Lecture /: Network Function Virtualization

CS 234 / NetSys 210: Advanced Computer Networks
Sangeetha Abdu Jyothi

SINI N O,

_.0’.. QIQ~6 7‘\2 . o ."..
Y = “' T\t
HZOAMEEEENN =
LSV = a3
s\ ::‘f :-::- .:
NG

~ o~ N/ S

".. ‘(. ’ 'A o

This lecture uses material from Radhika Mittal (ECE/CS598HPN) and Nick McKeown

Last Class: Network Virtualization

VM1 ~__
L2
switch
VM2 N VM4
Tl ey
Abstraction

Physical Topology

Conventional View of Networks

1 E 1
|

Data delivery is the only functionality provided by such a network

Rise of Middleboxes

Data delivery is not the only required functionality!

— @ Cache @

Security (IDS, Firewall): identify and block unwanted traffic
Performance (Cache) : Load content faster
Performance (WanOpt): reduce bandwidth usage

Application support (SSL): protocol for legacy application.

Firewall

Middlebox Prevalence

One-third of all network devices in enterprises are middleboxes!

[Making middleboxes someone else's problem, SIGCOMM’[2]

Problems with Hardware Middleboxes

e Dedicated

* Fixed function with little/no programmability

e Specialized hardware/software

e Custom Management APIs

Evolution of Middleboxes: Network Function Virtualization

Dedicated hardware Software
Need for
Packets flexibility , | Packets '
H m
ASIC CPU

Middleboxes Network functions

From Hardware Middleboxes....

... to software Network Functions (NFs)

Primarily deployed in VMs

Network View

Public Internet

Public Internet

Forwarding

- Firewalls
: : - Load-balancin
Middlebox Middlebox Middlebox NAT J
Boundary routers
Deep Packet Inspection
DDoS Mitigation

Forwardin .
i Forwarding Forwarding
: Forwarding

Forwarding :
= di Forwarding
onwarcing Forwarding g

- Forwarding

- Forwarding

|10

Key Benefits of Software Network Functions

* Programmability
* ability to update and create new NFs

 Cost benefits of commodity solutions
» Efficiency of statistical multiplexing

* Ease of deployment, configuration, and management

F|rewal

Firewall
NF Service Chain

l'/'

Challenges with Network Function Virtualization

e Complex and costly state management

e Custom per-app management APls

 Unpredictable performance

* Performance degradation

12

E2: A Framework for NFV Applications

* End-to-end management of Network Functions
* Provide general solutions for common tasks
* Benefits
* Frees NF developers to focus on NF-specific logic

 Automates/consolidates management for operators

13

Cellular Backend

(g)

e

Public Data
Network

(g)

E-UTRAN

NF Placement Options

* Thread-Based

e Lightweight

* No resource isolation
* Virtual Machine-Based

* Additional overheads

e Resource Isolation

E2 is VM-based

|5

Design Overview

Global SDN controller

]
|I| Network-wide policies ‘

Instructions for CO via .-
pipelets Network operator

_— E2 Manager

Y

Monitoring,

--------*

Server Agent

Rule update!! NF creation

i E2 manager E

- , Switc

S e o)) AT T

i = Switch . .

| ! Other Figure 3: The overall E2 system architecture.
: devices

|6

Pipelets

* NFV jobs represented as ‘pipelets’

 a traffic class and a DAG that captures how this traffic class should be processed by
NFs

¢ &&
‘DSSOS A 30) _+ Web Cache
W‘ \
DS IDS.safe && !(dst port 80) X Netw.()rk
Monitor
. /Od_’
Yo Traffic /

Normalizer

E2 Dataplane

 Modular architecture based on SoftNIC
* Highly efficient (uses Intel DPDK)
* Why OVS is not suitable!?

e expressiveness and functionality are limited by the flow-table semantics

* performance optimizations that improve the efficiency of NFs more important in
this context

|18

E2 Control Plane

* Executing Pipelets
e Sizing: How many NF instances!?
* Placement:Where to place NF instances!
e Composition: How to steer traffic between NFs!?
* Dynamic scaling: Adapting to traffic changes

* Ensuring affinity constraints of NFs

19

NF placement example

(c¢) iGraph with split NF A and B (d) Optimized 1Graph

Figure 4: Transformations of a pGraph (a) into an iGraph (b, c, d).

