Lecture II: In-Network Computing

CS 234 / NetSys 210:Advanced Computer Networks
Sangeetha Abdu Jyothi

Recap: SDN

Recap: Programmable Networking Hardware

Elmo: Source-Routed Multicast for Public Clouds

Unicast vs. Multicast vs. Broadcast

One to Many Communication Pattern in Cloud

One to Many Communication in Cloud

Limitations of Native Multicast

Limitations of Unicast-based Alternatives

Controller

Elmo: Source-Routed Multicast for Cloud Services

Key challenges:

• How to efficiently encode multicast forwarding policy inside packets?

How to process this encoding at line rate?

Proposal: Source Routed Multicast

Controller

Proposal: Source Routed Multicast

A Naive Source Routed Multicast

A multicast group encoded as a list of (Switch, Ports) pairs

```
      Switch 1: [Ports]

      Switch 2: [.....]

      Switch 3: [.....]

      Switch 4: [....x..]

      Switch 5: [.x...]
```

For a data center with:

- 1000 switches
- 48 ports per switch

Not Scalable!

Exploiting DC Characteristics for efficient encoding

- Short Paths

Co-locatedPlacement

Core

Spine

Leaf

Hypervisor

Processes: VMs, containers, etc.

Programmable Switches for Line Rate Processing

A multicast group encoded as a list of (Switch, Ports) pairs

Switch 1: [Bitmap]

Switch 2: [.....]

Switch 3: [.....]

Switch 4: [....x...]

Switch 5: [.x....]

More precisely: upstream leaf, upstream spine, core, downstream spine, downstream leaf

A multicast group encoded as a list of (Switch, Ports) pairs

Switch 1: [Bitmap] Core
Switch 2,3: [.....] Spine

Switch 4: [....x...] Leaf

Switch 5: [.x....]

Encoding a Multicast Tree in Elmo

- Key design decisions:
 - Encoding switch output ports in a bitmap
 - Encoding on the logical topology
 - Sharing bitmap across switches
 - Dealing with limited header space using default p-rules
 - Reducing traffic overhead using s-rules

Supports a Million groups!

Applications Run Without Performance Overhead

More In-Network Computing-Based Solutions

BeauCoup: Answering many network traffic queries, one memory update at a time! [SIGCOMM'20]

SwitchML [NSDI'21]

SwitchML Challenges

Challenges

</>> Limited computation

6.5 Tbpsprogrammable data plane

Other Networking Usecases

- Load balancing:
 - HULA: Scalable Load Balancing Using Programmable Data Planes, SOSR'16
- Congestion control:
 - Evaluating the Power of Flexible Packet Processing for Network Resource Allocation, NSDI'17
 - HPCC: High Precision Congestion Control, SIGCOMM' 19
- A new protocols for more efficient L2 switching
 - The Deforestation of L2, SIGCOMM'16

Other app-level use cases

- NetChain [SOSP'17]: in-network key-value store
- NetLock [SIGCOMM'20]: Switching support to manage locks
- NetPaxos [SOSR'15]: implement Paxos on programmable switches
- NoPaxos [OSDI'16]: in-network primitives for distributed protocols

Thanks!