
For general programs, verifiability and performance are
competing goals; we argue that software dataplanes are
different—we can write them in a way that enables veri-
fication and preserves performance. We present a verifi-
ool that takes as input software dataplane, writ-
ten in a way that meets a given set of conditions, and
(dis)proves that the dataplane satisfies crash-freedom,
bounded-execution, and filtering properties. We evaluate
our tool on stateless and simple stateful Click pipelines;
we perform complete and sound verification of these
pipelines within tens of minutes, whereas a state-of-the-
art general-purpose tool fails to complete the same task
within several hours.

1 Introduction

Software Dataplane Verification

Mihai Dobrescu and Katerina Argyraki
EPFL, Switzerland

Abstract The subject of this work is a verification tool that

takes as input the executable binary of a software data-
plane and proves that it does (or does not) satisfy a target
property; if the target property is not satisfied, the tool
¢ against the risk of disrupting the network should provide counter-examples, 1.€.. packet sequences
packe(—processing apps could use such a tool to produce
software with guarantees, e.g., that never seg-faults or

operators could use the tool to verify that a new packet-
processing app they are considering for deployment will
not destabilize their network, €.g., it will not introduce
more than some known fixed amount of per-packet la-
tency. One might even envision markets for packet-
processing apps—similar to today’s smartphone/tablet
app markets—where network operators would shop for
new code to “drop” into their network devices. The op-
erators of such markets would need a verification tool to
certify that their apps will not disrupt their customers’
networks.

For general programs, verifiability and performance
are competing goals. Proving properties of real programs
(unlike searching for bugs) remains an elusive goal for
the systems community, at least for programs that consist
of more than a few hundred lines of code and are writ-

Software dataplanes are emerging from both re- €0 in a low-level language like C++. A high-level lan-
<earch [17,26,27,37] and industry [2.3] backgrounds asa guage like Haskell can guarantee certain properties (like
more flexible alternative to traditional hardware switches the impossibility of buffer overflow) by construction, but
and routers. They promise t0 cut network provisioning typically at the cost of performance.

costs by half, by enabling dynamic allocation of packet- For software dataplanes, it does not have to be this
processing tasks to network devices [42]; or to turn the  way: we will argue that we can write them in a way that
Internet into an evolvable architecture, by enabling con- enables verification and preserves performance. The key
tinuous functionality update of devices located at strate- question then is: what defines a “software dataplane” and

m— how much more restricted is it than a “‘general program”?

sdasanead 10 restrict OUT dataplane program-
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State Management

Elastic Scaling of Stateful Network Functions
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