20

Comments from students

* Move E2 to container-based implementation - multiple students
* Single point of failure - multiple students

* “There are certain hardware constraints that E2 takes into account. More work is
needed to figure out how to exploit richer resources like CPU cache, GPUs,
programmable switches, specialized accelerators, etc.” - Rakshit Mehra

* “The paper does not address consistency issues that arise when global or aggregate state
is spread across multiple NF instances, which could be a significant challenge for managing
cross-NF state in a dynamic scaling scenario.” - Sagar Krishna

* “Future work on the E2 framework should focus on exploring fault-tolerance and
energy-efficient management and monitoring to enhance its robustness and sustainability
in real-world deployments.” - Yurun Song

21

High Performance NF Implementations

Microboxes: High Performance NFV with Customizable,
Asynchronous TCP Stacks and Dynamic Subscriptions
Guyue Liu*, Yuxin Ren*, Mykola Yurchenko®,

K K. Ramakrishnan', Timothy Wood*
*George Washington University, 'University of California, Riverside

Salvatore Pontarelli!-2, Roberto Bifulco, Marco Bonola!-2, Carmelo Cascone?,
Marco Spazianiz'S, Valerio Bruschi®®, Davide Sanvito®, Giuseppe Siracusano”,
Antonio Capone®, Michio Honda?, Felipe Huici® and Giuseppe Bianchi®>

! Axbryd, 2CNIT, *NEC Laboratories Europe, *Open Networking Foundation,
SUniversity of Rome Tor Vergata, ®Politecnico di Milano

FlowBlaze: Stateful Packet Processing in Hardware

3

ClickNP: Highly Flexible and High Performance
Network Processing with Reconfigurable Hardware

Abstract

While programmal
handle growing net|
yet simple abstracti
in hardware remair]
problem with Flow
stateful packet pros
straction is based o]
troduces the explici
Blaze to leverage f
pressive, supporting
tions, and easy to u
tation issues from {
FlowBlaze on a N¢
tency (in the order
tively little power,
thousands of flows
for even higher spej
ware and software
licly available.

1 Introductio]

Network infrastruct
network functions t
and server load balg
such as access con
examples. Given
the need to contitq

NetBricks: Taking the V out of NFV

Aurojit Panda’ Sangjin Han" Keon Jang* Melvin Walls* Sylvia Ratnasamy Scott Shenker'*
f UC Berkeley ¥ Google * ICSI

Abstract

The move from hardware middleboxes to software network
functions, as advocated by NFV, has proven more challeng-
ing than expected. Developing new NFs remains a tedious
process, requiring that developers repeatedly rediscover
and reapply the same set of optimizations, while current
techniques for providing isolation between NFs (using
VMs or containers) incur high performance overheads. In
this paper we describe NetBricks, a new NFV framework
that tackles both these problems. For building NFs we take
inspiration from modern data analytics frameworks (e.g.,
Spark and Dryad) and build a small set of customizable net-
work processing elements. We also embrace type checking
and safe runtimes to provide isolation in software, rather
than rely on hardware isolation. NetBricks provides the
same memory isolation as containers and VMs, without

standard tools for managing VMs; (c) faster development,
which now requires writing software that runs on com-
modity hardware; and (d) reduced costs by consolidating
several NFs on a single machine. However, despite these
promised advances, there has been little progress towards
large-scale NF deployments. Our discussions with three
major carriers revealed that they are only just beginning
small scale test deployments (with 10-100s of customers)
using simple NFs e.g., firewalls and NATs.

The move from hardware middleboxes to software NFs
was supposed to speed innovation, so why has progress
been so slow? We believe this delay is because traditional
approaches for both building and running NFs are a poor
match for carrier networks, which have the following re-
quirements: performance, NF deployments should be able
to provide per-packet latencies on the order of 10s of ps,

