Lecture | |: In-Network Computing

CS 234 / NetSys 210: Advanced Computer Networks
Sangeetha Abdu Jyothi

1;9 l N IR\ / INE This lecture uses material from Muhammad Shahbaz’s talk, Radhika Mittal’'s CS598HPN and SwitchML talk
DX S/

Recap: SDN

Abstract Network View

: .. ® |
Virtualization Layer / ® o

Global Network View

)
Network OS A

Recap: Programmable Networking Hardware

Queues

Out

=)

=3

Programmable Parser

|
1]

Deparser

Stage 1 Stage 2 Stage N

I

Data

Elmo: Source-Routed Multicast for
Public Clouds

Unicast vs. Multicast vs. Broadcast

A

©C O00CeO0OO0

Broadcast

(one-to-all)

Multicast

(one-to-many)

Unicast
(one-to-one)

One to Many Communication Pattern in Cloud

Distributed Programming Frameworks
(e.g., Hadoop and Spark)

Publish-Subscribe Systems

Replication (e.g., ZeroMQ and RabbitMQ)
(e.g., for Databases and state machines)

Infrastructure Applications

Streaming Telemetry (e.g., VMware NSX and OpenStack)

(e.g., Ganglia Monitoring System)

One to Many Communication in Cloud

Limitations of Native Multicast

Processing overhead

Controller

Excessive control churn
due to membership and topology changes

Limited group entries

Limitations of Unicast-based Alternatives

Controller

Traffic
overhead

A
X [

Processing
overhead

Elmo: Source-Routed Multicast for Cloud Services

e Key challenges:

* How to efficiently encode multicast forwarding policy inside packets?

* How to process this encoding at line rate!

|10

Proposal: Source Routed Multicast

Controller

Proposal: Source Routed Multicast

i Little processing overhead

, ~. Minimal control churn
S N
’,I, \\\\
/', / / R \\\
s A NN
/ . .
! No traffic No group entries
/
/ overhead needed*

/\vi /\
/ / \

{ \
f \
f \
f \
f \
f \
f \

Negligible -
processing overhead _E: @ ™ E‘

|
—_— —_—

12

A Naive Source Routed Multicast

A multicast group encoded as For a data center with:

a list of (Switch, Ports) pairs - 1000 switches
- 48 ports per switch

Switch 1: [Ports]

Switch 2: [..]
Switch 3: [..]

Switch 4: [.. .. .x ..]

. Not Scalable!
Switch 5: [.x]

Exploiting DC Characteristics for efficient encoding

- Symmetric -ore
- Co-located Spine
Placement oaf

Hypervisor
,7:\\\ Processes:
VMs, containers, etc.

T
/ I \

14

Programmable Switches for Line Rate Processing

Barefoot Tofino or
Cavium XPliant

EISEES
|

|5

Encoding a Multicast Policy in Elmo

A mU|ticaSt group encoded aS 0 Encode SWitCh ports as 3 bltmap
a list of (Switch, Ports) pairs ’

Switch 2: [..]
switch 3: [..] Bitmap is the internal data structure that

switches use for replicating packets

Switch 4: [.. .. .x ..]
Switch 5: [.x]

|6

Encoding a Multicast Policy in Elmo

A multicast group encoded as ~| @ Group switches into layers
a list of (Switch, Ports) pairs 5

Switch 2: [..]

Spine
Switch 3: [..] P
Switch 4: [.. .. .xX .. . = . —:1':(_ Leaf
: : Leaf AN NN NN N

Switch 5: [.x]

More precisely: upstream leaf, upstream spine, core, downstream spine, downstream leaf

|7

Encoding a Multicast Policy in Elmo

Multicast

|18

Encoding a Multicast Policy in Elmo

A multicast group encoded as yroe——— 9 Switches within a layer with same
a list of (Switch, Ports) pairs :

ports share a bitmap

Switch 2,3: [..] (

Switch 4: [.. .. .x ..]
Switch 5: [.x]

19

Encoding a Multicast Policy in Elmo

@
| -
O
()
Q
L=
Q.
v
(-
(48]
Q
-
Sender-specific leaf, spine, and core p-rules Common downstream spine and leaf p-rules
Sender H, type u-leaf u-spine d-core
d-spine d-leaf
Outer header(s) VXLAN u 01|M 00|M 0011 Packet body
At Ly: forward to H, Py: multipath C: forward 10:[Po] 11:[P,] 11:[Lo,Le] 01:[L,]
and multipath to P toC toP,, P
Sender Hk P 0 2,13 01:[P2] Default 10:[[.5] DefOUlt
Outer header(s) VXLAN u 00|M 00|M 1001 . Packet body
: : P,: forward to L, Lo: forward to H,, Hy
At Ls: multipath P,: multipath C: forward P,: forward to Le Ls: forward to Hy
to P, toC to Py, P3 p j forward to Lo L L: forward to H,,, H,,
3 Torw Le, Ly L;: forward to H,,

20

Encoding a Multicast Policy in Elmo

A multicast group encoded as
a list of (Switch, Ports) pairs

[.X .. X ..]

©
5 [Switeh 1: [Bitnap] | cor
O | Switch 2,3: [..]
O Spiné
O :
Q) :
L | switch 4,5:
O Leaf:
3,
>< H
X

Default Bitmap §
Switch Table Entries

21

© Use switch entries and a default
bitmap for larger groups

Encoding a Multicast Tree in Elmo

e Key design decisions:
* Encoding switch output ports in a bitmap
* Encoding on the logical topology
e Sharing bitmap across switches
* Dealing with limited header space using default p-rules

* Reducing traffic overhead using s-rules

Supports a Million groups!

22

Applications Run Without Performance Overhead

== Elmo —®— Unicast

fg 9\-o/ [Elmo B Unicast

q“, > 200K - C 100-
e,

o o C ©
» c 100K- LD N 50- -I
289 50K- Q= 25
(I:) Cf: oK - n:_ - ----“JJ

_C | I 1 | i | | I | D

Number of subscrlbers Number of subscrlbers

23

More In-Network Computing-Based
Solutions

BeauCoup: Answering many network traffic queries, one memory update at
a time! [SIGCOMM’20]

DDoS:

Are there many Source IPs
sending to one particular
Destination IP?

25

SwitchML [NSDI’21]

L

Worker 1 Worker 2 Worker 3 Worker 4
}{ 111l 11111 11111 11111
ps N S LS = 1) O = () EO I]

WA\ W W\ Aggregate model
updates in-network)
Worker 1 updates Worker 2 updates Worker N updates Switch iy

26

SwitchML Challenges

Challenges
< /> Limited computation
S Limited storage

— No floating points

Kot | 6.5 Tbps
@ Packet loss programmable

data plane

27

Other Networking Usecases

e ¢ | oad balancing:
e HULA:Scalable Load Balancing Using Programmable Data Planes, SOSR’1 6
e Congestion control:

e Evaluating the Power of Flexible Packet Processing for Network Resource
Allocation, NSDI’ 17

e HPCC: High Precision Congestion Control, SIGCOMM’|9
* A new protocols for more efficient L2 switching

e The Deforestation of L2, SIGCOMM’1 6

28

Other app-level use cases

* NetChain [SOSP’|7]: in-network key-value store
* NetLock [SIGCOMM’20]: Switching support to manage locks
* NetPaxos [SOSR’|5]: implement Paxos on programmable switches

* NoPaxos [OSDI'16]: in-network primitives for distributed protocols

29

Thanks!