and throughput on the order of 10 of Gbps: efficiency

lexible software network functions (NFs) are cru-
ponents to enable multi-tenancy in the clouds. How-
tware packet processing on a commodity server has
fapacity and induces high latency. While software
Id scale out using more servers, doing so adds sig-
cost. This paper focuses on accelerating NFs with
mable hardware, i.e., FPGA, which is now a ma-
Inology and inexpensive for datacenters. However,
b predominately programmed using low-level hard-
cription languages (HDLs), which are hard to code
cult to debug. More importantly, HDLs are almost
lible for most software programmers. This paper presents
. a FPGA-accelerated platform for highly flexible
-performance NFs with commodity servers. ClickNP
) flexible as it is completely programmable using
b1 C-like languages, and exposes a modular program-
ftraction that resembles Click Modular Router. ClickNP
jgh performance. Our prototype NFs show that they
less traffic at up to 200 million packets per second
fa-low latency (< 2us). Compared to existing soft-
pnterparts, with FPGA, ClickNP improves through-
0x, while reducing latency by 10x. To the best of
vledge, ClickNP is the first FPGA-accelerated plat-
NFs, written completely in high-level language and
f2 40 Gbps line rate at any packet size.

Bojie Liff KunTan® Layong (Larry) Luo* Yanqging Peng®® Rengian Luo$t
Ningyi Xu' Yonggiang Xiong' Peng Cheng' Enhong Chen®
Microsoft Research SUSTC *Microsoft *SJTU

RACT 1. INTRODUCTION

Modern multi-tenant datacenters provide shared infrastruc-
ture for hosting many different types of services from differ-
ent customers (i.e., tenants) at a low cost. To ensure secu-
rity and performance isolation, each tenant is deployed in
a virtualized network environment. Flexible network func-
tions (NFs) are required for datacenter operators to enforce
isolation while simultaneously guaranteeing Service Level
Agreements (SLAS).

Conventional hardware-based network appliances are not
flexible, and almost all existing cloud providers, e.g., Mi-
crosoft, Amazon and VMWare, have been deploying software-
based NFs on servers to maximize the flexibility [23, 30].
However, software NFs have two fundamental limitations —
both stem from the nature of software packet processing.
First, processing packets in software has limited capacity.
Existing software NFs usually require multiple cores to achieve
10 Gbps rate [33,43]. But the latest network links have
scaled up to 40~100 Gbps [11]. Although one could add
more cores in a server, doing so adds significant cost, not
only in terms of capital expense, but also more operational
expense as they are burning significantly more energy. Sec-
ond, processing packets in software incurs large, and highly
variable latency. This latency may range from tens of mi-
crosecond to milliseconds [22,33,39]. For many low latency
applications (e.g., stock trading), this inflated latency is un-

22

ing NF Performance

IEEE R B A > G, 2 6, DECE ER 2016
ACM T ANSA(TIONS ON NET “'ORKIV VOL. 24 NO DEC MB|
= s =K 201

Making Dp] Engines Resilient to Algorithmic
Complex1ty Attacks

) . ks Against a NIDS
Backtl‘aCki“g A]gorithmlc Complexnty Attac g Yehuda Afek, Member IEEE, Anat Bremler-Barr, 4,
David Hay' Membe;; IEEE ana YEMbe';]EEE, Yotam HarChO' Memb
Estan Somesh Jha ’ aron Koral, Member, [gpg 0<% 1EEE,
) - stan A
Randy Smith Cristian ent P
Cazanuter SCIENCES Depam of De 2016 IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN)
core ¢
vice a
of ent
chitec . . .
 ack provs NFVPerf: Online Performance Monitoring and
bs us- Ccussed. .
)) } e band Bottleneck Detection for NFV
Automated Synthesis of Adversarial Workloads pattern
for Network Functions e use :,ffx;d Priyanka Naik, Dilip Kumar Shaw, Mythili Vutukuru
rithm affic i Department of Computer Science and Engineering, Indian Institute of Technology, Bombay
Luis Pedrosa Rishabh Iyer Arseniy Zaostrovnykh elt;h::‘ Email: {ppnaik, dilip13, mythili} @cse.iitb.ac.in
EPFL EPFL EPFL st-case
luis.pedrosa@epfl.ch rishabh.iyer@epfl.ch arseniy.zaostrovnykh@epfl.ch
. . . e recent interest in NFV has been spurred by the advent of
jonas Fietz Katerina Argyrakl echniques for efficient packet processing in
EPFL EPFL P AL js expected to save costs
jonas.fietz@epfl.ch katerina.ar i erfs,'gh t: P 2aper to
. rf piven
STRACT Ormance D cost
oftware netw: 'a H
gnos 's kcaled
ent of networ for s ﬂ dware
owever, they ar
ance. Given Wenfe, Wy Keqi e Datap’an tfum(;;
t during depl UniVerény O?L?/Psg He, Aditya Ak eés e(t)w‘:)rk
ormance of the . ks ONsin-Mag; ella [
orkloads. We ¢ . Algonthnnc Comple)ﬂty Attac ison . l::gc‘g
enge: it takes as . 3 ce via d
nd outputs pac Demal of Servi ABSTRAC iv:ff%
aths. pnder the ¢ Dan S. Wallach The advens T opccators
mtxllmmuia sophs Scott A. Crosby dwallach@cs rice-ed¥ Id 14 planeg qor "€WOTK f 5, to make
a t incur s o odll . . NStead onger ¢ alizar,
by@cs rice € : e University th mp] ‘on (Ngy they ape ;
emory-access p scros cience, Rice n Cated p, Ineas, AUC in
unctions that implq Department of Computer S ::,:
. st
:)xtet;;:t:vg(;lr:ll::ﬁ'sl . st n clements. However Plancy”
sume O(n) time © inse ¢ bucket, the haj Problepg
YWORDS Jement hashes 1© the sam Jist, and it “Valuate, p)
etwork Function Abstract Z;:‘efwi“ also degenerate 10 2 lmk:‘c: ist, COmII:ghens
INTRODUC 1of take O(n?) time t© insert n elements. Plane, p<"
is work is about s lass of Jow-bandwidth de.mal o ' ch as red- d;meus,'o,,s) . L.
f code, typically wr We present a new ¢ .+ algorithmic deficiencies b alanced tree algorithms: § can i yed by a Enforcing Network-Wide Policies in the Presence
rocessing functio : ce attacks that exploit g, ctures. Fre- While b s[1], and treaps 17l) becomes : i i i
4 net ¢ & addr BeaviS on applications’ QAASIVE " % ees [11], AVLUEES L0 - s worst-case emS. Exper; of Dynamic Middlebox Actions using FlowTags
ix;mrln;yw;; bzen :eslse inmaty com:\data structures have aVe‘agent than predictable input Whlc: fcunclions (5] can ii";’g‘” detecy
iddleboxes, often im; quently durS:nning time that’s far more efﬁc;ees and jor, and universal has that are not predig Ware dat
ver there has been a expecte xample, both binary =) ake hash functions ations Seyed Kaveh Fayazbakhsh* Luis Chiang' Vyas Sekar* Minlan Yu* Jeffrey C. Mogul*
’ P ¢. For examp th care- o m licati Cate
. the worst Case. linked lists W1 any common apP 80ries 4 P -
¢ potential to offer m ach tables can degenerate 10 attacker can an atta\cker,mf attacker Can control 2 2 Compyy Carnegie Mellon University Deutsche Telekom Labs Usc Google
d reduced capital an h . We show how an algorithms. If an orithi] work ER
. chosen input- : we demonstrate go! . d by these alg Operagi
This shift from paxd ?;lf?cﬁvely compute such mp‘;t’ ?“;‘d Jementations 10 the inputs bc“‘!i :‘S)ele to induce the Wo'r " Abstract ing (SDN) to enforce and verify network-wide policies
CM acknowledges that this ks against the hash tab ? pb OXYs and the attackel‘.ma)’ frectively causing @ dem KeyWOrds Middleboxes provide key security and performance (e.g., [39, 40, 44]) does not extend to networks with mid-
y an employee, contractor or attacks fl, the Squid web P ution time, efieC ata ¢, . . dleboxes. Specifically, middlebox actions violate two
i rsions of Perl, bandw1 c €hter pey, guarantees in networks. Unfortunately, the dynamic traf-
he G?vcm‘n.lcnt 'n:'tams - two Ve . detection system. Using a (DoS) attack. Work, Sa oo A ol ,A:m 1o key SDN tenets [24, 32]:

23

Providing Guarantees about NF Behavior

A Formally Verified NAT

Solal Pirelli
EPFL, Switzerland
solal.pireHi@CPﬂ~Ch

Arseniy Zaostrovnykh
EPFL, Switzerland
arseniy.zaostrovnykh@epﬂ.ch
George Candea
EPFL, Switzerland
george.candea@epﬂ.ch

Katerina Argyraki
EPFL, Switzeﬂand
katerina.a.rgyraki@epﬂ.ch

There exists 2 lot of prior work
5 L 1

—_ancrnACT led

are dataplanes are emerging as an alternative to tra-
ditional hardware switches and routers, promising pro-
grammability and short time 10 market. These advan-

with bugs, unpredictable performance, Of security vul-
nerabilities. We explore the feasibility of verifying soft-
ware dataplanes to ensure smooth network operation.
For general programs, verifiability and performance are
competing goals; we argue that software dataplanes are
different—we can write them in a way that enables veri-
fication and preserves performance. We present a verifi-
ool that takes as input software dataplane, writ-
ten in a way that meets a given set of conditions, and
(dis)proves that the dataplane satisfies crash-freedom,
bounded-execution, and filtering properties. We evaluate
our tool on stateless and simple stateful Click pipelines;
we perform complete and sound verification of these
pipelines within tens of minutes, whereas a state-of-the-
art general-purpose tool fails to complete the same task
within several hours.

1 Introduction

Software Dataplane Verification

Mihai Dobrescu and Katerina Argyraki
EPFL, Switzerland

Abstract The subject of this work is a verification tool that

takes as input the executable binary of a software data-
plane and proves that it does (or does not) satisfy a target
property; if the target property is not satisfied, the tool
¢ against the risk of disrupting the network should provide counter-examples, 1.€.. packet sequences
packe(—processing apps could use such a tool to produce
software with guarantees, e.g., that never seg-faults or

operators could use the tool to verify that a new packet-
processing app they are considering for deployment will
not destabilize their network, €.g., it will not introduce
more than some known fixed amount of per-packet la-
tency. One might even envision markets for packet-
processing apps—similar to today’s smartphone/tablet
app markets—where network operators would shop for
new code to “drop” into their network devices. The op-
erators of such markets would need a verification tool to
certify that their apps will not disrupt their customers’
networks.

For general programs, verifiability and performance
are competing goals. Proving properties of real programs
(unlike searching for bugs) remains an elusive goal for
the systems community, at least for programs that consist
of more than a few hundred lines of code and are writ-

Software dataplanes are emerging from both re- €0 in a low-level language like C++. A high-level lan-
<earch [17,26,27,37] and industry [2.3] backgrounds asa guage like Haskell can guarantee certain properties (like
more flexible alternative to traditional hardware switches the impossibility of buffer overflow) by construction, but
and routers. They promise t0 cut network provisioning typically at the cost of performance.

costs by half, by enabling dynamic allocation of packet- For software dataplanes, it does not have to be this
processing tasks to network devices [42]; or to turn the way: we will argue that we can write them in a way that
Internet into an evolvable architecture, by enabling con- enables verification and preserves performance. The key
tinuous functionality update of devices located at strate- question then is: what defines a “software dataplane” and

m— how much more restricted is it than a “‘general program”?

sdasanead 10 restrict OUT dataplane program-

Luis Pedrosa
EPFL, Switzerland
1uis.pedrosa@epﬂ-ch

verification, but,
ut both the

on network

Most
their
hough
oning
b, 59))-
hotion
| level
) [35}
tateful
, even
bcution
at it is
out the

that cause the property to be violated. Developers of

kernel-panics, no matter what traffic it receives. Network

" apstract S8 T4 e 1inkS

for every ™ - ning TOUET 1ocolS:
odi o - ads. atd?‘bem
Tsin €O W

24

State Management

Elastic Scaling of Stateful Network Functions

Shinae Woo*', Justine Sherry*, Sangjin Han*, Sue Moon', Sylvia Ratnasamy®, and Scott Shenker™®
*University of California, Berkeley ~ TKAIST ~ cMU SICSI

Split/Merge: System Support for Elastic Execution in Virtual Middleboxes Abstract

Elastic scaling is a central pr
hard to realize in practice.
most Network Functions (NF|
need to be shared across N]

IBM T. J. Watson Research Center, Yorktown Heights, NY state sharing while meeting
requirements placed on NFs

tUniversity of British Columbia, Vancouver, Canada no solution exists that meets
for the full spectrum of NFs.

S6 is a new framework
of NFs without compromis
builds on the insight that a
straction is well-suited to
as a distributed shar

Shriram Rajagopalan’#, Dan Williams®, Hani Jamjoom®, and Andrew Warfield*

Sta.teless Network Functions:
e Tight Coupling of State and Processing

Breaking th

Murad Kablan, Azzam Alsudais, Eric Keller

- oxes
very for Middleb .
ReCO y University of Colorado, Bouldey

_ Basus Aurojit Paqda:
Petor Xiang Gao:)t N?ggig‘ryl?nar?esht Joao Martins

Franck Le
IBM Research

Rollback-

Justine Sherry+ istian Maciocc
h . hnamurthyo Christia et Scott Shenkeres
Arvind Kris Sylvia Ratnasamy= Luigi Rizzot
. . i Intel Rese Pi . ewalls, intrusion detectj
. UG Berkeley « University of Washington | “© Replicatioy,. A Hi slators, and load balancers no jon]
' I.Ilgh AVa11 .. etary hard.wa"" but can run in s
abﬂlty Fr Ly servers, in a virtualized envirg
Shriram p.: amework f . WENPUL [25]. This shift away frd
M Rajagopajq, 1 or Mlddleb should bring several benefits incly
"By Dap Williar .+ Oxeg astically scale the network fupe; :I
w . T J. W- ams Han:) ickly recover nctio
= m . tson Reg anj Jam, 5 from failures
a UmVersity of Bri >earch Center Yo Joom ers have reported, achjey
De‘ Ma“ag‘ ftish Colum -’ °rktowD Heiol at sim : g thoy
-

e
O“W a‘\oy‘\“g
3

’ an
nBOX: A ?\g, pep '

ctions

Middep,,
- Xes are ppj
e 1 u“ ented, cop, €Ing reare
oP peve\oP Ne\\No‘K avay’ g SVl Suppor o e XEBSible, g
oa\v\cs \,‘u\\.ac oduce signiﬁcan:l‘g a"ailabimy d
Q) ’ We pr . Perfop . . .
vy dn Y\—\e jya, 157 :‘\“ \srae! worb ;gfs;ggfgep,,m’i’:’j';;;;v.e E2: A Framework for NFV Applications
Yota™ = s huj -2~ centels T Jery ' Sttuctyre | Xes that e
h . 'na‘Y -VQTS\] HA . 0 ach'eve I xplons
. otam iscip\! unt - Unlik ow oy, . . " ‘s
B‘eﬂ\\e _aa_:\Y y 1ne \‘_xe:d_‘?“e yebrew open®* PR opers e genjnc Virtua] ;::‘fﬁg: Shoumik Palkar Chang Lan Sangjin Han
N’\a\ \e‘@'\dc ac " UC Berkeley UC Berkeley UC Berkeley
bre 1,00 of 00‘%96\(\6 sppalkar@berkeley.edu clan@eecs.berkeley.edu sangjin@eecs.berkeley.edu
~ SC uter
np
ot GO
 scnoo Keon Jang Aurojit Panda Sylvia Ratnasamy
Intel Labs UC Berkeley UC Berkeley
S T Box — a s(ii:"‘g‘ep paving the Way for NFV: keon.jang@intel.com apanda@cs.berkeley.edu sylvia@eecs.berkeley.edu
en EH N ap e " . . .
We pres O e develoP s OF Simplifying Middlebox Modifications using StateAlyzr .
for “ewloﬂ;. etwork f ““0 \ane © Luigi Rizzo Scott Shenker
i\ : . . .
agemente:o ples the C;N golation® Junaid Khalid, Aaron Gember-Jacobson, Roney Michael, Universita di Pisa UC Berkeley and ICSI
avel¥ O Grarly YO plane o Anubhavnidhi Abhashkumar, Aditya Akella rizzo@iet.unipi.it shenker@icsi.berkeley.edu
ne, S cardin® * iy ree _— . . :
PN s TR s of T i University of Wisconsin-Madison
netWors o ¢ consi® applic®
OpenBO® " H enBOT T pox Abstract central contribution of this paper is a novel, framework-

25

Evolution of Middleboxes

Dedicated hardware Software
Need for m
Packets flexibility | Packets
? HEE
ASIC CPU
Middleboxes Network functions

26

Thanks!

